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Abstract: Based on the wide application of sulfur hexafluoride (SF6) gas in the power industry, the
analysis and detection of its decomposition components have become important technical means
for state detection and fault evaluation of gas-insulated equipment. The gas-sensitive characteristics
and adsorption mechanism of the SnS2 sensor for SO2 and SOF2 gases were investigated using SO2

and SOF2, the main SF6 decomposition components, as the target detection gases. SnS2 gas-sensitive
materials and components were prepared, and the temperature response, concentration response,
response recovery and stability of the SnS2 sensor for the two SF6 decomposition components were
tested based on the gas-sensitive test platform. The results demonstrate that the sensor had the best
working performance at 200 ◦C, with obvious response and ideal recovery for both target gases and
good stability in a certain time. Based on the first principle, the SnS2 surface structure model and
the target gas adsorption model were established, and the adsorption mechanism was analyzed in
terms of frontier molecular orbital theory to verify the correctness of the gas-sensitive test results. The
gas-sensitive test analysis and simulation calculation can provide data basis and theoretical support
for the study of SF6 decomposition components detected by gas sensors.

Keywords: SF6 decomposed components; SnS2; gas sensor; gas-sensitive characteristics; adsorption
mechanism

1. Introduction

The excellent insulation and arc extinguishing properties of SF6 gas have made it
important and widely used in power systems [1–5]. With the improvement of the voltage
level of the power systems, the partial discharge (PD) and partial over-thermal (POT)
phenomenon inside SF6-insulated power equipment has gradually become an important
cause of insulation failure [6]. Moreover, POT or PD will cause part of the SF6 gas to
decompose into a variety of low-fluorine sulfides, which will also react with micro-oxygen
and micro-water to generate a series of stable products, such as SO2, H2S, SOF2, SO2F2,
HF, etc., thus accelerating insulation aging, affecting the safe operation of equipment and
threatening the health and safety of staff [7,8]. At present, there are various PD monitoring
methods such as the pulse current method, ultrasonic method and ultra-high-frequency
method [9] at home and abroad, but they all have limitations and cannot meet the needs
of modern monitoring [10]. Based on the causal relationship between PD and POT and
the SF6 gas decomposition phenomenon [11,12], the analysis and detection technology of
SF6 gas decomposition components has gradually become a research hotspot since the
1990s [13–15]. Among them, the gas sensor method has been studied extensively [16–19].

On the one hand, there is a problem of cross-interference in the development of gas
sensing for mixed gas detection, i.e., the presence of other gases can affect the detection
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results of the target gas, and on the other hand, the shortcomings of existing gas-sensitive
materials themselves also limit the development of gas-sensitive sensing. For the former,
the solution using micro-gas-sensing arrays with artificial intelligence algorithms has been
proposed, and for the latter, finding new gas-sensitive materials or modifying existing ma-
terials has become the path of development. In this paper, a new gas-sensitive material for
detecting SF6 decomposition components is proposed for the second type of problem. The
metal sulfide tin disulfide (SnS2) is an N-type semiconductor material with a graphene-like
layer structure, and its narrow bandwidth and band gap give it special optical and electrical
properties, making SnS2 widely studied in the fields of photocatalysis, biomaterials and gas
sensors [20–22]. At this stage, many scholars have studied the gas adsorption properties
of SnS2. Experimentally, Kim et al. [23] prepared a two-dimensional SnS2 material based
on the high-energy ball milling method, and the results showe that this material could
achieve a sensitivity of more than 2000% for NO2 gas at 250 ◦C with response recovery
times of 6 s and 40 s, respectively. In terms of theory, based on density functional theory,
Cui et al. [24] investigated SnS2 containing S vacancies and its adsorption properties for
CO and C2H2 gases, and the results showe that both CO and C2H2 molecules could be
physically adsorbed on the S vacancies of the SnS2 monolayer, and stronger adsorption
performance could be identified in the CO system, in which the adsorption energy was
calculated as −0.76 eV.

In summary, it can be seen that SnS2 materials demonstrate excellent gas-sensitive
performance. However, experimental studies on SnS2 gas sensors at this stage are more
limited to common gaseous molecules as target adsorption gases, such as NH3, NO, NO2,
etc. The gas-sensitive performance of SF6 decomposition components is less explored
and is still at a preliminary stage. Among the many SF6 gas decomposition components,
SO2 gas has a high content and is one of the main decomposition products, and SOF2 is
colorless and highly toxic and is one of the typical decomposition products [25,26]. To add
to this, the National Institute of Occupational Safety and Health (NIOSH) recommends
the short-term exposure limit (STET) value of SO2 as 5 ppm, and the Occupational Safety
and Health Administration (OSHA) stipulates the permissible exposure limit (PEL) value
of SOF2 as 2.5 mg/m3, which is about 0.7 ppm. Therefore, the detection of these two
gases is of necessary research value. Based on the hydrothermal method and screen
printing, SnS2 gas-sensitive materials and gas-sensitive sensors were prepared, and the
gas-sensitive properties such as temperature response, concentration response, response
recovery, sensitivity and stability for SO2 and SOF2 gases were tested. In terms of theoretical
calculations, the surface structure model and target gas adsorption model of SnS2 were
established based on Materials Studio software, and the adsorption mechanism of SnS2
on SO2 and SOF2 was verified at the micro-level. The results provide experimental and
technical support for the fault detection of gas-insulated equipment.

2. Experimental Section
2.1. Preparation of SnS2 Material

SnS2 gas-sensitive materials were prepared by hydrothermal method. A total of 0.5 mL
of hydrochloric acid (HCl, 36~38 wt%) was diluted with 10 mL of deionized water to obtain
an aqueous solution of hydrochloric acid. A total of 1 mmol (225 mg) SnCl2·2H2O was
weighed and dissolved in the above HCl aqueous solution, and the above mixed solution
was stirred magnetically for 1 h, and then an appropriate amount of deionized water
was added to obtain 40 mL of mixed Solution I. A total of 8 mmol (610 mg) thiourea
(NH2CSNH2) was weighed and dissolved in the above mixed Solution I, and the above
mixed solution was stirred magnetically for 1 h to obtain the mixed Solution II. The above
mixed Solution II was placed in an autoclaved reaction and stored in a thermostat at 150 ◦C
for 36 h. After the reactor cooled naturally to room temperature, the solid product was
separated by centrifugation at 6000 r/min and washed by centrifugation with deionized
water and anhydrous ethanol six times alternately. The solid product was dried in a
thermostat at 60 ◦C for 8 h to finally obtain yellow powdered SnS2.
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2.2. Preparation of SnS2 Gas Sensor

The gas sensor used alumina ceramic as the substrate and platinum, a precious
metal, as the electrode conducting material. The electrode consists of two electrodes: the
heating electrode on the outer ring and the gas-sensitivity test interdigital electrode on
the inner ring. The SnS2 nanomaterials were evenly coated on the surface of the test
electrode, and the specific steps were: The resistance between the electrodes was tested
by the multimeter to ensure that the two electrodes were completely insulated from each
other. The interdigital electrode was cleaned with deionized water and anhydrous ethanol
alternately by ultrasonication six times to ensure that the electrode surfaces were free of
impurities. A total of 0.2 g of the above SnS2 powder was mixed with 0.2 g of ethylene
glycol solution, which was ultrasonically dispersed for 0.5 h to form a mixture. The above
mixture was applied to the surface of the interdigital electrode through the screen-printing
mesh with a squeegee. The coated interdigital electrode was placed in a vacuum at 180 ◦C
for 6 h.

2.3. Construction of Gas-Sensitive Test Platform and Experimental Process

The gas-sensitive test platform was composed of four parts: the target gas to be tested,
the dynamic gas distribution system, the gas-sensitive test and analysis system and the
exhaust gas treatment system, which were connected by a 6 mm outer diameter gas tube.
The target gases to be measured were SO2 and SOF2 gases, and the background gas was
He. The dynamic gas distribution system adopted a GC500-multi-functional dynamic gas
distribution instrument, which could precisely configure the concentration of the target
gas to be measured and control the gas output flow rate to maintain 500 mL/min during
the experiment. The gas-sensitive tester was composed of two parts: a four- channel
gas-sensitive performance tester and an upper computer. The four-channel gas-sensitivity
tester could collect data and send them back to the upper computer, which could visualize
the output of the data returned and realize the temperature control and optical excitation
control of the gas-sensitive tester.

The idea of this experiment was: first, the temperature response and recovery char-
acteristics of the SnS2 gas sensor to two SF6 decomposition components were tested to
determine the optimal operating temperature of the sensor, and then the concentration-
response characteristics, sensitivity and long-term stability of the sensor for the two target
gases were tested at this temperature.

The specific steps were:

(1) The device was connected, and the gas tightness of the device was checked.
(2) He was introduced to flush the gas chamber to ensure that no other gases exist inside

the gas chamber.
(3) The initial resistance value of the SnS2 gas sensor at room temperature (23 ◦C) and

in a pure He background was measured, recorded as R1. A specific concentration
of a single target gas was introduced, where SO2 gas was tested at 150 ppm, while
SOF2 gas was set at 50 ppm due to the difficulty of purchasing raw materials for the
production of this gas, and only 50 ppm of standard gas could be purchased. After
the sensor resistance was stabilized, the value was recorded as Rgas. Finally, the air
chamber was cleaned by He, and when the resistance stabilized again, the value was
recorded as R2.

The response performance S was defined as:

S = R1/Rgas (1)

The recovery performance R was defined as:

R = R2/R1 (2)
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According to the definition of the formula, the greater the difference between the re-
sponse value of the sensor to the target gas and “1”, the better its response performance, and
the smaller the gap between the recovery value and “1”, the better its recovery performance.

(4) The operating temperature gradient was set to: 50 ◦C, 100 ◦C, 150 ◦C, 200 ◦C, 250 ◦C,
300 ◦C and 350 ◦C, and Step 3 was repeated. The temperature response characteristics
of the sensor to the target gas were combined with the recovery of the sensor resistance
value to determine its optimal operating temperature.

(5) At the optimal operating temperature, the response values of the sensor to different
concentrations of a single target gas were tested (where the concentration gradients
were set to 150 ppm, 100 ppm, 50 ppm, 30 ppm and 10 ppm for SO2 gas, and 50 ppm,
40 ppm, 30 ppm, 20 ppm and 10 ppm for SOF2 gas). The concentration–response
characteristics of the sensor to the target gas were explored in relation to the response
concentration, and the dynamic characteristics of the sensor such as response time,
recovery time, sensitivity and stability were analyzed. The response time is the time
required for the sensor resistance to reach 90% of its final stable value after the target
gas to be measured is introduced. Additionally, the recovery time is the time required
for the sensor resistance to return to 90% of the initial resistance value after stopping
the target gas to be switched to He.

3. Results and Discussion
3.1. Micro-Structure and Characterization of SnS2

The XRD pattern of SnS2 nanomaterial is shown in Figure 1. Among the diffraction
peaks of the sample, the stronger peaks are 14.9◦ (001), 28.2◦ (100), 32.9◦ (101), 41.8◦ (102)
and 46.0◦ (110), which correspond to the peak positions of the standard card, indicating
that the sample is the SnS2 material. Additionally, the strong and sharp diffraction peaks in
the XRD pattern indicate that the material has good crystallinity. In addition, the diffraction
peaks on the crystalline plane of the sample (00 c) increase in intensity, indicating that the
sample is a lamellar structure and stacked along the c-axis.
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Figure 1. XRD patterns of nanometer SnS2. 

Figure 2a shows the FESEN image of the SnS2 material, and Figure 2b,c shows the 
TEM images of different positions of the SnS2 material. It can be seen in the combined two 
types of representational images that the SnS2 exhibits irregular flakes, and the planar di-
mensions of the nanosheets are between a few hundred nanometers and a few micro-me-
ters, and the thickness is about tens to hundreds of nanometers. 

Figure 1. XRD patterns of nanometer SnS2.

Figure 2a shows the FESEN image of the SnS2 material, and Figure 2b,c shows the TEM
images of different positions of the SnS2 material. It can be seen in the combined two types
of representational images that the SnS2 exhibits irregular flakes, and the planar dimensions
of the nanosheets are between a few hundred nanometers and a few micro-meters, and the
thickness is about tens to hundreds of nanometers.
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Figure 3. XPS characterization of nano-SnS2; (a) full-spectrum scan results of nano-SnS2; (b) Sn ele-
ment spectrum; (c) S element spectrum. 
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The XPS characterization results of SnS2 nanomaterials are shown in Figure 3. As
shown in Figure 3a, Sn 3d and S 2p are located in the range of 480~500 eV and 160~170 eV,
respectively. The scan patterns of Sn 3d and S 2p are shown in Figure 3b,c. Sn 3d in Figure 3b
shows two distinct peaks at 487 eV and 495 eV, corresponding to Sn 3d5/2 and Sn 3d3/2 in
the +4 valence state, respectively. S 2p is shown in Figure 3c with two peaks at 162 eV and
163 eV corresponding to S 2p3/2 and S 2P1/2, respectively. The XPS characterization results
prove that the SnS2 samples prepared above were of good purity and basically free of other
impurity elements.

Chemosensors 2022, 10, x FOR PEER REVIEW 5 of 13 
 

 

 
Figure 2. The characterizations of nanometer SnS2 (a) FESEM (b,c) TEM. 

The XPS characterization results of SnS2 nanomaterials are shown in Figure 3. As 
shown in Figure 3a, Sn 3d and S 2p are located in the range of 480~500 eV and 160~170 eV, 
respectively. The scan patterns of Sn 3d and S 2p are shown in Figure 3b,c. Sn 3d in Figure3 
b shows two distinct peaks at 487 eV and 495 eV, corresponding to Sn 3d5/2 and Sn 3d3/2 in 
the +4 valence state, respectively. S 2p is shown in Figure 3c with two peaks at 162 eV and 
163 eV corresponding to S 2p3/2 and S 2P1/2, respectively. The XPS characterization results 
prove that the SnS2 samples prepared above were of good purity and basically free of 
other impurity elements. 

1000 800 600 400 200 0

In
te

ns
ity

/a
.u

.

Binding Energy/eV

C
 1

sO
 1

s

S 
2p

Sn
 3

d

Sn
 3

p3
Sn

 3
p1

Sn
 4

d

Sn
 4

p

(a)

 
500 498 496 494 492 490 488 486 484 482 480

In
te

ns
ity

/a
.u

.

Binding Energy/eV

Sn4+ 3d5/2

Sn4+ 3d3/2

(b)

 
174 172 170 168 166 164 162 160 158

S 2p1/2
In

te
ns

ity
/a

.u
.

Binding Energy/eV

S 2p3/2
(c)

 

Figure 3. XPS characterization of nano-SnS2; (a) full-spectrum scan results of nano-SnS2; (b) Sn ele-
ment spectrum; (c) S element spectrum. 

3.2. Gas Sensitivity of the Sensor to SF6 Decomposition Components 
3.2.1. Optimum Operating Temperature of SnS2 Gas Sensor 

For the resistive-type gas sensor based on SnS2 nanomaterials prepared above, the 
optimal operating temperature for the two SF6 decomposition components was first re-
quired to be determined. The two gases to be measured were: 150 ppm SO2 gas and 50 
ppm SOF2 gas. The test temperature gradients were: 23 °C, 50 °C, 100 °C, 150 °C, 200 °C, 
250 °C, 300 °C and 350 °C (since the limit temperature of the gas tester is 400 °C, the upper 
limit of the test temperature was set as 350 °C to protect the normal operation of the equip-
ment). 

The temperature–response characteristics of the sensor to the two target gases at spe-
cific concentrations are shown in Figure 4. The gas-sensitivity test procedure was per-
formed as described in Section 2.3, and the response values were calculated according to 
Equation (1). As can be seen from the figure, the SnS2 gas sensor did not show a significant 
response to the two target gases at room temperature. When the operating temperature 
increased, the resistance of the sensor when detecting the two target gases showed a de-
creasing trend, and its response value showed an increasing trend with the increase in the 
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3.2. Gas Sensitivity of the Sensor to SF6 Decomposition Components
3.2.1. Optimum Operating Temperature of SnS2 Gas Sensor

For the resistive-type gas sensor based on SnS2 nanomaterials prepared above, the op-
timal operating temperature for the two SF6 decomposition components was first required
to be determined. The two gases to be measured were: 150 ppm SO2 gas and 50 ppm SOF2
gas. The test temperature gradients were: 23 ◦C, 50 ◦C, 100 ◦C, 150 ◦C, 200 ◦C, 250 ◦C,
300 ◦C and 350 ◦C (since the limit temperature of the gas tester is 400 ◦C, the upper limit of
the test temperature was set as 350 ◦C to protect the normal operation of the equipment).

The temperature–response characteristics of the sensor to the two target gases at
specific concentrations are shown in Figure 4. The gas-sensitivity test procedure was
performed as described in Section 2.3, and the response values were calculated according
to Equation (1). As can be seen from the figure, the SnS2 gas sensor did not show a
significant response to the two target gases at room temperature. When the operating
temperature increased, the resistance of the sensor when detecting the two target gases
showed a decreasing trend, and its response value showed an increasing trend with the
increase in the operating temperature. The trend of the response value is shown as follows:
it continues to increase in the range of 23~200 ◦C, with little difference at 200 ◦C and 250 ◦C,
and continues to increase at 300 ◦C and above. However, it was found through several
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tests that the recovery performance of the sensor becomes significantly worse at 300◦C and
above, as shown in Figure 5.
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As can be seen from the figure, the recovery time of the SnS2 gas sensor for both SO2
and SOF2 gases is around 40 s when the operating temperature is at 200 ◦C and 250 ◦C, but
when the operating temperature is at 300 ◦C and above, its resistance cannot recover to the
initial state. Since the difference between the response values of the SnS2 gas sensor for the
two target gases at 200 ◦C and 250 ◦C is not significant, and considering that the working
temperature of the sensor should be as low as possible, the working temperature of 200 ◦C
was determined for the subsequent concentration gradient test experiment.

3.2.2. SnS2 Gas Sensor Response

For gas sensors, there is a close relationship between their response values and target
gas concentrations, and the study of the relationship between them is of great importance
for the calculation of sensor detection accuracy and detection range. The response char-
acteristics of the sensor at 200 ◦C for two target gases with different concentrations of the
target are shown in Figure 6. The whole gas-sensitivity test experiment was a dynamic
process. The concentration gradients of SO2 gas were 150 ppm, 100 ppm, 50 ppm, 30 ppm
and 10 ppm, and the concentration gradients of SOF2 gas were 50 ppm, 40 ppm, 30 ppm,
20 ppm and 10 ppm.
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As can be seen from Figure 6a, the response performance and recovery performance of
the SnS2 gas sensor for SO2 gas at different concentrations are good, with a response time
of about 60 s and a recovery time of about 40 s, and its resistance value is always able to
recover to the initial state. As can be seen from Figure 6b, the response time and recovery
time of the SnS2 gas sensor for SOF2 gas at different concentrations are basically the same
as those for SO2 gas, and its resistance value can always be recovered to about 95% of the
initial resistance. When the concentration of the target gas decreases, the response value of
the sensor also decreases. At the above concentration gradients, the response values of the
SnS2 gas sensor were approximately 1.94, 1.58, 1.22, 1.14 and 1.06 for SO2 and 1.25, 1.20,
1.16, 1.12 and 1.07 for SOF2, in that order.

The linear fitting curves of the response values of the SnS2 gas sensor for the two target
gases at different concentration gradients are shown in Figure 7. The linear fit functions of
the sensor for different concentrations of SO2 and SOF2 gases were y = 6.43 × 10−3 + 0.95
and y = 4.40 × 10−3 + 1.03, respectively, and with linear correlation coefficient R2, values
were 0.990 and 0.998, which were greater than 0.990, i.e., the responses of the SnS2 gas
sensor to the two target gases within their respective concentration gradients showed
good linearity. Based on the above analysis, it can be seen that the concentration of the
decomposition products of a single SF6 gas can be roughly deduced from the response
value of the sensor in a certain concentration range.
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3.2.3. Sensitivity of SnS2 Gas Sensor

The sensitivity of the sensor is the ratio of the change in the response of the sensor ∆y
to the change in the gas concentration ∆x. In this study, the sensitivity can be regarded
as the slope of the fitted curve between the response value of the sensor and the gas
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concentration. From the calculation results in the previous subsection, it can be seen that
the sensor had a higher sensitivity of 6.43 × 10−3/ppm for SO2 gas and a lower sensitivity
of 4.40 × 10−3/ppm for SOF2 gas, and the sensitivity size comparison was: SO2 > SOF2.

To investigate whether SF6 gas would interfere with the sensor detection results in
practical applications, the response of SnS2 to 100% SF6 was tested, and the results are
shown in Figure 8. In the three sets of tests, all response values of the SnS2 sensor for pure
SF6 gas were approximately 1.02, and it was initially inferred from the experimental data
that the presence of SF6 would not affect the detection of SF6 decomposition components
by the sensor in the actual tests.
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3.2.4. Long-Term Stability of SnS2 Gas Sensor

Long-term stability is an important parameter for evaluating the performance of a
sensor and an important basis for determining the reliability of the sensor test results. To
verify the stability of the SnS2 gas sensor, a 10-day stability test was conducted at 200 ◦C
on SO2 gas at a concentration of 150 ppm and SOF2 gas at a concentration of 50 ppm,
as shown in Figure 9. The response values of the SnS2 gas sensor for both target gases
fluctuated to varying degrees over the 10-day period, but the fluctuations remained within
a certain range. Taking the response value on the first day as the benchmark, the maximum
deviation of the sensor was 2.06% for SO2 gas and 3.20% for SOF2 gas over the following
9 days. The result indicates that the SnS2 gas sensor has good stability and can reliably
detect the decomposition products of SF6 gas within a certain period of time.
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Table 1 shows the performance of SnS2 sensors and other nanomaterial sensors at
this stage in the detection of SF6 decomposition into components—SO2 and SOF2 gases.
Compared with carbon nanotube and graphene materials, the SnS2 sensor has a higher
response and better recovery performance, although it operates at a higher temperature.
Compared with the TiO2 nanotube material, the SnS2 sensor has a lower response to
SO2, but it has a faster response recovery. In conclusion, the SnS2 material prepared
in this paper has higher responsiveness and better response recovery characteristics for
the detection of SF6 decomposition components—SO2 and SOF2—compared with other
gas-sensitive materials.

Table 1. Comparison of recent pristine sensing materials of detecting SF6 decompositions.

Gas-Sensitive
Materials

Test
Components Response Operating

Temperature
Response

Recovery Time
Background

Gases

Carbon Nanotubes [27] SOF2
−1.6%

(20 ppm) room temperature ~1000 s/– He

Graphene [28] SOF2
−0.4%

(50 ppm) room temperature ~160 s/– N2

TiO2 Nanotubes [29]
SO2

−75%
(50 ppm) 180°C ~500 s/– N2

SOF2
−8%

(50 ppm) 200°C –/– N2

SnS2
SO2

1.22
(50 ppm) 200°C 60 s/40 s He

SOF2
1.12

(20 ppm) 200°C 60 s/40 s He

3.3. Response Mechanism Analysis of SnS2 Gas Sensor to SF6 Decomposition Components

The gas-sensitive mechanism of SnS2 gas sensors is mainly derived from the adsorption
of gas molecules on the SnS2 structure, as well as the interactions, energy gap changes and
charge transfer that exist during the adsorption process. In the frontier molecular orbital
theory, the energy difference between the highest occupied molecular orbital (HOMO)
and the lowest unoccupied molecular orbital (LUMO) is called the energy gap value.
The magnitude of the value can reflect the ease of electron transfer between HOMO and
LUMO, which is reflected in the strength of the conductivity of the adsorption system on a
macroscopic scale. In general, the smaller the energy gap, the lower the resistivity of the
adsorption system [30–34].

The model is calculated and analyzed based on the Dmol3 module of Materials Studio.
The Perdew–Burke–Ernzehof (PBE) function in the generalized gradient approximation
(GGA) was chosen for the exchange-correlation generalization function. The p-orbit polar-
ization double numerical polarization (DNP) was used for the atomic orbital basis group.
The DFT semi-core pseudopotential (DSSP) was used for the inner electron processing,
and the Hirshfeld method was used to analyze the change in system charge. The cutoff
radius was set to 5.0 Å. The energy convergence criterion for the self-consistent calculation
of the electronic structure was 1 × 10−6 Ha. The convergence criteria for the geometry
optimization were: the energy difference between the two geometrical optimizations was
less than 1.0 × 10−5 Ha, the force per atom was less than 0.002 Ha/Å and the maximum
displacement distance per atom was less than 0.005 Å [28,35–38].

The molecular models of the two gases were first established and geometrically
optimized to obtain the stable SO2 and SOF2 molecular models, as shown in Figure 10a,b.
Then, the bulk phase structure of SnS2 was obtained through the Materials Project database,
and the SnS2 surface structure model was established on its basis, with top and side views
shown in Figure 10c. Finally, the gases were approached to the SnS2 surface structure
adsorption sites with different atoms and different angles to construct a variety of initial
adsorption structures, and the best adsorption structure models for SO2 and SOF2 gas
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molecules on the SnS2 surface structure were obtained by comparing the adsorption energy
magnitudes after geometric optimization, as shown in Figure 11.
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The distribution of frontier molecular orbitals and the corresponding energies of the
SnS2 surface structure before and after the adsorption of two SF6 decomposition compo-
nents were calculated, as shown in Figure 12. It can be seen that after the adsorption of the
two SF6 decomposition components on the surface structure of SnS2, the distribution of
the frontier orbitals changed significantly. HOMO and LUMO were no longer uniformly
distributed, and their energy gaps were reduced to different degrees, as shown by the fact
that after the adsorption of SO2 and SOF2, the energy gaps of the SnS2 surface structure
were reduced from the original 2.444 eV to 2.409 eV and 2.435 eV, respectively.
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tion of two SF6 decomposition components, and the smaller the energy gap, the smaller
the resistivity of the adsorption system, which verified the reduction in resistance of the
gas-sensitive test experiments.
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4. Conclusions

The SnS2 gas sensor was prepared for SO2 and SOF2 gases, and the gas-sensitive
properties of the target gases were investigated from a macroscopic perspective. Mean-
while, the gas-sensitive adsorption properties were studied from a microscopic perspective
based on the first principle. The gas-sensitive mechanism of the interaction between gas-
sensitive materials and gases was investigated by combining gas-sensitive experiments
and theoretical calculations. The conclusions are as follows:

(1) The best working temperature of the SnS2 sensor for two SF6 decomposition com-
ponents is 200 ◦C, and it has high linearity in gas-sensitive performance tests of
10~150 ppm and 10~50 ppm, respectively, with a linear correlation coefficient greater
than 0.990.

(2) The sensor is more sensitive to SO2 gas than SOF2 gas at the optimum operating temper-
ature and showed excellent long-term stability in the subsequent 10-day stability test.

(3) The gas-sensitive adsorption model was established, and the distribution of frontier
molecular orbitals and the corresponding energies before and after the adsorption of
the gas were calculated. The energy gap of the SnS2 surface structure decreased to
different degrees after the adsorption of both target gases, which was consistent with
the experimental results of the decrease in resistance after the adsorption of SnS2 gas.
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