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Abstract: In this study, a non-labeled sensor system for direct determining human glycated albumin
levels for medical application is proposed. Using machine learning methods applied to surface-
enhanced Raman scattering (SERS) spectra of human glycated albumin and serum human albumin
enabled the avoidance of complex sample preparation. By implementing linear discriminant analysis
and regularized linear regression, classification and regression problems were solved based on the
spectra obtained as a result of the experiment. The results show that, coupled with data augmentation
and a special cross-validation procedure, the methods we employed yield better results in the
corresponding tasks in comparison with popular random forest methods and the support vector
method. The results show that SERS, in combination with machine learning methods, can be a
powerful and effective tool for the simple and direct assay of protein mixtures.

Keywords: human serum albumin; surface-enhanced Raman spectroscopy; protein mixtures; ma-
chine learning methods; non-labeled sensor system; medical sensor system; glycated human serum
albumin assay

1. Introduction

Surface-enhanced Raman scattering (SERS) is an effective method for the quantitative
and qualitative determination of complex biological objects, in particular proteins [1,2].

To carry out research using the SERS method, it is necessary to use special substrates
that realize the effect due to the surface features on which the phenomenon of plasmon
resonance and the localization of the electromagnetic field occur. Such substrates are most
often colloidal solutions of nanoparticles [3–7] or various planar substrates based on noble
metals [2,8] and lithographic structures [1,9–12]. In particular, planar extended nanostruc-
tured substrates based on silver and gold, obtained by vacuum evaporation methods, were
often effective for detecting proteins [2,13,14]. They have proven to be reliable, reproducible,
optically stable structures for implementing various optical effects, which is important for the
prospect of using such structures for optical and plasmonic applications [15–18].

One urgent task is the determination of glycated human serum albumin (GHSA) in
blood plasma, as the level of albumin glycation in the human body is an integral feature
characterizing average sugar content over time intervals of 2–3 weeks [19] as a marker for
type 2 diabetes [20].

There are a number of methods for GHSA detection, including ion-exchange high-
performance liquid chromatography (HPLC), boronate affinity chromatography, immunoas-
says (radioimmunoassay and enzyme-linked immunosorbent assay), a colorimetric method
with thiobarbituric acid, and enzymatic methods using proteinase and ketamine oxidase [21–24].
All of these methods require labor-intensive sample preparation, the use of many reagents,
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and complex equipment, and they cannot be used in in-patient facilities. The use of SERS or
Raman spectroscopy in combination with mathematical methods can facilitate the detection
of GHSA in both qualitative and quantitative determination of complex biological analytes
due to the simplification of sample preparation and the automation of measurements and
result processing [25,26]. In one study, a partial least squares regression (PLS) calibration
model was developed for direct measurement of the Raman spectra of GHSA with a given
concentration in a dried precipitate [25]. Another study used SERS spectra of a modified SERS
substrate by 4-mercaptophenylboronic acid to develop a calibration curve based on PLS due
to covalent binding with GHSA molecules from HSA–GHSA mixtures [26].

The choice of mathematical processing approach determines the possibility of solving
the above-described problem due to restrictions in the methods that can be used to analyze
spectral data. In particular, it is not always possible to determine spectra groups in new
spaces using PCA, as this method cannot fully describe data only by their covariance.
In this case, supervised methods, such as linear discriminant analysis (LDA), are more
advantageous because they not only take into account data dependencies but also ensure
that spectra intensities align with relevant concentrations [27]. PLS and the random forest
model (RF) [28], as well as the support vector machine (SVM) method [29], are often used
to construct calibration; however, these approaches can also be applied to classification.
Although these methods have been demonstrated to be moderately successful in solving
these problems, they have a large variance in heterogeneous data. LDA and ridge regression
can be employed to achieve stability and reduce variation, respectively.

In this work, we explore the possibility of non-labeling sensor system development
applying linear models on processed SERS spectra of HSA–GHSA mixtures in biologically
significant concentrations for the classification and quantification of GHSA via calibration
curve at direct drying without additional sample preparation, which is an important
factor for simplifying the analysis process. For SERS realization, we use thin film silver
substrates formed by vacuum sputtering technology and characterized by nanostructured
self-organizing controlled morphology [2]. We also show the advantages of the linear
model in comparison with indicative models as RF и SVM in terms of their performance
on our experimental data (SERS).

2. Materials and Methods
2.1. Sample Preparation

Freshly prepared water solutions of human serum albumin (HSA, Sigma Aldrich,
Burlington, MA, USA, LOT#SLBK6136V) and glycated human serum albumin (GHSA,
Sigma Aldrich, Burlington, MA, USA, LOT #SLBT1722) were used with a total concentration
of 1 g/L of proteins in deionized water from Milli-Q system (Merck KGaA, Darmstadt,
Germany). According to [21], the average number of glycation sites per molecule is 1.97.
Protein mixtures with a mass content of GHSA in solutions of 0%, 3%, 5%, 7%, 8%, 10%,
11%, 13%, 15%, 18%, 20%, 23%, 25%, and 100% GHSA were prepared from solutions of
HSA and GHSA. The total protein concentration remained constant and equal to 1 g L-1.
According to typical physiological values of GHSA, the concentration range selected for
analysis should be less than 25% [25] of the total albumin value. Concentrations of GHSA
0%, 3%, 5%, 7%, 10%, 13%, 15%, 18%, 20%, 23%, and 25% were used for calibration curve
plotting, and concentrations of GHSA 8% and 11% were used for validation.

2.2. SERS Substrate Preparation

Silver thin films were formed according to [2]. To obtain SERS substrates, silver was
evaporated and applied to microscope glass slides (Heinz Herenz GmbH, Ulm, Germany)
using the 8 kW e-beam evaporator (Quartz Ltd., Kaliningrad, Russia) with a base pressure
lower than 5 × 10−6 Torr. The glass slides were preliminarily rinsed with isopropanol (99.5%;
Sigma-Aldrich, Burlington, MA, USA) and pre-cleaned in plasma in a residual atmosphere at
a pressure of 10−3 Torr in the vacuum chamber. All of the films were grown using high-purity
4N (≥99.99%) granulated silver (OOO «Moscow special alloys processing plant», Russia) with
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a grain size of 3 mm. The chamber pressure was 5 × 10−6 Torr, the cathode voltage was 12 V,
the beam current was 30 mA, and the source accelerating voltage was 8 kV. The thickness
of the films was optically controlled during the deposition process. After deposition, the
film thickness was selectively measured using a scanning interferometer New View 7200
(Zygo, Middlefield, CT, USA). The film thickness was estimated at 120 nm.

2.3. AFM Analysis

AFM measurements were performed using a Solver Pro (NT-MDT, Zelenograd, Russia)
microscope in tapping mode. Images were processed in Gwyddion 2.60 (CMI, Brno, Czech
Republic). Morphology parameter statistical analysis was performed using Gwyddion
built-in program modules, calculating roughness parameters based on ISO 21920-2:202.

2.4. Protein Solution Deposition

The aliquots of HSA and GHSA solution and HSA–GHSA mixtures were deposited
in a volume of 3 µL on the SERS substrate surface. The drops were air-dried without
additional action, and the SERS spectra were measured in the formed dry residue, which
resembles a coffee ring, as shown in Figure 1.
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Figure 1. Coffee-ring HSA solution 1 g L-1. All other solutions have a similar appearance. The dotted
line marks the area where the spectra were measured.

2.5. Spectra Measurement

SERS spectra measurements were conducted using a confocal Raman spectrometer
Alpha 300 R (WITec, Ulm, Germany) based on the confocal microscope with Epiplan
Neofluar 50X/0.8 DIC ∞/0. The laser wavelength was 785 nm, the power was 45 mW, and
the accumulation time was 15 sec. More than 30 spectra were measured for each sample.
The integrational time and total count of spectra were determined by the signal-to-noise
ratio (SNR). It can be seen in Figure 2 that this ratio ceases to change noticeably when the
number of measured spectra is greater than 15.

From the above, it can be concluded that a further increase in the number of measured
spectra does not lead to a change in SNR. Figure 2 shows that the number of spectra, after
which the graph reaches a plateau, is low. At the same time, the spectrum measurement time
is only 15 sec, which makes the proposed method promising in terms of implementation
time, which is important for medical applications.
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2.6. SERS Spectra Preprocessing

When designing models based on machine learning, data preprocessing is one of the
most important stages. Depending on the selected actions, the final quality of the model is
determined based on experimental data. The following steps were used to preprocess the
dataset containing a total of 393 spectra. First, the Raman shift range (from 400 to 1800 cm−1)
was selected. Then, the baseline was corrected using a rubber-band correction. Existing
outliers in 70 spectra, such as from abnormal intensity range or ranges strongly out of
the general spectra distribution, were manually eliminated. After that, each spectrum was
normalized to its own mean and standard deviation. Smoothing was performed using a
Savitsky–Golay filter with a window size of 15 and a polynomial order of 3. The processing of
the obtained spectra and the subsequent analysis, as well as the construction and optimization
of the model parameters, were performed using Python 3.

2.7. Training and Testing Data

The resulting dataset consists of thirteen different mixtures, which were evenly dis-
tributed (including concentrations deferred for validation). Samples of eleven mixtures
were used to build the model. Among them, 80% were chosen to train the model, and the
remaining 20% were used to evaluate its efficiency. Both training and test sets were stratified
according to the concentrations. The training dataset was augmented by adding normal
noise [30]. Samples from the two remaining mixtures (8% and 11%) were used for validation.

2.8. Machine Learning Algorithms

Two datasets consisted of an X (objects-features) and Y (class labels for classification
and GHSA concentration for regression) matrix. Predictive models, namely LDA [11] and
linear regression with L1 regularization for feature selection and L2 regularization for
weight regulation (LR) [31] were chosen to solve a classification problem and construct the
robust regression curve. The regularization parameters (L1 and L2) were selected using
cross-validation via grid search, wherein the test set entirely consisted of one type of object
(one concentration of GHSA for the model).

2.9. Model Evaluation

The models were compared with the popularly used SVM and RF [29], with parameters
also selected on cross validation. A polynomial kernel function with a parameter (gamma)
equal to 0.5 was chosen for the support vector method. L2 regularization was also used for
this method. The random forest model consisted of 700 trees with unrestricted tree depth,
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as well as a minimum number of objects in a leaf equal to 2. This choice allows us to obtain
an ensemble of complex basic algorithms with a small offset. The high variance is leveled
by the number of trees. To quantify the quality of the results, we used precision with recall
metrics for classification and the coefficient of determination with the mean squared error
of prediction (RMSE) for regression. They are briefly described below.

2.9.1. Coefficient of Determination R2

The coefficient of determination, R2, is used to analyze how differences in one variable
can be explained by a difference in a second variable. It could be interpreted as a percent of
how many data points fall within the results of the line formed by the regression equation.

2.9.2. Root Mean Square Error (RMSE)

The standard quadratic error function and, at the same time, a quality metric is
commonly used in data analysis. Due to the deviation square, this metric is sensitive to
outliers, which additionally helps to validate the result.

2.9.3. Precision

Precision shows how many elements selected with the help of a classification model are
relevant, i.e., how many actually predicted label concentrations of spectra really correspond
to them.

2.9.4. Recall

Recall shows the proportion of correctly selected (by the model) concentrations among
all samples with such a concentration value from the experiment

2.9.5. F1 Score

This metric is the harmonic mean of precision and recall, equally taking into account
the values of both.

The contribution of sample augmentation to the final result was also evaluated.

3. Results
3.1. SERS Substrate

Figure 3 illustrates an AFM image of the used substrate.
Previous works have described substrates of the same type [2,13]. It should be noted

that the general morphology shown in Figure 3a,c demonstrates the typical polycrystalline
microstructure of metal films formed by electron beam evaporation on a substrate with
a different crystal lattice [18]. The cross-section of the surface is shown in Figure 3b,d.
It is clear that the surface contains nanoscale inhomogeneity. Morphology statistical pa-
rameters were calculated based on 25 surface cross-sections: root mean square roughness
(Rq = 3.6 nm); average third-highest peak to third-lowest valley height (R3z = 12.1 nm);
kurtosis (Rku = 4.1); and average wavelength of the profile (λa = 198.4 nm). The Rq and λa
parameters show that whereas the film is very smooth on macroscale, on the sub-micro
scale, it is characterized by local inhomogeneity, represented by a change in height and
expressed by the parameters R3z and Rku. According to the SERS theory, the mechanism
of the effect is determined by the optical parameters of the substrate material and surface
roughness [32]. The localization of the electromagnetic field can occur on nanostructured
inhomogeneities of the surface [26]. The electromagnetic mechanism typically dominates
in SERS, arising from the interaction of the optically excited collective electron oscillation
and the analyte molecule. Coupling the laser beam and conductive electrons considerably
affects local electromagnetic field distribution in the proximity of the nanostructured metal-
lic surface, increasing Raman scattering cross-section and thereby improving the output
signal. From the cross-sectional drawings of the surface in Figure 3b,d, we can see that
our substrate is characterized by a complex relief with numerous valleys and heights that
can work to localize the electromagnetic field. On the whole, the substrate can realize
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the multi-component effect of chemical amplification and electromagnetic amplification,
which cannot be separated from each other in this case. The existence of chemical SERS is
due to the nature of the silver coating, which interacts with sulfur-containing amino acids,
negatively charged amino acids, and amino acids containing an aromatic group [13]. This
should facilitate the transfer of charge from the substrate to the analyte molecule.
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Previous experimental and theoretical studies of the SERS properties of semi-continuous
metal films characterized as active SERS substrates [33–36] using near-field, atomic force,
and electron microscopy, together with a powerful theoretical apparatus [37], made it
possible to theoretically and experimentally visualize the localization of an enhanced
electromagnetic field on substrate surfaces. In the works mentioned above, the localization
of the field appears to be inhomogeneously dispersed over the entire surface of the substrate
and, at the same time, localized in the inhomogeneities of the surface morphology. However,
the size of such regions is much smaller than the exciting laser beam of the optical system
of the microscope. We can assume that the measured spectra represent, on the whole, the
average value of the gain from a set of many hotspots that fall into the microscope lens at
once. Under the conditions of our measurements, a fairly large region larger than 1 µm
falls into the measured beam during the measurement of each spectrum.

An analysis of the surface morphology of the substrates used by us in the present
work suggests a similar behavior of the field localization as described. The admissibility of
this assumption is based on the fact that the substrates created by us can be represented as
a combination of two layers of silver: a semi-continuous silver film on a continuous silver
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film. The existence of the first is due to the presence of roughness, and the second is bulk
silver, which provides sufficient heat removal to ensure that the substrate remains intact
under the conditions of our measurements. This allows us to use higher powers, which in
turn leads to a reduction in measurement time, thus providing a high-quality spectrum for
a short accumulation time.

Thus, we can state that a complex interaction of the analyte with the substrate can be
observed on our substrates, which leads to a noticeable enhancement of the spectra.

3.2. SERS Spectra

Figure 4 shows the obtained spectra of 100% pure HSA and GHSA.
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Figure 4 shows a comparison of the spectra of pure HSA and GHSA. Separate gray
zones show the areas in which the maximum differences between the spectra are concen-
trated. The band assignment is presented in Table 1.
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Table 1. Band assignment for the HSA and GHSA spectra.

Band Position, cm−1 Band Assignment Band Position, cm−1 Band Assignment

335, 414, 512 S-S 1107, 1130 rNH3, Lys

630 Tyr 1178, 1214 Tyr

650 ν C−S, Cys 1230–1300 Amid III

757 ρ(CH2) 1345 ω CH2, Trp

834, 859 Tyr 1455 δCH2 δCH3

907 ν(C–C) 1591 Phe, Trp

952 ν(C–C) (Random), Trp 1612 Tyr

1010, 1038 Phe 1662 Amid I (Random)

The bands were assigned according to the literature [38,39]. The main bands in both
spectra are represented by vibrations at 512, 952, 1010, 1345, 1455, and 1662 cm−1, which
correspond to vibrations S-S, ν(C-C) in Trp, Phe, CH2 in Trp, δ(CH2), δ(CH3), and Amide
I. The main contribution to the difference between the HSA and GHSA spectra is made
by the bands at 512, 1345, 1445, 1591, and 1662 cm−1. In general, we see a complex band
pattern. Therefore, mathematical methods need to be used to accurately determine the
differences in the spectra of proteins and their mixtures. Of course, for pure solutions of
HSA and GHSA, the differences between the spectra are quite easy to notice, as can be seen
in Figure 4. However, difficulties should be expected when working with mixtures when a
rather small amount of GHSA is present in the main HSA solution.

3.3. Data Processing

Figure 5 depicts the preprocessed spectra obtained from the experiment.
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Figure 5. SERS spectra for mixtures HSA–GHSA.

As Figure 5 shows, all spectra are visually very similar; however, the main features
characteristic of this group of spectra retained their shape after preprocessing. As suggested
above, the gradual appending of GHSA in HSA at biologically significant concentrations
changes the spectrum very insignificantly. With a simple visual comparison of the spectra,
the changes are not obvious. Therefore, the use of special mathematical processing methods
is necessary.

3.4. Classification Using LDA

A confusion matrix in Figure 6 shows the number of correct and incorrect predictions
made by the classification model compared with the actual concentrations in the test dataset.
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The classification model successfully separated the spectra of mixtures and made
errors only when GHSA concentrations were close to each other (3–7%). It can be seen that
if the model is wrong on the concentrations in the training set, then this predicted value is
in close proximity (one unit on the grid) to the true value. Table 2 shows these results with
the calculated quality metrics.

Table 2. The result of the classification.

Concentration GHSA Precision Recall F1 Quantity

0% GHSA 1.00 1.00 1.00 6

3% GHSA 1.00 0.83 0.91 6

5% GHSA 0.71 0.83 0.77 6

7% GHSA 0.83 0.83 0.83 6

10% GHSA 1.00 1.00 1.00 6

13% GHSA 1.00 1.00 1.00 6

15% GHSA 1.00 1.00 1.00 6

18% GHSA 1.00 1.00 1.00 6

20% GHSA 1.00 1.00 1.00 6

23% GHSA 1.00 0.83 0.91 6

25% GHSA 0.86 1.00 0.92 6

Macro AVG 0.95 0.94 0.94 66

From the above, we can see that this problem has been successfully solved, achieving
high precision and recall values (>90%). However, the classification model is poorly
applicable to determining concentrations that were not in the training set. Therefore, we
built a regression model based on the entire GHSA range.

3.5. Regression with Regularization

To predict the proportion of glycated albumin in the solution, we constructed a linear
regression model with a regularization mechanism for a more robust model. To obtain such
a model, we used regularization methods Lasso (L1) for feature selection and Ridge (L2)
for weight optimization. Hyperparameters for this technique were selected using a grid
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search algorithm with cross-validation for five folds on a training dataset. Figure 7 shows
the results of the model’s application to experimental data.
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The average RMSE in determining the GHSA level in a test set was 1.9, which is less
than 10% of the relative error. The predicted validation concentrations (8% and 11% of
GHSA) fell into the double sigma interval (95%) from the test blind samples, which evinces
a good generalization ability of the method due to the choice of the best parameters on
cross-validation.

3.6. Loadings

The linearity of our calibration model allows us to visualize its parameters in the form
of loading shifts, where each parameter corresponds to a contribution to the final result.
Figure 8 demonstrates loading shifts that provide the maximum effect on the distinction of
all spectra in the experiment.
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Analyzing the change in the spectra, we see that it is impossible to isolate the sequen-
tial evolution of one or more bands with an increase in the concentration of GHSA in HSA,
which can be used to track the change in percentage. Rather, we observe a complete change
in the spectra. Figure 8 shows that the main differences of some vibrational bands are
located in the region of 650, 685, 757, 1260, 1268, 1297, 1408, 1631, and 1680 cm−1. These
peaks correspond to vibration bands ν(C-S) in Cys, (C-S), ρ(CH2), Amid III, Amid III,
Amid III, unknown, Amid I, and Amid I. The observed change in the vibration bands for
structurally alike analytes (such as GHSA and HSA) can be associated with a change in
the structure of the micelle formed when proteins are dissolved in water upon combining
different protein molecules in mixtures, depending on their concentration ratio. The re-
arrangement of molecule charges on the micelle surface likely leads to a change in the
landing of molecules on the SERS substrate, as a result of which the SERS spectrum of



Chemosensors 2022, 10, 520 11 of 14

the mixture can change depending on the concentration of analytes in the mixture. In
fact, HSA and GHSA are structurally the same substance containing different amounts
of glucose, which is glycation. Consequently, the process of the appearance of the SERS
spectrum from glycated molecules can be twofold. It can arise primarily due to a change in
the chemical composition of the molecule due to the appearance of new chemical bonds
in the molecule itself. On the other hand, this can lead to a change in the spectrum due
to the alternative landing of the molecule on the substrate surface due to a change in the
charge distribution on the surface of the molecule. The main thing here is that the substrate
should be reproducible, ensuring the structural constancy of the adsorbed molecule on the
surface. Since the size of the protein molecule is quite large, in particular, the effective size
of the albumin molecule can be about 1 nm [40], which is comparable to the size of the
region in which the SERS effect occurs [41], in this case, it is critically important for us to
obtain morphologically reproducible substrates, which provides the proposed method for
obtaining substrates and the method of analysis implemented with their help.

3.7. Error Analysis

The use of data augmentation made it possible to improve the values of quality metrics.
Additionally, experiments were made using such popular algorithms as SVM and RF for
comparison with our method [29]. The error analysis of the above algorithms was carried
out by repeatedly sampling the training set, optimizing model parameters with fixed
hyperparameters on it, and checking the corresponding metrics on the remaining part of
the dataset. The results are shown as boxplots in Figure 9. Each plot shows the average
value of the metric and its variance averaged over various dataset splits on the training
and test samples, both with and without data augmentation.
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Thus, the models we use show comparable or superior results in comparison with the
reference ones. Since our regression model uses regularization, it is more stable due to the
fact that not all the initial features are used to describe the target dependence. Additionally,
the data augmentation method made it possible to reduce the error variance of our models
and, in some cases, to improve the metrics values, as manifested in the reduced error
interval and the shifted average.

4. Conclusions

In this work, we showed for the first time the possibility of quantitative determination
of GHSA in a mixture with HSA by analyzing their SERS spectra in drying drops of
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solutions without additional sample preparation. The obtained results have competitively
advantageous values of MSE metrics in comparison with the widely used random forest
and support vector machine; however, the regularization parameters enabled our model
to surpass those approaches in determining the blind GHSA concentrations in solutions
(8% and 11% GHSA of total solution concentration). The vibration bands that contribute to
the differences between the spectra of samples with different GHSA concentrations were
determined as follows: 650, 685, 757, 1260, 1268, 1297, 1408, 1631, and 1680 cm−1. Based
on these results, we can say that the method is simple and fast, and it can be used as the
manner for medical measurement systems.
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