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Abstract: This work constructed an ultrasensitive electrochemical bisphenol AF (BPAF) sensor using
ultra-stable graphdiyne-templated platinum nanoparticles (PtNPs@GDY) as a sensing platform.
PtNPs@GDY nanocomposite was synthesized by a chemical reduction method, and the preparation
process was simple and rapid. GDY, with its natural porous structure, was used as substrate to
stabilize PtNPs. Due to the high adsorption ability of GDY, it can prevent PtNPs from aggregation and
inactivation. Transmission electron microscopy (TEM), high-resolution TEM (HRTEM) and Energy-
dispersive X-ray spectroscopy (EDS) were used to characterize the microstructure and morphologies
of the materials. Cyclic voltammetry (CV), Electrochemical impedance spectroscopy (EIS) and
differential pulse voltammetry (DPV) were employed to investigate the electrochemical properties
of the material and the performance of the sensor. At an optimized condition, the sensor exhibited
excellent catalytic activities towards BPAF. The linear ranges were from 0.4 to 15.4 µM and 35.4 to
775.4 µM. The limit of detection was 0.09 µM. In addition, the electrochemical sensor showed good
reproducibility, stability and anti-interference.

Keywords: graphdiyne; platinum nanoparticles; electrochemical determination; bisphenol AF

1. Introduction

Bisphenol AF (1,1,1,3,3,3-hexafluoro-2,2-bis(4-hydroxyphenyl) propane, BPAF) is a
homologue of bisphenol A (BPA) in which the methyl groups are perfluorinated [1]. It is
mainly used as crosslinking agent of fluorine rubber, which can give rubber products good
compression resistance, chemical corrosion resistance and thermal stability [2]. BPAF can
also be used as monomer to synthesize special fluorine-containing polyimide, fluorine-
containing polyamide, fluorine-containing polyester, fluorine-containing polycarbonate
and other fluorine-containing polymers, which can be used as gas separation membranes,
dielectric coatings, optical fiber sheaths, photocell substrates and binders [3]. Therefore,
it has been widely used in microelectronics, optics, space technology and other fields [4].
BPA has been proven to be an endocrine-disrupting compound. As a homologue of BPA,
BPAF may also become endocrine disruptors in humans and wild animals by binding
with hormone receptors. Because the -CF3 of BPAF may be much more electronegative
and reactive than the -CH of BPA. It has been reported that in vitro, the binding efficiency
of BPAF with estrogen receptor-α (ER α) is about 20 times that of BPA, and the binding
efficiency of BPAF with ER β is about 50 times that of BPA, which indicates that BPAF
appears to shift endocrine action toward greater toxicity [2,5]. Therefore, the detection of
trace BPAF is very important and necessary.

At present, there are many studies in the literature about the detection of BPA [6–9], but
few for BPAF. High-performance liquid chromatography (HPLC) and ultra-high-pressure
liquid chromatography-electrospray tandem mass spectrometry (LC-MS/MS) are the most
widely used methods in the actual sample detection of BPAF [10,11]. Although these
methods display high accuracy, good reproducibility and a reliable capacity for quali-
tative analysis, they require complex sample pretreatments and expensive instruments.
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Electrochemical methods have attracted great interest among environmental researchers
because of their low cost, miniaturization, rapid reaction, high sensitivity and selectivity
with simple sample pre-treatments [12–14]. Recently, an electrochemical method for the
detection of BPAF was reported [14]. It is based on a carboxy-functionalized multi-walled
carbon nanotubes (COOH-MWCNTs)-modified glassy carbon electrode (GCE).

As we all know, the core of electrochemical detection is the construction of working
electrodes, and the key to improving the performance of the modified electrode lies in
the design of the interface between the target and the electrode and the construction of
efficient electron transport. Nowadays, various nanomaterials have been used to construct
electrochemical sensors and improve the performance of the sensors. However, there are
still challenges in improving the sensitivity and stability of the sensors.

Graphdiyne (GDY) is a new allotrope of 2D carbon nanostructure as a big network
of diacetylenic linkages, with the configurations composed by six carbon hexagons (6C-
hexagon) like graphene and eighteen carbon hexagons (18C-hexagon) [15]. GDY has good
conductivity and semiconducting behavior. Because of its unique structure and properties,
GDY has been widely used in various fields, such as catalysis and battery and energy
storage [16–18]. Recently, it has been reported that GDY possesses adequate sp-hybridized
carbon that may coordinate with metal atoms and dock them on the surface of GDY [19].

In this work, an ultra-stable GDY-templated platinum nanoparticle (PtNPs@GDY)
was prepared. The preparation process was simple and rapid. GDY with natural porous
structure was used as substrate to stabilize PtNPs. Due to the high adsorption ability of
GDY, it can prevent PtNPs from aggregation and inactivation, which will lead to catalytic
activity increasing. The electrochemical sensor based on PtNPs@GDY displayed good
selectivity and sensitivity for the determination of BPAF.

2. Materials and Methods
2.1. Reagents and Apparatus

GDY was purchased from Pioneer Nanotechnology Co. (Nanjing, China), H2PtCl6,
NaBH4, Na2HPO4, KH2PO4, H3PO4, CC, HQ, RC and BPAF were bought from Aladdin
Chemical Reagents Co. Ltd. (Shanghai, China). All reagents involved are analytical grade
and are used without further purification. Phosphate buffer (PB) solution with various pH
were prepared by using the stock solution of 0.1 M Na2HPO4, 0.1 M NaH2PO4, and the
supporting electrolyte was 0.1 M KCl. The experimental water is the deionized water.

All electrochemical experiments were carried out on a CHI 660E electrochemical work-
station (Chenhua Instruments Co., Shanghai, China), which contained a three-electrode
system; a working electrode (bare or modified electrode), a reference electrode (saturated
calomel electrode, saturated with KCl) and an auxiliary electrode (a platinum wire). The
surface morphologies of composites were characterized using a high-resolution transmis-
sion electron microscopy (HRTEM, FEI Talos F200X, USA) and energy-dispersive X-ray
spectroscopy (EDS, FEI Talos F200X, Super X, USA).

2.2. Synthesis of PtNPs@GDY

Firstly, 5 mg GDY powder was dissolved in water and processed by sonification for
10 min. Then, 0.5 mL H2PtCl6 aqueous solution (m:m, 1%) was added dropwise into 1 mL
GDY suspension under vigorous stirring in an ice bath for 10 min. The resulting product
was collected and washed with pure water by centrifugation to remove the excess H2PtCl6.
The product was PtCl62−@GDY. Finally, 0.5 mL NaBH4 aqueous solution (10 mg/mL) was
rapidly added to 1 mL PtCl62−@GDY suspension. The whole process was still carried out
under the condition of ice bath and continuous stirring. After centrifugation, the excess
NaBH4 was removed, and the product was obtained PtNPs@GDY. The illustration of the
synthesis steps was shown in Scheme 1.



Chemosensors 2022, 10, 485 3 of 8

Chemosensors 2022, 10, x FOR PEER REVIEW 3 of 9 
 

 

under the condition of ice bath and continuous stirring. After centrifugation, the excess 
NaBH4 was removed, and the product was obtained PtNPs@GDY. The illustration of the 
synthesis steps was shown in Scheme 1. 

 
Scheme 1. Illustration for the synthesis of PtNPs@GDY. 

2.3. Fabrication of the Modified Electrodes 
GCE (3 mm in diameter) was polished to a mirror surface with 0.05 mm and 0.3 mm 

alumina slurry. After ultrasonic treatment with water, ethanol and water for 5 min, the 
obtained electrode was used as a bare GCE. Then, 5 mL homogeneous suspensions of 
PtNPs@GDY (1 mg/mL) was dropped onto the bare GCE surface and dried in air (used as 
PtNPs@GDY/GCE). Other contrast-modified electrodes were prepared by the same 
method. 

3. Results and Discussion 
3.1. Characterization of PtNPs@GDY 

The morphology of the prepared PtNPs@GDY was characterized by TEM. As shown 
in Figure 1A, there were many nanoparticles uniformly loaded on the GDY sheets, which 
revealed that platinum ions were successfully reduced to platinum nanoparticles by so-
dium borohydride. Figure 1B presents the elemental mapping images of PtNPs@GDY, 
which showed the homogeneous spatial distribution of Pt and C elements on the GDY. 
The EDS measurement further proved the existence of Pt and C atoms (Figure 1C). 

 
Figure 1. TEM image (A), elemental mapping (B) and EDS (C)of PtNPs@GDY. 

Scheme 1. Illustration for the synthesis of PtNPs@GDY.

2.3. Fabrication of the Modified Electrodes

GCE (3 mm in diameter) was polished to a mirror surface with 0.05 mm and 0.3 mm
alumina slurry. After ultrasonic treatment with water, ethanol and water for 5 min, the
obtained electrode was used as a bare GCE. Then, 5 mL homogeneous suspensions of Pt-
NPs@GDY (1 mg/mL) was dropped onto the bare GCE surface and dried in air (used as Pt-
NPs@GDY/GCE). Other contrast-modified electrodes were prepared by the same method.

3. Results and Discussion
3.1. Characterization of PtNPs@GDY

The morphology of the prepared PtNPs@GDY was characterized by TEM. As shown
in Figure 1A, there were many nanoparticles uniformly loaded on the GDY sheets, which
revealed that platinum ions were successfully reduced to platinum nanoparticles by sodium
borohydride. Figure 1B presents the elemental mapping images of PtNPs@GDY, which
showed the homogeneous spatial distribution of Pt and C elements on the GDY. The EDS
measurement further proved the existence of Pt and C atoms (Figure 1C).
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3.2. Electrochemical Behaviors of the Different Modified Electrodes

Electrochemical impedance spectroscopy (EIS) is a common and effective method to
characterize the electrochemical performance of the modified electrode in the process of
construction. According to the Nyquist diagram, the impedance diagram consists of a
linear part, which represents the process of finite diffusion, and a semicircle part, which
represents the resistance of electron transfer (the greater the diameter of the semicircle, the
greater the resistance) [20–22]. The electrode-modification materials were characterized
by EIS measurements carried out in the presence of K3[Fe(CN)6]/K4[Fe(CN)6] (5.0 mM)
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and KCl (0.1 M) (Figure 2). The amplitude of the perturbing signal is 0.005 V, and the
frequency range is from 0.1 Hz to 100,000 Hz. DC potential is 0.15 V. It can be seen that
the bare GCE had a small charge transfer resistance and, after modification with GDY, the
semicircle significantly reduced, suggesting that GDY promoted the transfer of electrons
on the electrode surface. After adsorption of PtCl62−, the diameter of the curves increased
because electron transfer was retarded between the redox probe and the electrochemical
layer. When the PtCl62−/GDY was reduced to PtNPs@GDY by NaHB4, the diameter of
the semicircle decreases significantly, implying that the PtNPs@GDY promoted the charge
transfer between the redox pair and electrode surface.
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Figure 2. The impedimetric characteristics of bare GCE, GDY/GCE, PtCl62−/GDY/GCE, and
PtNPs@GDY/GCE.

Figure 3 showed CVs of the bare GCE (A), GDY/GCE (B), PtCl62−/GDY/GCE (C),
PtNPs@GDY/GCE and the above three modified electrodes (D) in 0.1 M PB with and
without 0.5 µM BPAF. The results showed that BPAF had a response at about 0.75 V on
all electrodes including bare GCE but, at the same concentration, the response on the
PtNPs@GDY/GCE was the largest and most obvious.
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3.3. Effect of pH and Scan Rate

The optimal pH value was investigated by differential pulse voltammetry (DPV)
technique in the range of 3.0 to 8.0 (Figure 4A). The relationship between peak currents,
peak potentials and pH values was shown in Figure 4B. The results showed that with
the increasing of pH, the peak potential decreased gradually, and the peak current first
decreased and then increased, reaching a peak at 6.0. Therefore, pH 6.0 PB was selected as
the conductive liquid in the following experiments.
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Figure 4C showed the CVs of PtNPs@GDY/GCE in 5 mM K3[Fe(CN6)] solution with
0.1 M KCl at different scan rates. The relationship between peak currents and the scan rates
was shown in Figure 4D. It can be seen that the peak current is proportional to the square
root of the sweep speed (Ip = 0.7607 × 10−6 + 3.996 υ 1/2, R2 = 0.999). The effective surface
area of the modified electrode can be calculated by using the Randles–Sevcik equation [23]:

Ip=2.69×105AD1/2n3/2v1/2c (1)

where Ip is the peak currents (A), A is the effective surface area (cm2), D (6.67 × 10−6 cm2 s−1)
is the diffusion coefficient of K3[Fe(CN6)], n is the number of electron transfer (n = 1), u is
the scan rate (V/s) and c is the bulk concentration of K3[Fe(CN6)](mol/cm3). The effective
surface area is 1.15 cm2.

3.4. DPV Determination of BPAF

Under the optimum conditions, the response of the PtNPs@GDY/GCE to BPAF was
studied by the DPV method (Figure 5A). The results showed that the peak current increased
with the increase of the concentration of BPAF and showed a two-stage linear relation-
ship (Figure 5B). The linear equations were Ip = 1.05 × 10−5 + 0.098C (R2 = 0.946) and
Ip = 1.21 × 10−5 + 0.0059C (R2 = 0.995) with the linear range of 0.4–15.4 µM and 35.4–775.4 µM.
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According to the formula LOD = 3 S/m [24]. Where S is the standard deviation of peak
current, m is the slope of linear equation. The LOD was 0.09 µM. The oxidation mechanism
for BPAF can refer to the report of Wang [1] and Chan [25].
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3.5. Interference, Stability and Practical Application

Anti-interference ability is an important parameter to evaluate the performance of elec-
trochemical sensors. In this work, some phenolic compounds and inorganic ions were used
to detect their effects on the sensor response signal. It can be seen from Figure 6A that cate-
chol (CC), hydroquinone (HQ) and Resorcinol (RC) were oxidized on PtNPs@GDY/GCE
at about 0.1 V, 0.25 V and 0.65 V, respectively. The oxidation peak potential difference and
peak current between these substances showed that they had no obvious interference with
BPAF; 500-fold Na+, K+, Cl−, SO4

2−, NO3
− and PO4

3− also had no interference on the
determination of BPAF. These experiments revealed that the PtNPs@GDY/GCE has good
selectivity for BPAF.
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and 1 µM RC (A), and the study of the stability tested with the proposed sensor (B).

After the modified electrode was prepared, it was placed in the refrigerator at 4 ◦C for
20 days. During this period, 0.5 µM BPAF was tested by DPV every 3 days. The results
showed that the peak current remained between 87.5% and 93.6% of the original peak
current (Figure 6B). This indicated that the modified electrode had good stability.

In order to test the potential of the modified electrode in practical application, we
used DPV and standard addition method to test the recovery of BPAF in river water (from
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Liucang river, Bijie, Guizhou, China). The data obtained were listed in Table 1. It can be
seen that the recoveries ranged from 85% to 118.3%, indicating that the PtNPs@GDY/GCE
can be applied to determine BPAF in real samples.

Table 1. Determination of BPAF in river water (n = 3).

Samples Added (µM) Found (µM) Recovery (%) RSD (%)

River water

0 0 - -
5.0 9.25 85.0 2.3
10.0 19.03 90.3 1.5
20.0 43.66 118.3 4.2
30.0 58.75 95.8 2.6

4. Conclusions

In this work, a graphdiyne-templated platinum (PtNPs@GDY) nanocomposite was
prepared and used to construct a sensitive electrochemical BPAF sensor. The preparation
of PtNPs@GDY and the construction of the sensor are very simple and fast. GDY, with its
natural porous structure and high adsorption capacity, can prevent the aggregation and
deactivation of PtNPs. In addition to their respective good catalytic performance, the large
specific surface area and adsorption performance of GDY and the high conductivity of Pt-
NPs give the PtNPs@GDY/GCE not only excellent catalytic performance, but also excellent
selectivity and stability. The recovery experiment also shows that the PtNPs@GDY/GCE
has the potential to detect BPAF in real samples.
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