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Abstract: The rapid development of sensing technology has created an urgent need for chemical
sensor systems that can be rationally integrated into efficient, sustainable, and wearable electronic
systems. In this case, the triboelectric nanogenerator (TENG) is expected to be a major impetus
to such innovation because it can not only power the sensor by scavenging mechanical energies
and transforming them into electricity but also act as the chemical sensor itself due to its intrinsic
sensitivity towards the chemical reaction that occurs at the triboelectric interface. In this review,
recent research achievements of chemical sensors that are based on TENGs are comprehensively
reviewed according to the role of TENGs in the system, that is, pure power supplies or self-powered
active chemical sensors. Focus is put on discussing the design criteria and practical applications of
the TENG-based active sensors in different fields, which is unfolded with a classification that includes
biosensors, gas sensors, and ion sensors. The materials selection, working mechanism, and design
strategies of TENG-based active chemical sensor systems (CSSs) are also discussed, ending with a
concise illustration of the key challenges and possible corresponding solutions. We hope this review
will bring inspiration for the creation and development of TENG-based chemical sensors with higher
sensitivity, simpler structure, and enhanced reliability.

Keywords: triboelectric nanogenerator; chemical sensor; self-powered; sustainability

1. Introduction

Over the past decades, chemical sensors have played a significant role in clinical,
industrial, and biomedical analyses because of their remarkable detection capability, sim-
plicity, and low cost [1–6]. Meanwhile, in keeping with the trend of microminiaturization,
networking, and intellectualization [7–9], chemical sensors are finding wider applications
in flexible electronic equipment and wearable intellectual devices [10–14]. Nevertheless,
due to the intrinsic drawbacks of traditional chemical batteries, such as insufficient ca-
pacity and limited-service life, the development of efficient, sustainable, and autonomous
wearable chemical sensing systems still faces severe challenges [15–18]. Energy harvesting
strategies that can bridge the integration of chemical sensors with energy storage units and
promote the design of reliable and sustainable autonomous chemical sensing systems are
urgently needed [19,20].

Among the various renewable energy harvesting technologies, such as triboelec-
tric, thermoelectric, and photochemical generators [21–27], triboelectric nanogenerators
(TENGs) are receiving tremendous focus due to their ubiquitous advantages in self-powered
facilities, where they can act as both power source and smart sensor, including dynamic
force sensors and chemical sensors, due to their intrinsic sensitivity toward chemical reac-
tions at the triboelectric interface [28,29]. Theoretically, TENGs collect mechanical energies
from the surroundings by interfacial contact electrification and electrostatic induction, and
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the magnitude of the electrical signal is highly related to the charge density in the friction
electrode surface [30–32]. In recent years, TENG-based chemical sensors have been ad-
vancing significantly, which allows reliable, practical, and energy-efficient chemical sensor
systems (CSSs) to be established.

Herein, the recent development of chemical sensors on the base of TENGs is reviewed
and summarized. As presented in Figure 1, TENG-based CSSs are classified according to
the functional role of TENGs: either as a power supply or as an active chemical sensor
itself. Accordingly, the design criteria, material selections, and basic principles of the
TENG-based chemical sensor are discussed in light of increased stability, enhanced output,
and improved reliability in harsh environments, thus satisfying the requirements of its
application. For convenience, TENG-based chemical sensors are divided into three main
categories in line with their practical applications: biosensors, gas sensors, and ion sensors.
At the end of this paper, challenges and prospects for the development of TENG-based
chemical sensors are concisely discussed. We hope this review will provide insight into the
operation and design of continuous, simple, and reliable CSSs.
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2. Basic Principle of TENGs
2.1. Working Mode of TENGs

By varying the relative motion of the contact initiation layer, TENGs are generally
classified into four basic operating modes: the vertical contact separation mode, the sliding
mode, the single-electrode mode, and the free-standing friction layer mode [33,34].

The most typical device structure in TENGs is the vertical contact separation mode
(Figure 2a), which has two electrodes—one attached to the top of the dielectric membrane
and the other on the back. These two electrodes move towards each other in the vertical
direction of the device, generating an electrical charge as a result of an externally applied
force. The potential between the electrodes will change during contact or separation,
resulting in a current output from the external circuit [35].

Next is the sliding mode (Figure 2b), which operates similarly to the vertical contact
separation mode. The device is driven by an external force parallel to the interface, resulting
in a relative displacement between the electrode material surfaces, which generates a dense
frictional charge. The magnitude of the frictional charge varies periodically with the
increase or decrease of the contact surface area. The potential difference between the
electrodes changes, resulting in an external current to balance the potential difference. Both
modes of operation require moving the object with electrodes [36].
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Given that most movements in real-world scenes are irregular, researchers recom-
mend the single-electrode mode (Figure 2c), in which the object can move freely without
being constrained by electrodes. In this mode, the device only requires one electrode
to be grounded, which acts as a reference electrode. After contact with a free-moving
object, an electrical charge is generated at the interface. During the motion, the potential
distribution caused by the charged surface will change, resulting in the flow of external
circuit current [37].

The free-standing triboelectric layer mode requires only one free-moving part (Figure 2d).
In this case, the device consists of a dielectric layer and a pair of symmetrical electrodes, and
the free-moving part generates an asymmetric potential distribution by changing its position.
Subsequently, electrons move continuously between the two electrode materials, which results
in electrical output [38].

2.2. Working Principle

Triboelectrification is a common phenomenon that we encounter daily. While its origin
is still unclear, it is widely believed that frictional electricity is caused by the overlap of
electron clouds inside the material when the electrode surfaces are in contact. In this case,
the energy barrier in the interior of the atom is lowered [39]. From a theoretical point
of view, the charges of the two friction electrodes are equal. When no external force is
applied, the two friction electrode surfaces are separated from each other, leading to the
establishment of an internal potential in the device [40,41]. Additionally, in this process,
the internal potential can induce the flow of carriers in the material from one electrode
to the other, thus counteracting the change in electric potential caused by electrostatic
induction and, finally, generating a positive current [42]. When there is an external force,
the two electrodes of the TENG move toward each other, which can cause the carriers in the
material to flow in opposite directions, resulting in a change in the polarity of the electric
potential as well [43]. In addition, when the two friction electrodes are in contact again, this
process will cycle, resulting in a periodic output with positive and negative properties [44].

3. Recent Progress of TENG-Based Chemical Sensor Systems
3.1. Chemical Sensor Powered by TENG

As a renewable energy harvesting technology, TENGs have promoted the development
of self-powered sensors and portable electronic equipment to meet the growing demand
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for autonomy and sustainability [45]. Here, the basic principle, design strategy, and recent
progress of TENGs acting as a power source in chemical sensors are illustrated.

3.1.1. Basic Principle

As shown in Figure 3, the TENG serves as a power source that can directly drive a
chemical sensor system (CSS). In this process, the output of the TENG is processed by a
power management device in the system, which typically consists of a rectifier and various
types of energy storage devices. In this case, the stability of the TENG output can only
affect the charging efficiency of the energy storage devices in the system and has no effect
on the detection abilities of the sensor.
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3.1.2. Design Criteria of TENG-Based Power Source

To be used as a power supply, the design of TENGs needs to consider the following
aspects. First, a direct and stable output TENG should be designed to continuously drive
the sensor. Second, it is essential to increase the maximum output power and energy
conversion efficiency of the device and, finally, improve the reliability performance of the
device in harsh operating conditions.

Power Management Approach

We know that conventional TENGs produce a transient peak AC output when in
operation, which is one of their most significant limitations; therefore, they cannot be
directly used as a power source for sensors. Nowadays, there are two main methods of
achieving conversion from AC power to DC power in a circuit. The first method is to
connect a rectifier to the TENGs to obtain a stable, constant DC voltage, thus maintaining
the daily operation of the sensor.

Zhang et al. combined a TENG with a humidity sensor. They prepared a flexible Teflon
triboelectric nanogenerator (TENG) and used it as an energy harvester to drive a flexible
humidity sensor [46]. The humidity sensor was made by screen-printing an SnS2/RGO
suspension with a pair of Au interdigital electrode (IDE) on a flexible PET substrate. During
operation, the frictional charge of the TENG electrode material is triggered to produce a
large alternating voltage, as in an electronic pump. To achieve the conversion of AC into a
stable DC output, they integrated the TENG with a voltage rectifier and stabilizer circuit,
thus providing a continuous and stable power supply for the humidity sensor (Figure 4a).
The output performance of the frictional electric humidity sensor system was systematically
investigated in different humidity environments, and it exhibited a highly stable output
voltage (0–24 V), fast response/recovery time (Figure 4b,c), a wide sensing range, great
stability, and ultra-low power consumption. This humidity sensing system allows stable
and continuous monitoring of human breathing and coughing and has promising future
applications in wearable devices and non-invasive medical monitoring, etc.



Chemosensors 2022, 10, 484 5 of 30

Figure 4. (a) Schematic diagram of the fabrication and operation of a TENG-based humidity sensing system. (b) Response of the device at 33% humidity conditions.
(c) Response of the device at 97% humidity conditions. Reprinted from [46] with permission from Elsevier. (d) Schematic diagram of the structure of the coplanar
electrode DC-TENG. (e) Output of the TENG for charging the capacitor at different rotational speeds. (f) Output of the TENG at 400 r/min rotation speed. Reprinted
from [47] with permission from Wiley Online Library.
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However, the method of using rectifiers is not conducive to the portability of the
TENG, and its performance is susceptible to circuit failures or environmental impacts. As
a result, some researchers tried alternative design methods to obtain a DC output from a
TENG without any device to stabilize the voltage.

For example, Xu et al. developed a coplanar electrode DC (CDC-TENG) (Figure 4d) [47].
The device has two friction electrodes in the same plane, and the rotating CDC-TENG
continuously draws energy from the environment to produce a large DC current output
(Figure 4e,f). Theoretically, this is caused by the potential difference, where the charge
is transferred from the front electrode to the back electrode through an external circuit
and then released by discharge. The external circuit can produce a DC output under a
continuous unidirectional external force. Compared with rectifiers, this CDC-TENG has
the characteristics of portability and a simplified manufacturing process, which can open
new channels for the further development of direct and simple energy harvesting systems.

Similarly, Luo et al. created a DC tribological nanogenerator (DC-TENG) using the
air breakdown technique [48]. During device operation, the charge first moves from the
bottom electrode to the top electrode and then returns through the ionized air channel
formed by air breakdown, thus creating a closed loop that produces a continuous DC
output without the required bridge rectifier.

Performance Enhancement Strategy

Although TENGs are a promising power source due to their ability to collect energy
from the environment, the relatively low output power limits the broad application of
TENGs. The following are several effective ways to increase the output of TENGs: firstly,
increase the surface charge density of the material; subsequently, increase the area of
electrode contact separation; in addition, optimizing the structural design is also a solution.

Generally, the energy conversion and output of TENGs depend on the charge transfer
resulting from the contact separation of the friction electrode surfaces. Moreover, the charge
density is highly important as it directly determines the power density, output voltage, and
current density of the TENG device.

To increase output power, Chai et al. developed a high-output contact separation
mode TENG (Figure 5a) [49]. They used conductive MWCNT/P(VDF-TrFE) interlayer
ferroelectric BTO/P(VDF-TrFE) nanocomposites as negative frictional electric materials.
Compared with previous versions, the optimized TENG improved the transferred charge
density to 105.70 µC m−2 (Figure 5b) and the peak power density to 7.21 W m−2 (Figure 5c)
in the test. These performance enhancements can be attributed to the presence of a conduc-
tive interlayer in the negative frictional electric material, which induces charge trapping,
enhancing the ferroelectric polarization and charge density of the nanocomposite and
improving the output performance of the TENG. This work shows strong potential in the
design of high-output TENGs.

Another approach is to change the surface microstructure of the friction electrode
material to obtain a larger contact area during operation, resulting in higher output power.
Lee et al. prepared surface woven glass fiber-reinforced siloxane hybrid membranes (SGH
membranes) with a layered structure using a gel method [50] and successfully fabricated
a TENG with this film (Figure 5d). They replicated the film more than 100 times with
one mold, which increased the stability of the film (Figure 5e). The membrane with a
layered surface structure increased the surface area by 210% compared to a flat membrane
(Figure 5f). The output of the layered surface TENG was several times higher than flat
TENGs. This work shows that it is possible to develop TENGs with enhanced performance
by optimizing the membrane surface structure.

Furthermore, advanced structural design can greatly increase the output power of the
TENG. For instance, Kim et al. developed a contact separation mode TENG with serrated
electrodes (SE-TENG) (Figure 5g) [51]. In principle, owing to the frictional initiation of
electricity, a spark discharge occurs between the electrode and the wire, and the resulting
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ultra-high output (5 kV voltage, 2 A·m−2 current density) can directly drive electronic
devices (Figure 5h,i).
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Resistance to Harsh Conditions

In practical applications, self-powered chemical sensor systems based on nanogen-
erators always face complex operating environments such as acid, alkali, temperature,
corrosive, high humidity, high salinity, and strong magnetic fields. Here, we review some
design strategies of TENGs that work in these complex environments.

A significant application of TENG-based CSSs is in healthcare and therapeutics. How-
ever, saliva, sweat, urine, and blood contain many human metabolic substances containing
acids, bases, and salts that can cause severe damage to electrode materials once they leak
into the TENG. Jiang et al. adopted a self-polymerization reaction to synthesize a hydrogel
from β-cyclodextrin (β-CD) molecules (Figure 6a) [52] and used this material to fabricate a
Cyc-TENG that can be applied for long-term energy harvesting in the ocean. After simula-
tions, Cyc-TENG could keep the output performance unchanged even in acidic, alkaline,
and highly concentrated salt environments (Figure 6b,c).

Besides the medical field, there are high requirements for the stability of some wearable
electronic devices during fieldwork. As shown in Figure 6d, Zhao et al. designed an anti-
freeze TENG [53]. The friction electrode was synthesized from the components of lithium
chloride, graphene oxide micro/nanosheets, and ethylene glycol, and then this electrode
was wrapped in a cage as the friction layer of the device. This TENG exhibits 200% tension
stretch performance and high output (Figure 6e). In addition, the device shows a stable
output even at −40 ◦C, which has potential applications in low-temperature sensors and
wearable electronics (Figure 6f).
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from [54] with permission from Wiley Online Library.

The same goes for high temperatures. Wen et al. designed a TENG (he-TENG) that
is adequate for harsh environments [54]. As presented in Figure 6g, the operating mode
of this TENG consists of a free-standing and single electrode. It can collect energy from
vibrations as well as being vibration sensing. They chose micro/nanocomposite blends as
friction electrode materials to obtain wear-resistant and high-temperature-resistant TENGs
for applications in components such as brake pads (Figure 6h,i). This work demonstrates
a way to improve the wear resistance of TENGs and also render them suitable for high-
temperature environments, offering an attractive prospect for multifunctional TENGs.

3.1.3. TENG-Powered Chemical Sensors

TENG can be constructed from a wide range of materials with virtues such as biocom-
patibility, flexibility, permeability, and so on [55,56]. These features offer a foundation for
the further development of CSSs that are powered by TENGs.

Biosensors

Biosensors are important in healthcare and diagnostic treatments. Nevertheless, the
battery life of these instruments is limited [57]. Battery replacement is not only an expensive
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and risky process for patients but also may be painful and inconvenient for them. Batteries
are not ideal power sources for medical devices because they contain toxic chemicals [58,59].
Therefore, self-powered sensors are a promising strategy for the sustainable operation
of biosensors.

For instance, Chen et al. reported a TENG-based blood oxygen monitoring system [60].
The friction layer material consists of a Au electrode and polydimethylsiloxane (PDMS)
(Figure 7a). On the one hand, the folded structure of PDMS and the curved surface of the Au
electrode provide great flexibility for TENGs, and on the other hand, the rough surface of
PDMS and the Au electrode improves the output power density (0.2 mW/cm2) of the TENG
(Figure 7b). Powered by the TENG, the blood oxygen detector monitors a photoelectric
volume tracing signal (PPG) that is available for calculating oxygenated hemoglobin satura-
tion and pulse rate (Figure 7c). This work provides a new idea for the further advancement
of medical wearable, flexible electronic devices and self-powered systems.
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Figure 7. (a) Schematic diagram of the structure of the TENG and the monitoring of blood oxygen.
(b) TENG output performance voltage and output power density. (c) PPG signal of the oximeter.
Reprinted from [60] with permission from MDPI. (d) Schematic diagram of the structure of the
rotating TENG. (e) Schematic diagram comparing the output of the CS-TENG and the Wi-TENG.
(f) Schematic diagram of a self-powered glucose monitoring system. Reprinted from [61] with
permission from Elsevier.

Tang et al. fabricated a high-performance TENG inspired by a spinning toy (Figure 7d) [61]
that generated high-frequency spinning at low-frequency traction, up to 11,250 rpm, at which
the TENG could generate 310 uC of charge transfer and 40.18 mW of output power per time
(Figure 7e). After incorporating power management, the TENG was successfully demonstrated
as a portable pendant power source for a blood glucose meter (Figure 7f). This work exhibits
the potential of the TENG as an instant power source for personal medical health devices.

Antigens are very important biological molecules that reflect the health status of
the body. Fan et al. designed a TENG-based preconcentration device that can be used
to preconcentrate antigens [62]. They first sputtered Al films onto PMMA to obtain
Al@PMMA films and then covered the top of the films with polydimethylsiloxane (PDMS)
and chitosan/glycerol films to obtain the TENG. The integration of the TENG-based pre-
concentrator and the smartphone-enabled bead immunoassay resulted in a portable and
highly sensitive biosensing system.

Glucose is widely present in the human body and contains a lot of biological infor-
mation. Chang et al. fabricated a TENG-based electrochemical sensing system [63]. The
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synthesized highly electrocatalytic Se/Au/Pd NPs greatly improved the sensitivity of the
sensor, and the response of the self-powered sensing system for glucose detection was
greatly enhanced and showed significant sensitivity. The mechanical energy collected by
the TENG from the environment can provide stable and continuous energy, reflecting its
key role in the self-powered sensing system.

Gas Sensors

Recently, TENGs have been extensively utilized as a complementary power source
for gas sensors, which helps the continuous operation toward the online detection of the
environmental atmosphere.

Zhang et al. reported a gelatin–polyimide-based frictional electric nanogenerator
(GP-TENG) (Figure 8a) [64]. They prepared a nanostructured gelatin film using sandpaper
as a template and employed it as an electrode material, which significantly improved
the output performance of the GP-TENG and exhibited good degradability (Figure 8b).
In addition, they prepared a PANI nanorod/NiCoO4-based NH3 sensor. The sensor,
rectifier, and GP-TENG were integrated to constitute a self-powered ammonia sensing
system (GPAS), which exhibited good responsiveness, repeatability, and stability in mon-
itoring NH3 (Figure 8c). This work provides a new idea for wearable self-powered gas
sensor designs.
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Figure 8. (a) Schematic diagram of the self-powered ammonia sensing system (GPAS). (b) Schematic
diagram of the output power of the GP-TENG. (c) Results of the GPAS responsiveness test to ammonia
gas. Reprinted from [64] with permission from the Royal Society of Chemistry. (d) Schematic
diagram of the self-powered nitrogen dioxide gas sensor. (e) Output power density of the TENG.
(f) Voltage response of the sensing system to nitrogen dioxide. Reprinted from [65] with permission
from Elsevier.

To monitor gases in the environment, Wang et al. created a polyvinyl alcohol/silver
(PVA/Ag)-based nanofiber as an electrode material for TENGs (Figure 8d) [65]. The
nanofibers are prepared by the electrospinning technique, which greatly improves the
output performance of the TENG, and the peak open-circuit voltage and current density
can reach 530 V and 359 mW/m2, respectively, during the operation (Figure 8e). A stable
output of the voltage (36 V) can be achieved by connecting a voltage regulator. In addition,
they fabricated an MXene/WO3-based gas sensor with an excellent response to NO2
(Figure 8f). This self-powered sensor system provides a sustainable, maintenance-free
platform for environmental monitoring.
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The increase in CO2 gas not only contributes to global warming but also has a sig-
nificant impact on human health. Therefore, the development of devices to detect CO2 is
important for the environment and human health. Zhao et al. proposed a TENG-based
CO2 gas sensor utilizing a gas discharge [66]. They used the relationship between discharge
frequency and current and CO2 concentration to propose two modes, step detection and
continuous detection, for detecting CO2 gas below the threshold concentration without an
external power supply. This system has potential applications in building new self-powered
gas sensors.

Ion Sensors

Ion sensors are widely used at present to either detect the environmental chemical com-
position or monitor physiochemical conditions. For autonomous operation, TENGs should
provide the necessary electric power and complement electrochemical power sources.

Song et al. created a TENG-driven sweat sensing system that can monitor markers
such as sodium ions in sweat (Figure 9a) [67]. The sensing system consists of a wearable
TENG, a wireless sensing circuit module, and a sweat sensor patch that can extract energy
from daily human movements such as walking, jumping, and arm movements. The TENG
exhibits a high output power (416 mW m−2). The sweat sensors are fabricated with ion-
selective electrodes and include a pH sensor and a Na ion sensor. The deprotonation of H
atoms serves as an indicator of H ion concentration, and the Na ion carrier X and an electron
transducer facilitate the measurement of Na sodium ion concentration (Figure 9b,c). This
system facilitates the development of self-powered ion sensors for wireless physiological
health monitoring and may have wider applications in the future.
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Figure 9. (a) Schematic diagram of the TENG-based sweat sensor for the real-time monitoring of
health status during human exercise. (b) Curves of the open-circuit potential of the pH sensing
system in a standard buffer solution. (c) Curve of the open-circuit potential of the Na+ sensing
system in NaCl solution. Reprinted from [67] with permission from Science. (d) Schematic diagram
of the TENG-based water quality monitoring system. (e) Schematic diagram of a TENG with a
grating structure to collect water wave energy. (f) Output of devices under load resistance. Reprinted
from [68] with permission from Elsevier. (g) RD-TENG-based sensing system. (h) The lateral sliding
structure of the TENG. (i) Plot of ion concentration and impedance at a frequency of 200 Hz. Reprinted
from [69] with permission from Elsevier.
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It is well known that the concentration of various ions in water is a critical standard
with respect to the evaluation of water quality. Bai et al. presented a high-output per-
formance tandem disk TENG (TD-TENG) for the real-time monitoring of water quality
(Figure 9d) [68]. By designing a grating structure that allows the TENG to be stirred even
under slow water waves (Figure 9e), the output performance of the TENG is greatly en-
hanced, thus continuously monitoring the ions in water (Figure 9f). This TENG opens up
new approaches to power bottlenecks for a long-term, versatile, real-time sensing system
in water.

Similarly, Chen et al. developed a sensing system based on the RD-TENG for the online
monitoring of water ion concentrations (Figure 9g) [69]. They adopted polytetrafluoroethylene
as the friction electrode and prepared a lateral sliding structure of the TENG (Figure 9h). When
the speed of the RD-TENG is 250 rpm, the sensor is equivalent to a pure resistance in water, and
the impedance and the resistance change with the ion concentration (Figure 9i).

3.2. TENG-Based Active Chemical Sensor
3.2.1. Basic Principle

During operation, the magnitude of the electrical signals (Voc and Isc) generated
by the TENG device is closely related, in some cases, even quantitatively proportional
to the triboelectric charge density [70]. As frictional electricity is essentially a chemical
potential difference between two electrode surfaces and as the absorption of some chemical
substances and their chemical reactions at the surface affect the charge transportation and
density, thus affecting the output of the TENG, it is possible to detect the absorbed target
substance quantitively and develop TENG-based active chemical sensors (Figure 10). This
multifunctional design reduces power consumption, simplifies the system, and, above all,
enables sustainable, straightforward, and reliable sensor operation.
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To discuss this in more detail, the adsorbed analyte can also change the dominant
process of electron transfer, which leads to changes in the potential distribution of the
friction electrodes, stemming from the fact that they may influence the forming or the
structure of the electrical double layer [71,72]. These influences may change the TENG’s
output characteristics and enable it to serve as a sensing signal. Unlike traditional sensors,
TENGs are able to serve as both an electricity source and a sensor at the same time.
Some materials are both frictional electric material for generating electricity and sensitive
material for detecting analytes [73]. Thus, the friction layer surface may be regarded as
a detector. The properties of TENG-based active sensors depend on the properties of the
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friction electrode material, such as conductivity, dielectric constant, temperature sensitivity,
light sensitivity, etc. [74–80]. Hence, we can directly employ or synthesize specific target
compounds to develop friction electrode materials that can be sensitively detected [81].

3.2.2. Design Criteria of TENG-Based Active Sensors

TENGs can scavenge mechanical energy from the ambient environment and even the
human body [82] and, thus, are ideal for powering chemical sensors and building on-body
healthcare systems with high sustainability and wearability. Meanwhile, TENGs may also
act as chemical sensors due to their intrinsic sensitivity toward the chemical reactions that
occur at the triboelectric interface [83]. In this section, the design criteria of TENG-based
CSSs will be discussed.

Sensitivity Improvement

In the self-powered sensing system, sensitivity is always considered the most basic
index to evaluate the probability of commercialization [84]. Improving sensitivity through
structural design, signal processing, and power management to meet or exceed the current
commercial requirement of chemical analysis sensors is a hot topic in current research.

Su and his colleagues designed a highly sensitive TENG sensing system that could
actively monitor nitrogen dioxide gas through the coupling of the frictional electric effect
and the photoelectric effect (Figure 11a) [85]. The prepared TENG can be used for powering
the UV light source and the resistive gas sensor in the system by collecting energy from the
environment. They adopted a hydrothermal method to deploy zinc oxide nanowires on
the electrodes to enable device sensitivity to nitrogen dioxide. In addition, light-activated
gas detection is driven by a stimulus external to the device. After testing, the induced
voltage drop of the system was proportional to the concentration of NO2. Additionally, the
sensing system, prepared on the basis of 0.035 mol/L synthesized ZnO nanowires, had
higher responsiveness and sensitivity (0.302 ppm−1) compared to other concentrations
(Figure 11b,c). This work presents a method for highly sensitive gas sensing, paving the
way for the fabrication of high-performance sensing devices for environmental monitoring.

To improve the sensitivity of the sensor, Yu et al. developed a high-sensitivity contact-
separated TENG sensing system (CS-TENG) for human physiological information moni-
toring [86]. The friction layer consists of flexible polydimethylsiloxane (PDMS) film and
copper electrodes and exhibits the merit of direct and intimate contact with human skin
(Figure 11d). By fabricating a homogeneous and controllable mf-array structure on the poly-
dimethylsiloxane (PDMS) film, the sensitivity (5.67 V/105 Pa), linearity (R2 = 0.99 of volt-
age), and stability (over 80,000 cycles) of this system are improved. Due to its excellent sensi-
tivity, this CS-TENG can perceive the slightest change in pulse rate, like a doctor (Figure 11e).
Overall, the proposed sensing system has great potential for biomedical applications.

Similarly, Hu et al. reported a sensitive, superhydrophobic, liquid–solid contact
TENG-based sensing system for application in biomedicine (Figure 11f) [87]. This superhy-
drophobic TENG is repulsive to a variety of solutions, including blood. As liquid flows
over the superhydrophobic layer, it can collect and release electrical energy (Figure 11g).
The TENG output depends on the size and fall height of the liquid droplet. In addition,
the self-powered sensor is self-cleaning, well-bent, and simple to manufacture and can be
combined with an intravenous infusion tube to prepare an infusion monitoring sensing
system for the precise monitoring of infusions. This superhydrophobic TENG sensing
system holds great promise for clinical monitoring in the future.
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(b) Schematic diagram of the response of ZnO nanowire films from 0 to 100 ppm NO2. (c) Plot of ZnO
nanowire film versus NO2 concentration. Reprinted from [85] with permission from AIP Publishing.
(d) Schematic diagram of the principle and structure of the sensing system. (e) Comparative analysis
of real-time voltage signals at different locations on the hand: the CUN, GUAN, and CHI. Reprinted
from [86] with permission from Elsevier. (f) Schematic diagram of the superhydrophobic TENG
structure. (g) Current output generated by different liquids sliding on the superhydrophobic TENG.
Reprinted from [87] with permission from ACS Publications.

Integration Optimization

In practical applications, TENGs need to be integrated with a chemical sensor and
other information devices to realize the automatic analysis of collected data and provide
scientific guidance.

Ren et al. reported a versatile TENG-based humidity sensor (Figure 12a) [88]. They
coupled a perfluoro sulfonic acid ionomer (PFSA) with a TENG device. PFSA is an intelli-
gent deformable material that enables TENGs to automatically bend to a certain angle at
different humidity levels. This adaptive deformability enables the multiple functionalities
of the TENG, such as collecting energy from raindrops at high humidity, wind energy at
medium humidity, and reflecting light at low humidity. The switching of these functions
can be automated in response to changes in the steam drive (Figure 12b). This work can
promote the development of TENG sensing systems in the direction of intelligence and
multifunctionality.

Xu et al. fabricated a dual-TENG sensing system for humidity monitoring by applying
a polyvinylidene fluoride propylene (FEP) film and copper foil (Figure 12c) [89]. The
sensitive film was synthesized from chitosan and activated carbon materials. In addition,
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they integrated a WIFI module and the sensing system to monitor the humidity signal from
a smart terminal in real-time. This TENG sensing system exhibits a wide detection range
and excellent stability and recognizes signals from human breathing and finger movements
clearly in practical applications (Figure 12d,e). This work opens up new horizons for the
integration and application of TENG wireless sensing systems.
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Meanwhile, Wang et al. developed a TENG wireless sensing system that consists
of a spherical TENG, an ammonia nitrogen sensor, and a Bluetooth module to achieve
the real-time monitoring of meat freshness [90]. The system exhibits excellent sensing
performance for 0.5~20 ppm NH3 and is sustainable, portable, and wireless for real-time
monitoring, which is promising for the future of the gas detection field.

3.2.3. Applications of TENG-Based Active Chemical Sensors

TENG-based active chemical sensors have received broad attention and undergone
rapid development in response to stimuli from chemical molecules or other factors, for
instance, ethanol, phenol, and pH, where the output performance of the TENG and the
stimulation shows a linear relationship. This section discusses recent examples of TENG-
based active chemical sensors and the research trends in these areas to provide direction
for future research.

TENG-Based Active Biosensors

Human body physiological signals are important physiological indicators for public
healthcare and health monitoring [91]. Monitoring these small but complex physiological
signals in real-time with simple, convenient, economical, and accurate methods remains
a challenge for healthcare devices [92,93]. As a result, new methods for analyzing these
biological analytes are required.

Zhao et al. created a stretchable fiber-based TENG (F-TENG) (Figure 13a) [94].
This TENG is fabricated by covering MWCNTs and PANI on super-stretchable Ecoflex
fibers. Moreover, the device can be modified with different enzymes and act as an active
biosensor to sense biomarkers in sweat, including substances such as lactate, glucose,
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creatinine, etc. (Figure 13b,c). Such active biosensors have great potential for the future
real-time monitoring of physiological data during human movement.

It is critical to develop effective and specific detection methods for bacteria in order
to mitigate their threats. Wang et al. created a TENG-based biosensing system for moni-
toring Gram-positive bacteria in water (Figure 13d) [95]. They first used vancomycin to
identify Gram-positive bacteria in water; then, they used guanidine-based functionalized
multi-walled carbon nanotubes (CNT-Arg) as the signal amplification material and, fi-
nally, realized the real-time, simple, and specialized monitoring of bacteria by the voltage
change of the biosensor. The experimental results showed that this biosensing system has
the advantages of good linearity, high selectivity, and low detection limit (Figure 13e,f).
The self-powered biosensing system, which replaces molecular probes, has the potential
to specifically recognize bacteria and aid in the prevention of environmental pollution,
iatrogenic diseases, and microbiological corrosion.

Creatinine concentration in human blood or urine is strongly associated with kidney
problems, muscle disorders, and thyroid dysfunction [96]. Thus, the development of
sensing devices for detecting creatinine is crucial, especially in the case of the rapidly
growing healthcare field. For example, Luo et al. fabricated a TENG-based creatinine
sensing system (Figure 13g) [97]. This TENG is composed of polyaniline (PANI) and
polydimethylsiloxane (PDMS) and produces a frictional electrical output upon deformation.
They modified PANI with creatinase, creatine lyase, and sarcosine oxidase, respectively,
and the frictional electrical output could respond to the creatinine concentration due to its
product H2O2, which can induce PANI protonation and change the electrical conductivity
of PANI (Figure 13h). The sensitivity of the device reached 51.42% when the creatinine
concentration was 10−3 mol/L (Figure 13i). Meanwhile, it showed favorable selectivity for
creatinine at room temperature. Its working principle can be attributed to the coupling of
the TENG and creatinine enzymatic reactions. These results suggest important applications
in areas such as self-powered and personalized healthcare.

Dopamine is crucial for the functioning of the hormonal, renal, and central neurological
systems. Nervous system diseases, including Parkinson’s, Huntington’s, and schizophrenia,
may be brought on by abnormal dopamine levels. For energy harvesting in an oil/water
multiphase, Jiang et al. fabricated a liquid–solid contact TENG (Figure 13j) [98]. After
they adopted the self-polymerization method to coat the PTFE and glass surfaces with a
layer of PDA, the two electrical signals of the TENG showed opposite trends: on the one
hand, the V-TENG and I-TENG kept decreasing, while, on the other hand, the oil/water
interface signals of Vinterface and Iinterface continued to increase (Figure 13k) and showed a
good linear relationship with the dopamine concentration (Figure 13l). This research will
help create more dependable and sophisticated self-powered biosensor systems.

Thrombin is a serine protease that is almost absent in the blood of healthy individu-
als [99,100]. It is an important research direction to develop self-powered biosensors for
the detection of thrombin based on the intermolecular recognition between thrombins and
ligands. Jung et al. proposed a TENG-based biosensor for the detection of thrombin [101].
They first assembled Au nanoparticles (Au NPs) on an Al membrane to enhance the output
of the TENG (Figure 13m). Then, a thrombin detection nanosensor with high selectivity
was obtained by modifying the anti-thrombin aptamer on Au NPs with a sulfhydryl group
modification (Figure 13n). The sensitivity of the sensor reached 0.41 nM, showing the great
potential of the device as a simple, fast, and low-cost detection system.
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Figure 13. (a) Schematic diagram of the fiber structure of the F-TENG. (b) Schematic diagram of
the comparative biosensitivity of the F-TENG and commercial sensors for glucose, creatinine, and
lactate. (c) Selectivity of the TENG for the detection of glucose, lactate, and creatinine. Reprinted
from [94] with permission from Elsevier. (d) Schematic diagram of the TENG-based biosensing
system and its equivalent circuit. (e) Voltage of CNT-Arg under a range of concentrations of
S. aureus (2 × 103 CFU mL−1 to 2 × 107 CFU mL−1). (f) Linear fit of the response of S. aureus
from 2 × 103 to 2 × 107 CFU mL−1 concentrations. Reprinted from [95] with permission from El-
sevier. (g) TENG-based sensing system detects creatinine in body fluids. (h) The protonation and
deprotonation process of PANI and its sensing mechanism. (i) The response of the sensor to creatinine.
Reprinted from [97] with permission from Elsevier. (j) Schematic diagram of dopamine coated on
the surface of a liquid–solid TENG electrode. (k) Schematic diagram of the short-circuit current
of the TENG modified by dopamine in an oil/water environment. (l) Plot of Iinterface and I-TENG
versus dopamine concentration in an oil/water environment. Reprinted from [98] with permission
from Wiley Online Library. (m) Schematic diagram of thrombin detection by the TENG biosen-
sor. (n) Detection sensitivity of the TENG-based biosensor. Reprinted from [101] with permission
from Elsevier.
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TENG-Based Active Gas Sensors

It is essential to develop rapid and precise real-time safety monitoring systems, such
as chemical gas sensors, to find gases such as alcohol, acetylene, ammonia, aniline, etc.,
considering the increasing worry about the security of places where people work and
reside. Due to their ability to implement portable gas sensors without a separate power
source, self-powered gas sensors with TENGs are drawing a lot of attention [102]. The most
recent progress in TENG-based self-powered active gas sensors is presented and explored
in this section.

Wen et al. designed a gas sensor for alcohol detection on a BD-TENG [103]. The
alcohol sensor, as it is now designed, can use airflow to generate energy, operating as an
active alcohol breath analyzer (Figure 14a). The delivered voltage remains proportional to
the amount of alcohol exhaled over a range of 10 to 200 ppm (Figure 14b). The as-developed
BD-TENG is distinguished by a short response time of 11 s, a response of 34 at the ideal
sensor operating temperature, and a quick recovery time of 20 s, which demonstrate the
exceptional performance of selectivity anti-interference for alcohol detection (Figure 14c).
In addition, the reported breath analyzer is made of widely available polymer materials
that are lightweight and affordable, which significantly expands the use of the TENG as a
self-powered active sensor.

From previous studies, we know that conductive and semiconducting polymers have
been used in numerous applications for many years, including active layers, interconnects,
and electrodes. Among these polymeric materials, poly (3,4-ethylene dioxythiophene):poly
(styrene sulfonate) has proven to be adaptable. Employing PEDOT:PSS that has been
appropriately functionalized may be a potential option for improving wearables, nano-
generators, and self-powered active sensors. Iftekhar-Uddin described a TENG made of
nylon fiber film, conductive PEDOT:PSS elastomers, and PDMS with wrinkle patterns
(Figure 14d) [104]. With a load resistance of 3.8 M, this TENG achieved a maximum output
power of 0.09 mW indoors and 0.2 mW outdoors (Figure 14e). They replaced the pure
nylon fiber with an Ag@ZnO/nylon fiber film to achieve the self-powering of the active
sensor. Moreover, the sensor showed a high sensitivity of 70.9% indoors and 89% outdoors
at a C2H2 gas concentration of 1000 ppm. The strategy for energy and sensing harvesting
has potential benefits in real-world applications and could inspire fresh research.

Real-time perishable food quality monitoring is essential for lowering societal expenses
and foodborne illness rates. A wireless gas sensor system (TWGSS) developed on a wood-
based TENG was created by Cai (Figure 14g) [105]. The TWGSS retains excellent stability
at 75% humidity and 18 ◦C (Figure 14h) and also enables the real-time, continuous, stable
monitoring of food spoilage marker gases such as ammonia. The output of the TENG
decreases as the ammonia concentration rises. In principle, this is due to the fact that the
researchers have taken advantage of the three-dimensional porous structure of wood, which
is sensitive to ammonia, and introduced this property into the sensor design. Furthermore,
the TENG showed a high sensitivity of 0.85 at a concentration of 500 ppm ammonia
(Figure 14i), which is significantly higher than other typical gases, indicating that the
selectivity of the device is also high.

By changing the doping ratio and improving the annealing temperature, Chang et al.
synthesized an rGO-In2O3 composite and used this material as a friction electrode for a
TENG (Figure 14j) [106]. They applied this TENG to the monitoring of hazardous gases
such as aniline in the environment. The results show that the TENG has many advantages;
for example, it shows great sensitivity in the concentration range of 200–1200 ppm aniline,
good reactivity with aniline, and high selectivity (Figure 14k,l). The response/recovery
time of the device is significantly shorter compared to other typical room-temperature
semiconductor gas sensors.

Considering that white sugar particles are hydrophilic, Liu et al. used them to prepare
a TENG (WS-TENG) [107] that can be used both as a power source and directly as a humid-
ity sensor (Figure 14m). The friction layer is composed of a polytetrafluoroethylene (PTFE)
film and white sugar. In addition, this WS-TENG shows a clear and stable signal distinction
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in short-circuit current (Isc) and open-circuit voltage (Voc) at different humidity levels,
which can directly and reliably reflect changes in humidity in the surrounding environment
(Figure 14n,o). These works are quite promising and contribute to the development of
TENGs for active gas sensors.
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TENG-Based Active Ion Sensors

Chemical ion sensors are commonly used in sectors to detect inorganic, organic,
and biological ions, particularly ions in liquids such as H+, Hg2+, Cu2+, Pb2+, and so on.
With high selectivity, great sensitivity, and a wide sensing range, self-powered TENG-
based active ion sensors are able to detect various types of substances. The ions in the
detection target can be identified by the friction layer surface of the TENG or the outside
dopant material [108,109]. The following typical examples demonstrate these applications
and advances.

Liu et al. created a TENG with a single-electrode mode and applied it to detect pH in
acid rain (Figure 15a) [110]. They used PTFE doped with PDMS solution to fabricate a film
with more hydrophobicity and higher surface roughness. This film was used to prepare a
friction layer for a water-drop-based TENG. After testing, the film doped with 0.07 wt.%
PDMS showed the largest output difference in monitoring prepared normal water (pH = 7)
and acid rain droplets (pH = 4) (Figure 15b), which indicates that the pH sensor constructed
by this hybridization method performs well.
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Figure 15. (a) Schematic diagram of a single-electrode mode TENG for sensing ions in liquid droplets.
(b) Circuit diagram of a TENG sensor for detecting raindrops with different pH. Reprinted from [110]
with permission from ACS Publications. (c) Schematic diagram of the structure of the contact
separation TENG and the microscopic morphology of the friction layer. (d) Sensitivity of the TENG
for Hg2+ detection. (e) Selectivity of the TENG for the detection of Hg2+. Reprinted from [111]
with permission from Wiley Online Library. (f) Schematic diagram of the structure of the TENG.
(g) Plot of the relationship between the open-circuit voltage and Pb2+ concentration. (h) Selectivity
of the TENG-based sensor for Pb2+ detection. Reprinted from [112] with permission from Wiley
Online Library.
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Different from the single-electrode mode, the TENG-based sensor in contact separation
mode may not be used directly to determine ions in water due to the potential for charge
dissipation caused by the water film at the friction–electric interface. Thus, it is preferable
to place a drop of liquid on the surface of the friction electrode and wait for the liquid to
evaporate before testing. For example, Lin et al. reported an active TENG-based sensor
for monitoring Hg2+ in water (Figure 15c) [111]. They first increased the effective contact
area of the friction layer with gold nanoparticles (NPs), which greatly increased the output
of the TENG (105 V and 63 mA) (Figure 15d,e), and then used 3-mercaptopropionic acid
(3-MPA)-modified NPs as the recognition element to detect Hg2+. This method achieves a
highly sensitive and selective monitoring capability for TENG-based ion sensors.

Meanwhile, Li and his colleagues designed a contact-separated TENG for selectively
monitoring metal ions in wastewater (Figure 15f) [112]. This TENG uses acrylic acid as
the support substrate and an aluminum foil with AAO nanopores as the contact surface
of another layer. They adopted different ligand molecules, including dithizone, diphenyl
carbazide, and sodium diethyldithiocarbamate, to modify the aluminum foil with AAO
nanopores as the recognition component of the sensor, which can selectively detect Pb2+

in wastewater (Figure 15g,h). Further, the device generates an electric field capable of
inducing the electrolysis of effluent to produce OH-, which promotes the precipitation of
Pb2+. This work can act as a springboard for future TENG research and stimulate TENG
advancement toward ion detection.

Other Active Sensors

Aside from TENG-based activity sensors, as discussed above, there is a solid–liquid
interface-based TENG that can detect organic compounds in solution [113,114], such as
ethanol and acetone in solution. The sensing mechanism is the same as that of gas detection;
the effect of different molecules or concentrations on the friction layer will cause the
performance of the TENG to change. The detection method is similar to the case of ion
sensors; TENG-based chemical sensors detect target molecules in a solution by dropping
the solution onto the surface of a frictional electric material and observing its reaction with
the counter electrode after the surface of that material has dried, enabling the analysis of
the solution. The following example demonstrates this mechanism.

Wang et al. developed a multifunctional DC output triboelectric nanogenerator (DC-
TENG) for energy harvesting and chemical analysis at liquid–media interfaces [115]. The
device consists of FEP and copper tape in a toroidal tube structure, where two brushes
are bi-directionally anchored as alternating contact electrodes, thus converting AC power
to DC power (Figure 16a–c), and can be used to analyze fluid composition and moisture
content. There is a positive correlation between output and liquid polarity.

Li et al. reported a nanosensor that can be applied for detecting phenol [116], which is
schematically depicted in Figure 16d. They used a contact TENG structure consisting of
a titanium foil with TiO2 nanowires on the surface and a PTFE film coated with a copper
electrode. The TiO2 nanowires were then combined with β-cyclodextrin (β-CD) as the
sensing recognition element, allowing the direct and effective detection of phenol molecules
in aqueous solutions (Figure 16e). The output voltage of the device is linearly related to
the phenol concentration (Figure 16f). Additionally, the device is reusable after washing
with ethanol. TENG can be used not only for the detection and degradation of phenol in
the environment but also for the detection and treatment of other organic pollutants in
wastewater, thus changing the current wastewater treatment model.

Chatterjee et al. fabricated a solid–liquid triboelectric nanosensor (TENS) that can be
used for the detection of catechins in green tea solutions [117]. They used TiO2 nanosheet
arrays as a solid triboelectric layer to separate from the contact of the solution cycle
(Figure 16g), in which the affinity of catechin and TiO2 nanosheet arrays can reduce the
work function and greatly increase the transferred charge, thus producing a higher output
(Figure 16h). Meanwhile, they used ethanol and acetone volatile solvents instead of water
to overcome the requirement of a hydrophobic surface in solid–liquid TENSs. Moreover,
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they validated the chemical enhancement of the TENS by using catechins as targeting
substances (Figure 16i). It is shown that solid–liquid TENSs can provide new ideas for
developing sensors in the field of environmental detection.
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Figure 16. (a) The structure of a DC-TENG. (b) Effect of liquid on the output performance of the TENG
(1, hexane; 2, isopropanol; 3, ethanol; 4, acetone; 5, ethylene glycol; 6, deionized water). (c) Liquid
contact angle test. Reprinted from [115] with permission from ACS Publications. (d) Schematic
diagram of a TENG modified with cyclodextrin. (e) Schematic representation of the selectivity of the
device for monitoring phenol. (f) Schematic diagram of voltage signal for monitoring phenol concen-
tration. Reprinted from [116] with permission from the Royal Society of Chemistry. (g) Diagram of
solid–liquid TENS operation and TiO2 nanosheet arrays. (h) Plot of catechin-induced change in work
function. (i) Comparison of the output voltage ratio profiles and voltage enhancement coefficients
for different catechin concentrations in different contact liquids, such as water, ethanol, and acetone,
respectively. Reprinted from [117] with permission from Elsevier.

The characteristics and performance of numerous TENGs as power and active chemical
sensors are listed in Table 1. The performance of TENG-based active chemical sensors is
outstanding in terms of detection range and sensitivity. Compared to conventional sensors,
the sensors can achieve self-power and exhibit high output, sensitivity, and selectivity at
low analyte concentrations due to the ability of the frictional electric layer to recognize
specific molecules.
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Table 1. Comparison of the characteristics of TENGs as power sources and active chemical sensors.

Application Function
Structure Outputs Performance a Sensing Performance

Refs.
Materials Analyte Imax Umax Detection Range Selectivity

Biosensor

Power source

Au/PDMS-Au Blood oxygen 7.4 µA 75.3 V — — [60]
Cu/PTFE-Cu Blood glucose 317 µA 153 V — — [61]

PDMS-Chitosan/glycerol Antigen — 250 V 1.05~8.4 µg mL−1 — [62]
Al/PTFE-Gelatin/Al Glucose 45 µA 500 V 200 µM~2 mM Good [63]

Active chemical sensor

Ecoflex/MWCNT-PANI
Lactic acid — — 0~200 mm L−1 Good

[94]Glucose — — 0~56 mm L−1 Good
Creatinine — — 0~88 mm L−1 Good

Al/FEP/ITO-Van-Al Gram-positive
bacteria — 165 V 2 × 103~2 × 107 cfu/mL Good [95]

Cu/PDMS-PANI Creatinine 1.47 nA — 10−6~10−3 mol L−1 Good [97]
PTFE/Cu/Glass Dopamine 1.9 nA 4.5 V 25~500 µmol L−1 Good [98]

Al/PDMS-Au NPs/Al Thrombin 18 µA 17 V 0~100 nm L−1 Good [101]

Gas sensor

Power source

Cu/PTFE-Cu Humidity 4 µA 22.5 V 0~97% RH Good [46]
Cu/PI-Gelatin/Cu Ammonia 49 µA 400 V 0~20 ppm Good [64]
Cu/PVA/Ag-FEP NO2 5.6 µA 530 V 0~50 ppm — [65]
PMMA/Cu-PTFE CO2 20.1 µA 1160 V 1~200 × 103 ppm — [66]

Active chemical sensor

Cu/FEP/Elastic Alcohol 5.9 µA 2.3 V 10~200 ppm Good [103]
Al/Nylon- PDMS/EPP/ITO C2H2 3.94 µA 191.6 V 30~1000 ppm — [104]

Cu/Wood-FEP/Cu Ammonia 2.4 µA 47 V 10~500 ppm Good [105]
PVDF/rGO-In2O3-Al/PET Aniline 1.2 µA 4 V 200~1200 ppm Good [106]

Cu/Sugar-Cu/PTFE Humidity 6.35 µA 95.68 V 40~80% RH — [107]

Ion sensor

Power source
PTFE-ENIG/polyimide/Cu H+

42.25 µA 190 V
4~8 pH

Good [67]Na+ 12.5~200 mM
Cu/PTFE/Glass Water 120 µA 365 V — — [68]

Cu/PCB/PMMA-PTFE/Cu Multiple ions 112 µA 210 V 0~1 × 10−5 mol L−1 Good [69]

Active chemical sensor

FTO/PTFE–PDMS/Cu H+ 26.37 µA 69.04 V 5~1 pH — [110]
Glass/Au film-Au NPs Hg2+ 63 µA 105 V 100 nM~ to 5 µM Good [111]

Cu/PTFE-Modifying
agent/AAO

Pb2+

0.18 mA 310 V 0–200 × 10−6µM Good [112]Cr3+

Cu2+

Other Active chemical sensor
FEP/Cu/Electric brushes Multiple compounds 11.5 µA 228 V — — [115]
Cu/PTFE-β-CD/TiO2/Ti Phenol 6.5 µA 57 V 10~100 µM Good [116]

Ti/TiO2 nanosheet Catechin — 1.2 V 100 nM~100 µM Good [117]
a “—”in the table implies that the data were not recorded in research.
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4. Conclusions and Prospect

This review systematically summarizes the progress of TENG-based CSSs and their
potential for future practical applications. TENG-based CSSs not only demonstrate the
sensitive detection of physiological activity, gases, and ions but may also achieve indepen-
dent, continuous, and reliable operation by scavenging mechanical energy from nature
or biology. Although this TENG-based sensor system has achieved significant progress
through the design strategy of TENG-based active sensors, it is still not systematic and
comprehensive enough. The challenges that TENG-based power sources face are relatively
simple; the enhancement of output performance is always the prime target, which can be
effectively promoted by improved power management, material selection, and structure
design. For TENG-based active sensors, the main starting point is the adsorption or chemi-
cal reaction of specific targets at the triboelectric interface, whose reliability is susceptible to
environmental conditions and the TENG’s own signal interference. Nevertheless, in both
cases, the coupling of different material properties can bring new insights into the design of
TENG-based CSSs with higher performance, thus innovating their applications in a wide
range of multidisciplinary areas, such as disease diagnosis, environmental monitoring, and
the defense industry. For the guidance of future research, the challenges and most urgent
issues of TENG-based CSSs that should be addressed are listed as follows:

4.1. Power Supplies
4.1.1. High Energy Conversion Efficiency

The most urgent issue related to present TENG devices is their relatively low conver-
sion efficiency. Chemical modification is always the most fundamental approach for output
enhancement. For example, adding several active functional groups at the friction layer
interface can lead to a stronger electrical response in the friction electrification process.
Furthermore, modulating the surface energy of the friction layer surface, increasing the
porosity and roughness, controlling the film morphology, improving the polarity of the
electrodes, etc., are also effective solutions for improving the energy conversion efficiency
of TENGs.

4.1.2. Longer Service Life

In practical applications, the service life of TENG-based CSSs is affected by different
factors such as the device structure, the mechanical strength of aging component materials,
the surface wear of the friction layer, weak connections between electrodes, and moisture
contamination in the environment [118]. For example, during the operation of TENG-based
CSSs, electrons tend to accumulate on the surface of the friction layer and absorb dust from
the air, which diminishes the performance of the TENG [119]. In addition, the device may
also be penetrated by water, which neutralizes the electrical charge as well as deteriorates
performance [120]. Therefore, proper encapsulation techniques should be considered to
solve these problems without affecting the operation of the system, and the stability of
TENG-based CSSs may be adjusted by using triboelectric materials with self-cleaning
properties [121]. The service life may also be optimized by enhanced stability designs, the
diversification of materials, and stronger bonding agents. Overall, TENG-based sensors
with a controlled service life are an important research direction for the future.

4.2. Active Chemical Sensor

In a typical TENG-based active chemical sensor, additional attention should be paid
to issues such as anti-interference capability, stability, and multifunctionality, besides the
issues that are faced by all TENG-based chemical sensors, as mentioned above.

4.2.1. Anti-Interference

TENGs can directly serve as active chemical sensors. However, interference signals
may be generated, either due to the complex environments or as a result of the TENG itself,
of which the latter may interfere with the analyte signals more seriously. Therefore, we can
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position ourselves in the direction of synthesizing a more interference-resistant sensing
material. In addition, various minor interferences inevitably occur during the sensing
process, which will seriously affect the accuracy of sensing. Therefore, we can reduce the
interference by optimizing the circuit design to filter out interfering waves in the future.

4.2.2. Stability and Reliability

Since chemical sensors are commonly applied for the quantitative analysis of analytes,
stability is one of their most important characteristics. Besides the environmental parame-
ters that affect their stability and reliability, currently, the reusability of the sensor seems to
be a serious challenge, and the adsorption of chemical molecules and chemical reactions at
the triboelectric interface seem irreversible. As a result, the repeatability of the TENG-based
active chemical sensor may be affected. Future research could focus on the development
of more wear-resistant, repeatable materials, reversible chemical reactions at the interface,
and a low-loss triboelectrification design strategy.

4.2.3. Multifunctionality

TENGs with multifunctionality will reduce the size and energy consumption of the
device. Currently, TENG-based active chemical sensors are generally designed on the
base of sensitive materials with satisfactory triboelectrification effects or triboelectric active
materials that respond to the adsorption or reaction of chemical molecules at the interface.
In addition, the interaction of triboelectrification and surface reaction/adsorption also
deserves further research, which may initiate the study of the chemical processes in the
friction layer. Meanwhile, the introduction of smart materials into the triboelectric interface
as the electrode material in TENGs may result in multifunctional systems with intelligent
responses due to the interesting function of such materials.
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