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Abstract: Minor elements significantly influence the properties of stainless steel. In this study, a
laser-induced breakdown spectroscopy (LIBS) technique combined with a back-propagation artificial
intelligence network (BP-ANN) was used to detect nickel (Ni), chromium (Cr), and titanium (Ti) in
stainless steel. For data pre-processing, cubic spline interpolation and wavelet threshold transform
algorithms were used to perform baseline removal and denoising. The results show that this set
of pre-processing methods can effectively improve the signal-to-noise ratio, remove the baseline of
spectral baseline, reduce the average relative error, and reduce relative standard deviation of BP-
ANN predictions. It indicates that BP-ANN combined with pre-processing methods has promising
applications for the determination of Ni, Cr, and Ti in stainless steel with LIBS and improves prediction
accuracy and stability.

Keywords: laser-induced breakdown spectroscopy; back-propagation artificial intelligence network;
stainless steel; data pre-processing

1. Introduction

Laser-induced breakdown spectroscopy (LIBS) is a popular atomic emission spec-
troscopy technology that uses a high-energy laser pulse to form plasma [1]. Furthermore,
the composition and concentrations of elements in a sample can be determined by ana-
lyzing the emission spectrum. LIBS first appeared in the 1960s and was first proposed by
Brech et al. [2]. LIBS exhibits the advantages of no pre-processing, such as less damage to
samples, suitability for various forms of samples, and remote and real-time online detec-
tion [3]. LIBS technology has wide applications in environmental geology [4,5], military [6],
materials [7], metallurgy [8], biology [9,10], archaeology [11], environmental monitor-
ing [12], and other fields. Owing to spectral noise, baseline drift, self-absorption, and
other phenomena, there is a large amount of interference information in the LIBS spectrum,
which makes quantitative analysis difficult [13]. Furthermore, for the widely used internal
standardization method, it is difficult to know the internal standard of steel in practical
applications [14]. Multivariate methods [15] are available to avoid this problem, which
uses standard samples to train a model and to predict the test sample [16]. An artificial
neural network (ANN) is a popular multivariate calibration tool [17] and a widely used
machine learning model with a strong input–output nonlinear mapping ability [18]. ANN
can identify nonlinear features and screen interference information, which further expands
the prospect of LIBS technology [19]. At present, the most commonly used ANN scheme in
LIBS research is back-propagation artificial neural network (BP-ANN) [17]. Some examples
of quantitative analysis based on BP-ANN in LIBS technology are given in Table 1.
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Table 1. Examples of quantitative analysis based on BP-ANN in LIBS technology.

Year Author Sample Brief Introduction

2006 Sirven et al. [20] soil samples

Cr concentration in soil samples was quantitatively analyzed. By
comparing the prediction accuracy and the detection limit of BP-ANN,
PLSR and the standard calibration curve, the superiority of BP-ANN in

LIBS analysis is proved.

2008 Motto-Ros et al. [21] natural rock and soil
samples

Simultaneous measurement of multiple element concentrations has been
demonstrated and is of great significance in planetary science.

2009 Inakollu et al. [22] Al alloy samples

The measurement results of artificial neural networks with the
traditional one-way calibration method were compared, and it was

determined that in most cases, BP-ANN exhibits better measurement
performance and accuracy.

2010 Rezaei et al. [19] aluminum standards
The effect of self-absorption on concentration prediction of the

aluminum standard samples via two approaches—calibration curve and
ANN—in the LIBS experiment is studied.

2014 D’Andrea et al. [23] bronze alloys
samples

Forward feature selection has been adopted to reduce the number of
input variables to the neural network to the minimum number of

variables, providing a viable, fast, and robust method for LIBS
quantitative analysis.

2017 Moncayo et al. [24] milk samples
The results demonstrate that LIBS/BP-ANN combination, supported by
its speed of analysis, reduced cost, and ease of use, has the potential to

serve as a useful screening tool in the quality control of milk.

2017 Hu et al. [3] geological standard
samples from USGS

The concentration of iron in the concentrations of BCR-1G, BHVO-2G,
BIR-1G, GSD-1G, and GSE-1G was determined, and the relative error of

the results is less than 6%.

2020 Yang et al. [25] vegetables samples
Combined with the advantages of reducing the multiple collinearities of
PLS independent variables and the nonlinear processing ability of ANN,

the accuracy of LIBS quantitative analysis is significantly improved.

As a black box system, ANN establishes complicated input–output correlations [26].
Hence, we should ensure that the characteristic information of determining elements is
provided to the ANN model. By using the chemometrics method for data pre-processing,
the influence of a variety of non-target factors can be reduced [27]. Now, the commonly
used spectral pre-processing includes baseline calibration and spectral noise reduction.
The target baseline point selection method based on the inter-partition extreme value is
one of the commonly used methods in the segmented fitting baseline correction [28,29].
In 2009, Sun et al. [30] presented a method of background correction based on linear
interpolation. Tan et al. [31] used the spline interpolation method to remove the baseline in
LIBS, which shows that the spline interpolation method can effectively detect and correct
the continuous background. In addition, for filtering noise near the characteristic peaks,
the wavelet transform is a common method. Wavelet transform has the advantages of
simplicity and reconfigurability, which can improve the study of time-frequency domain
characteristics [32]. Yuan et al. [33] used wavelet transform and least squares to build a
hybrid model and applied wavelet analysis algorithms to the background removal of LIBS
spectra for the first time. Zhang et al. [32] used correlation analysis to optimize the wavelet
noise threshold in a way that improved the signal-to-noise ratio and the fitted correlation
coefficient of the internal calibration curve while reducing the detection limit.

Stainless steel is an important material with a wide range of applications in daily life
and the industry. The types and contents of the minor elements in stainless steel determine
its properties [34,35]. Therefore, it is of great significance to the manufacturing industry to
determine these elements for the evaluation of stainless steel properties. In recent years,
LIBS has been used in steel analysis and industry applications [36]. Li et al. [37] used LIBS
with laser-induced fluorescence and realized the sensitive determination of trace chromium
in low-alloy steels, and the performance of quantitative analysis is given by the standard
calibration curve (LoD of 8.64 µg g−1, R2 of 0.992, ARSD of 2.89%). Zhang et al. [38]
demonstrated LIBS with laser-induced molecular fluorescence as a capable and potential
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approach for quickly determining the silicon element in steel industries. Cui et al. [39]
successfully measured the trace carbon in steel by long-short double-pulse LIBS, and the
relative error of prediction (REP) was between 6.1% and 35.7% and the relative standard
deviation (RSD) was between 13.9% and 58.3% for five measured samples.

To improve the quantitative accuracy analysis of stainless steel samples using LIBS,
a series of data pre-processing methods were proposed. Cubic spline interpolation and
wavelet threshold transform algorithms were used to correct the baseline and filter the
noise in the LIBS spectral data, respectively. We then selected the characteristic spectral
lines with the Pearson correlation coefficient between the strength of the characteristic
spectral lines and element content. Finally, we used the BP-ANN model to predict the
elemental content of Ni, Cr, and Ti in stainless steel.

2. Experiments and Methods
2.1. Experiments

As shown in Figure 1, a lamp pumping pulse Q-switch laser (Penny-300-TH) was used
in the experiment with a pulse wavelength of 1064 nm, a single pulse energy of about 35 mJ,
a pulse duration of 8.4 ns, and a spot size of the beam of about 100 µm. Three mirrors
were used to reflect the pulse and to adjust the optical path; the pulse was then focused
on the sample surface via a focusing lens. The sample was placed on a three-dimensional
mobile platform, whereby its surface relative to the laser focused point can be controlled.
A spectrometer (Andor Technology Ltd., Belfast, UK, SR-750-B1) was used to collect the
plasma spectrum using a probe. At the front of the probe is a collimating lens with a
focal length of 100 mm, through which the light is spatially integrated to an optical fiber
100 mm away from the lens; then, the optical fiber transmits the light to the spectrometer.
In addition, the spectrum signal was converted and transmitted to a computer using an
ICCD (Andor Technology Ltd., iStar 334T). For the spectrometer, a delay time of 6 µs, a
gate width of 15 µs, and a grating of 1200 gr/mm corresponding to a resolution of 0.04 nm
were set. Please note that the delay time here is the acquisition delay set by the software,
and the actual delay was smaller than 6 µs. During the experiment, the laser power supply,
laser, and ICCD were controlled using a delay generator (DG645). We also set up a certain
acquisition delay using the delay generator, such that the spectrometer accumulates 3 pulses
for a spectrum and obtains an average, and better spectral signal.
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Figure 1. Schematic of the experimental setup.

Seven standard stainless steel samples were used for spectral analysis (GBW 01659a,
GBW 01660a, GBW 01661a, GBW 01662a, GBW 01663a, GBW 01664a, and GBW 01665a)
purchased from NCS Testing Technology Co., Ltd., Beijing, China. Table 2 shows composi-
tion of the employed samples. Each sample is repeatedly collected for 10 times, and there
are 70 spectral data in total.
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Table 2. Reference content of Ni, Cr, and Ti in the samples (wt%).

Sample Ni Cr Ti

GBW 01659a 4.76 28.00 0.053
GBW 01660a 14.58 14.37 0.475
GBW 01661a 19.13 10.66 0.577
GBW 01662a 11.24 19.73 0.253
GBW 01663a 22.77 7.65 0.774
GBW 01664a 7.34 24.40 0.170
GBW 01665a 8.72 17.57 0.336

2.2. Methods of LIBS Element Content Calibration

It is well known that the LIBS spectrum characteristic line intensity can be indicated
as a function [40]:

I = F
Aijgi

Un(T)
Cne−E/kT (1)

where I denotes the characteristic line intensity of species n; F is the experimental parameter
affected by the efficiency of the optical system and plasma; i and j are the high-energy
and low-energy level transitions, respectively; Aij is the transition probability; gi is the
statistical weight of the high-energy level; Un(T) is the partition function at temperature i;
Cn is the content of element n; E is the excitation energy of the transition; and K is the
Boltzmann constant.

Therefore, a linear relationship between characteristic line intensity and element
content was established theoretically when a plasma is in a state of local thermodynamic
equilibrium. Usually, an element corresponds to multiple characteristic spectral lines and
the relationship is approximately as follows [40]:

Cn = ∑(wk·Ik) + b0 (2)

where wk denotes the correlation coefficient and Ik denotes the intensity of the characteristic
line. However, in practice, the relationship between spectral line intensity and element
concentration is nonlinear. There are obvious difficulties in measuring the element concen-
trations using traditional internal calibration. A back-propagation artificial neural network
(BP-ANN) exhibits a good ability to handle nonlinear data. We decided to use BP-ANN to
handle the spectral data of this experiment.

2.3. BP-ANN and Quantitative Analysis

The back-propagation artificial neural network is composed of multiple layers, includ-
ing the input, hidden, and output layers, with each layer containing multiple nodes. The
nodes between the previous and subsequent layers are connected to each other. There are
forward propagation processes and back-propagation processes in BP-ANN learning. In
the forward propagation process, each node accepts the node of the previous layer as the
input and outputs the results to the next layer through the activation function. As shown
in Figure 2, the propagation equation is [41]:

yj = f1
(
∑ wijxi − θi

)
(3)

zh = f2

(
∑ whjyi

)
(4)

where xi denotes the input value; yi denotes the output value of the hidden layer with
weight wij; θi denotes the threshold for neuron i of the hidden layer; zh denotes the output
of the output layer; and f1 and f2 denote the activation and transfer functions of the hidden
and output layers, respectively. The functions are set as follows:

f1(x) = max(0, x) (5)
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f2(x) = wx + b (6)
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Figure 2. Structure of BP-ANN with three layers.

The back-propagation process is the reverse transfer of the output error and corrects
the weight of each node using the gradient descent method to minimize the error signal [42].

In this study, the BP-ANN model built on Keras and the mean square error were used as
the loss functions. The number of nodes in the input, hidden, and output layers are 50, 50
and 1, respectively. The number of iterations was set to 600. These parameters were obtained
by comparing them in several tests. Other adjustable coefficients are the default settings.

2.4. Data Pre-Processing Methods

Owing to the influence of environmental noise and other factors, continuous back-
ground noise is present in the spectrum, which results in a high baseline of the spectrum.
To obtain more accurate spectral line information, we used a cubic spline interpolation
algorithm for the baseline calibration and noise reduction. Cubic spline interpolation
can smoothly fit discrete data and has been widely used in many applications including
graphics processing, data fitting, and computer design, etc. In cubic spline interpolation
for the data set with m + 1 given points, a cubic spline is constructed between the data
points by using an m cubic polynomial [43]. In this study, the cubic splines with a natural
boundary condition was used.

To further remove noise, we used the wavelet threshold transform algorithm. Wavelet
threshold transform is a good and convenient method for noise reduction and data decor-
relation, and it is based on orthogonal wavelet transform [44]. The general process is
wavelet decomposition, threshold selection, and wavelet reconstruction of the signal after
filtering [45]. In discrete wavelet transform (DWT), the wavelet function is defined as [46]:

Ψm,n(t) = a−m/2Ψ
(
a−mt− nb

)
(7)

where a and b influence the dilation and translation parameters, (a > 1, b ∈ R, m ∈ Z, n ∈ Z).
In this study, following general practice, a and b were set to 2 and 1, respectively.

3. Results
3.1. Result of Data Pre-Processing

By considering one spectrum of the sample GBW 01659a as an example, Figure 3a
shows the original spectral data and calculated baseline data. Figure 3b shows the spectrum
after baseline removal. In this study, the original spectral data of 33,996 data points
were divided into intervals for every 300 points, and the lowest point was set as the
interpolated data in each interval. Then, the baseline data were calculated by cubic spline
interpolation and subtracted from the original data to obtain the spectrum without baseline.
After baseline removal, the baseline of the spectrum becomes normal, and the continuous
background radiation is close to zero. This implies that we can directly obtain characteristic
spectral line information without continuous background noise from the spectrum.
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Figure 3. LIBS spectrum of sample GBW 01659a in the wavelength range of 300–800 nm: (a) the
original spectral data (blue line) and calculated baseline data based on cubic spline interpolation
algorithm (red line); (b) the spectral data after baseline removal obtained by subtracting the baseline
data from the original data.

Similarly, Figure 4a shows the spectrum after baseline removal and noise data cal-
culated using the wavelet transform. We subtracted the data calculated by the wavelet
threshold transform algorithm from the original data and obtained the denoised spectrum
shown in Figure 4b in the end. During the calculation, we selected the Daubechies wavelet
as the wavelet base and set the threshold to 0.03.

To evaluate the effect of denoising, we obtained Figure 5: Figure 5a shows an enlarged
view of the original spectrum and baseline from 400 nm to 405 nm, while Figure 5b shows
the spectrum after baseline removal and Figure 5c shows the spectrum after denoising.

The comparison showed that after baseline removal, the characteristic spectral peaks
are not significantly affected. After denoising, the spectrum was smoother and the charac-
teristic spectral lines were well preserved and became clearer. In addition, we estimated the
SNR (signal-to-noise ratios) of the spectrum by dividing the peak signal value at a specific
wavelength of the spectral line by the spectral noise, and the noise is defined as the root
mean square on the baseline (about 20 pixels) near the peak.

Take the spectral line at 520.60 nm of Cr I as an example; the SNR of the denoised and
non-denoised spectra are 23.08 and 19.03 respectively, which means wavelet transform can
effectively reduce the spectral noise. This is conducive to extracting feature spectral lines in
the next step to obtain more accurate results.
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spectral data after baseline removal (blue line, same as Figure 3b) and noise data calculated by
wavelet transform (red line); (b) the data after denoising, obtained via subtracting the noise data from
the data after baseline removal.
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Figure 5. Enlarged view of the LIBS spectrum of sample GBW 01659a in the wavelength range of
400–405 nm: (a) the original spectral data (blue line) and calculated baseline data by cubic spline
interpolation algorithm (red line); (b) the spectral data after baseline removal; (c) the data after
denoising, obtained by subtracting the noise data from the data after baseline removal.

3.2. Feature Selection

Nine sets of spectral data were recorded for each sample. Using the database of the
National Institute of Standards and Technology (NIST), we selected characteristic spectral
lines with higher intensities of Ni, Cr, Ti, Si, C, and Mn. To increase the reliability of the
selection of characteristic spectral lines, we calculated the Pearson correlation coefficient
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between the strength of the characteristic spectral lines and element content, and its expression
is as follows [47]:

r = Cov(X, Y)/
√

Var|X|Var|Y| (8)

where X represents the vector of concentrations of a given element, while Y represents the
vector of intensities of a given line for the seven samples.

Then, spectral lines with high correlation are selected to reduce the impact of error and
to obtain better prediction results. Table 3 shows the top five of the selected characteristic
spectral lines of such high correlations. Then, we normalized the obtained characteristic
spectral line data to reduce the spectral fluctuation under repeated experiments and the
influence of strange data. The normalization formula is as follows:

Dn = Ic/IFe (9)

where Dn is the normalized data, Ic is the original spectral characteristic line intensity,
IFe is the intensity of characteristic spectral lines of major element Fe, and the Fe I line at
404.58 nm was selected here.

Table 3. Selection of characteristic spectral lines of Ni, Cr, and Ti by Pearson correlation coefficient.

Species Characteristic Spectral Lines

Ni 352.4536, 349.2956, 338.0569, 351.0335, 339.1043.
Cr 520.8426, 520.6037, 425.4336, 520.4511, 428.9717.
Ti 334.9402, 334.9033, 349.1049, 338.0277, 323.6572.

For comparison, we also screened the characteristic spectral lines by simply comparing
them with the NIST database. The selected spectral lines are listed in Table 4.

Table 4. Selection of characteristic spectral lines without Pearson correlation coefficient.

Species Characteristic Spectral Lines

Ni 385.8297, 361.9391, 356.6372, 352.4536, 361.0462, 351.5052,
341.4764, 345.846, 346.1652, 343.3556.

Cr 520.8426, 520.6037, 520.4511, 425.4336, 427.4797, 428.9717,
357.8686, 359.3485.

Ti 375.7685, 375.9292, 390.0539, 345.6384, 346.1496, 344.4306,
349.1049, 338.027, 430.0042, 453.396.

3.3. Element Content Calibration by BP-ANN

We extracted the normalized peak intensity of the corresponding characteristic spectral
lines of Ni, Cr, and Ti as the input variable of BP-ANN. We divided the data obtained after
baseline correction, noise reduction, and feature selection and the unprocessed data into
two groups. The two groups of data were used to train the model. To reduce the problems
of excessively one-sided test results and insufficient training data, we divided the data of
seven samples into one test set and six training sets for cross-validation. The results of
seven times determination are presented in Tables 5 and 6. The predicted value is the result
of predicting the elemental content from different spectral data. Then, the average relative
error (ARE), relative standard deviation (RSD), and root mean square error (RSME) were
calculated as evaluation parameters.
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Table 5. Determination result of Ni, Cr, and Ti with BP-ANN (Group 1).

Test Set
Sample

Average Relative Error (%) Relative Standard Deviation (%) Root Mean Square Error (RSME)

Ni Cr Ti Ni Cr Ti Ni Cr Ti

GBW 1659a 4.62 13.50 31.45 22.08 12.14 12.01 1.95 4.67 0.056
GBW 1660a 0.88 3.82 2.07 12.68 12.58 15.21 1.77 1.86 0.068
GBW 1661a 7.25 4.17 12.94 19.08 20.12 19.21 3.50 2.16 0.12
GBW 1662a 5.64 6.87 12.52 20.28 9.40 15.43 2.13 2.12 0.045
GBW 1663a 8.57 4.64 22.43 12.67 18.30 14.80 3.17 1.43 0.19
GBW 1664a 3.61 6.01 23.37 22.25 10.65 13.10 1.52 2.74 0.048
GBW 1665a 1.97 1.53 1.88 14.03 16.27 12.19 1.15 2.68 0.040

Table 6. Determination result without pre-processing (Group 2).

Test Set
Sample

Average Relative Error (%) Relative Standard Deviation (%) Root Mean Square Error (RSME)

Ni Cr Ti Ni Cr Ti Ni Cr Ti

GBW 1659a 8.37 15.08 26.70 25.76 9.67 28.11 1.48 2.72 0.038
GBW 1660a 5.78 8.49 10.03 17.46 18.88 22.16 2.69 3.05 0.10
GBW 1661a 15.91 4.42 42.36 21.01 17.36 24.48 4.42 1.74 0.26
GBW 1662a 9.39 11.68 22.43 20.24 8.03 19.58 2.58 2.85 0.081
GBW 1663a 13.61 11.89 28.93 23.40 22.80 13.94 3.11 2.13 0.24
GBW 1664a 10.70 8.27 61.54 26.57 9.70 18.38 2.19 2.88 0.12
GBW 1665a 8.79 2.18 16.73 29.31 15.78 17.52 1.73 2.60 0.086

In addition, Figure 6 shows the learning curve of BP-ANN in Ni calibration, from
which we can see the mean square error (MSE) of the training and testing sets with different
training data. For the curve drawing, one test sample was used. Figure 7 shows the loss
curves, indicating the variation of training loss, and validation loss with epochs. It can be
seen that the training and testing results are good, and the loss curve converges effectively,
indicating that the model fits well and has some generalization ability.
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Figure 6. Learning curve of BP-ANN: variation in MSE with number of training samples for training
sets (red line) and test sets (black line).

In general, the prediction results of Group 1 (Table 4) are more accurate by comparison.
In particular, for the determination of Ni, the average error in Group 1 was within 9%. For
most samples, the error in the determination of elemental Cr is within 7%. This means that
when the LIBS data are pre-processed by the above method, fewer spectral lines were used
for training, which can significantly improve the training efficiency.
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However, the errors in the determination of the concentrations of elemental Cr for
sample GBW 1659a and of elemental Ti for most samples were substantial. Possible reasons
for this are as follows: on the one hand, we found that the model did not fit well for
individual training sets in the cross-validation due to insufficient sample and data volume.
On the other hand, the element Ti was insufficiently present in the stainless steel samples
(<1 wt%), making its characteristic spectral lines indistinguishable and fluctuated, and thus
difficult to determine. In addition, low peaks containing information mixed with the noise
may be removed during data pre-processing. However, the lines selected by the algorithm
still obtain a high correlation with the element concentrations, which is an interesting topic
worth further study.

The RSD reflects the precision and repeatability of the results. We can see that the
stability and precision of the predicted Ni and Ti concentrations are higher in Group 1 data
than in Group 2 data. The overall RSD of the BP-ANN results are still high, probably due
to the complex and unstable LIBS data. However, in this study, the data pre-processing
method demonstrates certain advantages over RSD.

3.4. Comparison of Quantitative Methods

The same data (Group 1) were used to predict the elemental concentrations of Ni, Cr,
and Ti by support vector regression (SVR), partial least squares regression (PLSR), and
univariate least squares regression (ULSR). These models have also been optimized, and
the average of the resulting ARE is given in Figure 8.

Chemosensors 2022, 10, x FOR PEER REVIEW 12 of 15 
 

 

 

Figure 8. Comparison of different quantitative methods: the average of ARE of predicted results 

by BP-ANN, SVR, PLSR, and ULSR. 

In this study, SVR and PLSR are both built on Scikit-learn. The kernel type of SVR is 

set as “Linear,” the penalty factor C is set to 3.0, and the parameter “n_components” of 

PLSR is set to 4. ULSR performs a linear fit with the intensity and elemental content of the 

characteristic spectral lines of the training sets as variables. 

Obviously, the BP-ANN results are more accurate than SVR, PLSR, and ULSR and 

include better results for Group 1 data than for Group 2 data, and the averages of ARE of 

predicted concentrations by BP-ANN are less than 6%. This shows that the pre-processing 

method we used effectively improves the performance of BP-ANN. In addition, BP-ANN 

has an advantage over SVR, PLSR, and ULSR and is more suitable for the pre-processing 

method in this study. Furthermore, the SVM model performs well and has some promise 

as a quantitative model for LIBS. 

4. Discussion and Conclusions 

As shown in Table 1, the superiority of BP-ANN combined with LIBS for rapid ele-

mental analysis has been demonstrated and various samples have been studied. Com-

pared with contemporary studies, this study focuses on the improvement in LIBS data 

pre-processing to enhance the prediction performance of BP-ANN. Cubic spline interpo-

lation and wavelet threshold transform algorithms were used to perform baseline removal 

and denoising of LIBS spectral data, respectively, and the characteristic spectral lines were 

selected using the Pearson correlation coefficient. This method can automatically process 

the original spectrum data into characteristic emission spectrum information and remove 

interference information, which can increase the analyzing speed of BP-ANN with com-

plicated spectra of alloy. Moreover, this method is fast and uncomplicated. 

In conclusion, BP-ANN combined with a data pre-processing method to analyze the 

LIBS spectra was proposed. In addition, seven standard stainless steel samples for spectral 

analyzing (GBW 01659a, GBW 01660a, GBW 01661a, GBW 01662a, GBW 01663a, GBW 

01664a, and GBW 01665a) were used. After pre-processing, the baseline was corrected and 

the noise of the spectrum was reduced, resulting in a higher signal-to-noise ratio, thus 

illustrating the effectiveness of the noise reduction method. By comparing the BP-ANN 

training results for the pre-processed and unprocessed data, the former prediction results 

are more accurate. The average error in the determination of Ni is within 9%, while in the 

determination of Cr, it is mostly within 7%. The RSDs of the results for Ni and Ti elements 

were generally lower in the former, indicating that the pre-processing method can im-

prove the stability of the predictions for Ni and Ti. We then compared the mean error of 

the quantitative prediction results of the four methods BP-ANN, SVR, PLSR, and ULSR, 

showing that BP-ANN is more accurate in predicting the concentrations of Ni, Cr, and Ti 

in stainless steel when combined with this pre-processing method. This means that the 

Figure 8. Comparison of different quantitative methods: the average of ARE of predicted results by
BP-ANN, SVR, PLSR, and ULSR.



Chemosensors 2022, 10, 472 11 of 13

In this study, SVR and PLSR are both built on Scikit-learn. The kernel type of SVR is
set as “Linear,” the penalty factor C is set to 3.0, and the parameter “n_components” of
PLSR is set to 4. ULSR performs a linear fit with the intensity and elemental content of the
characteristic spectral lines of the training sets as variables.

Obviously, the BP-ANN results are more accurate than SVR, PLSR, and ULSR and
include better results for Group 1 data than for Group 2 data, and the averages of ARE of
predicted concentrations by BP-ANN are less than 6%. This shows that the pre-processing
method we used effectively improves the performance of BP-ANN. In addition, BP-ANN
has an advantage over SVR, PLSR, and ULSR and is more suitable for the pre-processing
method in this study. Furthermore, the SVM model performs well and has some promise
as a quantitative model for LIBS.

4. Discussion and Conclusions

As shown in Table 1, the superiority of BP-ANN combined with LIBS for rapid elemen-
tal analysis has been demonstrated and various samples have been studied. Compared with
contemporary studies, this study focuses on the improvement in LIBS data pre-processing
to enhance the prediction performance of BP-ANN. Cubic spline interpolation and wavelet
threshold transform algorithms were used to perform baseline removal and denoising of
LIBS spectral data, respectively, and the characteristic spectral lines were selected using
the Pearson correlation coefficient. This method can automatically process the original
spectrum data into characteristic emission spectrum information and remove interference
information, which can increase the analyzing speed of BP-ANN with complicated spectra
of alloy. Moreover, this method is fast and uncomplicated.

In conclusion, BP-ANN combined with a data pre-processing method to analyze
the LIBS spectra was proposed. In addition, seven standard stainless steel samples for
spectral analyzing (GBW 01659a, GBW 01660a, GBW 01661a, GBW 01662a, GBW 01663a,
GBW 01664a, and GBW 01665a) were used. After pre-processing, the baseline was corrected
and the noise of the spectrum was reduced, resulting in a higher signal-to-noise ratio, thus
illustrating the effectiveness of the noise reduction method. By comparing the BP-ANN
training results for the pre-processed and unprocessed data, the former prediction results
are more accurate. The average error in the determination of Ni is within 9%, while in
the determination of Cr, it is mostly within 7%. The RSDs of the results for Ni and Ti
elements were generally lower in the former, indicating that the pre-processing method
can improve the stability of the predictions for Ni and Ti. We then compared the mean
error of the quantitative prediction results of the four methods BP-ANN, SVR, PLSR, and
ULSR, showing that BP-ANN is more accurate in predicting the concentrations of Ni, Cr
and Ti in stainless steel when combined with this pre-processing method. This means that
the determination method is promising for the practical detection of minor elements in
stainless steel samples.
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