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Abstract: The technology for manufacturing a film membrane of the metamizole-selective electrode
containing ion associate metamizole-octadecylammonium ODAH+MT− as an electrode active com-
ponent (EAC) has been proposed. The main potentiometric characteristics of the metamizole-selective
electrode have been determined. The expediency of the proposed design of the metamizole selec-
tive electrode for the determination of metamizole in dosage forms has been substantiated. The
best composition of the membrane (wt.%) of the metamizole-selective electrode has corresponded
to: ODAH+MT−—5.3; 2-nitrophenyloctylether—63.1; poly(vinyl chloride)—31.6. Electrode-active
component in the membrane phase functions as an ion associate ODAH+MT−. Potentiometric
characteristics of metamizole-selective electrode have been determined, which corresponded to:
linear range 1 × 10−2–1 × 10−4 with limit of detection 4.58 × 10−5 M, electrode function slope
−48.5 mV/dec., working interval pH 4.5–7.3, response time 60 s. The potentiometric coefficients of
selectivity of the metamizole-selective electrode with respect to various ions have been determined.
The possibility of determining metamizole in a medicinal product has been tested. The results of
the analyses show good agreement between the two methods (relative error less than 7.0%) with
coefficients of variation less than 5% for MT-SE and iodometric methods.

Keywords: metamizole; dipyrone; sensor; ISE; membrane; analysis; ion-selective electrodes; poten-
tiometry; metamizole-ion sensor

1. Introduction

With the development of pharmaceutical science, 30–40 new drugs appear annually.
Currently, more than 10,000 medicinal substances and over 100,000 dosage forms are
registered in the world [1–4]. Because of the ever-increasing number of new medicinal sub-
stances, the problem of their identification and determination both in individual samples
and in living organisms is relevant and timely. The need for the accumulation, general-
ization and systematization of data on the methods of control and analysis of medicinal
substances has led to the emergence of specialized scientific publications [5–13]. Judging
by the methods of analysis of medicinal substances based on the materials of the original
articles, we can say that chromatographic methods of analysis are still in the lead. Electro-
chemical methods for the analysis of medicinal substances by the number of publications
rank third, behind photometry and spectrophotometry, with ∼20% of works devoted to
the electrochemical determination of medicinal substances [14–25].

Equilibrium electrochemical methods for the analysis of medicinal substances, includ-
ing direct potentiometry (ionometry) and potentiometric titration, are extremely conve-
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nient, simple and accessible for the determination of those medicinal substances that can
be converted into the corresponding ionic form [26,27]. They, as a rule, combine sufficient
selectivity and determination accuracy, which can be significantly increased even with
direct determination due to the functioning of the sensors according to the mechanism
of super-Nernst response and increasing linear working range [25,28–35]. In addition,
potentiometric sensors can be suitable for creating electronic tongue used for the analysis
of urine, blood and other human fluids, as well as for determining the authenticity of
drugs [36,37].

It is known that in the arsenal of medications, the leading substances are those con-
taining heterocyclic fragments in their structure, including nitrogen-containing ones. A
special place among them is occupied by pyrazole derivatives due to their good prepara-
tive availability. Pyrazole derivatives possess analgesic, antipyretic, anti-rheumatic [38,39],
antimicrobial [40], anti-proliferative [41] and anti-inflammatory [42–44] activities. So, these
are considered as persuasive pharmacophores in medicinal chemistry. The pyrazolone
molecules with tautomeric hydrogen are known to be good free radical scavengers [15].
At the same time, many medications, in particular pyrazole derivatives, exhibit some
toxicity and have a number of side effects, which hinder their widespread use in medical
practice [45,46].

The aim of this work to propose a simple and effective method for rapid analysis of
the qualitative and quantitative content of metamizole in drugs based on it.

2. Materials and Methods
2.1. Reagents’

The following compounds were used in the work: metamizole (MT) ((1,5-Dimethyl-
3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl) (methyl) amino] sodium methanesulfonate,
monohydrate, or dipyrone, or used medically in Germany under the brandname “Noval-
gin”, in Russian “Analgin”), and octadecylamine (ODA). Analgin solution 50% ampule
2 mL № 10 from Dal’khimfarm (Khabarovsk, Russia). Baralgin M solution 500 mg/mL
ampule 5 mL and Baralgin in tablet from Sanofi Aventis Pharma (Paris, France). Baral-
gin M tablet from Aventis (Mumbai, India). Cation exchanger potassium tetrakis-p-Cl-
phenylborate (KClTPB), plasticizers bis(2-butylpentyl)adipate (BBPA), bis(2-ethylhexyl)
phthalate (DOP), and 2-nitrophenyloctylether (o-NPOE), and high molecular weight poly
(vinyl chloride) (PVC) were Selectophore-grade reagents from Merck (Darmstadt, Germany).
Anion exchanger ODA, CPC, DAPPM was from Vekton (St. Petersburg, Russia). Volatile
solvents extra pure cyclohexanone (CH) and HPLC grade tetrahydrofuran (THF), as well as
acetonitrile, were from Vekton (St. Petersburg, Russia). Inorganic salts were from Reaktiv
(Moscow, Russia). All aqueous solutions were prepared with bidistilled water (Bidistiller
BS, Himlaborpribor, Russia).

2.2. Apparatus

Zero current potentiometric measurements were performed with Ecotest-120 8-channel
potentiometric station Econics (Moscow, Russia) and EMF 6 6-channel potentiometric
station (Lawson Labs, Inc., Malvern, PA, USA). The reference electrode was a single
junction Ag/AgCl electrode in 3.5 M KCl, with a salt bridge with a limited leak of KCl
(Izmeritel, Belarus). Calibrations were carried out from 0.1 M down to 10−6 M respective
solution MTNa, using sequential dilution. The pH measurements were carried out using
a pH-15MI pH meter (Izmeritel’naya Tekhnika, Moscow, Russia) with a combined pH
glass electrode ESK-10603/7 (Izmeritel’naya Tekhnika, Moscow, Russia). Ultraviolet visible
(UV–Vis) spectroscopy was performed with Double-beam spectrophotometer Specord
210 plus (Analytik Jena, Germany) in Quartz Cells length 10 mm, with scan step 1 nm and
scan speed 10 nm/s.

All the measurements were performed at room temperature: 19–21 ◦C.
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2.3. Sensor Fabrication

The membrane cocktails were prepared by dissolving appropriate amounts of PVC,
plasticizer, ionophore, and ion exchanger in THF. The percentage of “dry” content in the
cocktails was 15% [47]. To obtain the membranes, the cocktails were stirred for 30 min
using Mixing device LOIP LS-220 shaker from “Laboratory Equipment and Instruments”,
(St. Petersburg, Russia) and then cast on glass Petri dishes. The dishes were closed with
filter paper to slow down the evaporation of THF. The complete evaporation of THF took
1 day, and after that, master membranes with a thickness of about 0.4 mm were obtained.

2.4. Semi-Empirical Calculations

We used the software package ACD Labs Chem Sketch 6.0 with addons: pKa, LogP,
LogD, SolDB for semi-empirical calculations of the basicity and lipophilicity constants,
LogD and LogS of organic compounds. This software package gives an error less than
10–15%.

2.5. Software

To collect potentiometric data from the Ecotest-120 + KM-8 system, we used the
native Ecotest-120 software (Econics, Moscow, Russia), and for EMF 6 we used LL_USB
Graphics Version 10.22.15 (Lawson Labs Inc., Malvern, PA, USA). To record the spectra in
the UV/Vis region on the Specord 210 Plus, we used the native WinASPECT PLUS Version:
4.2.0.0 software (AnalytikJena AG, Thuringia, Germany). To write chemical formulas,
optimize the 3D model, find the basicity and lipophilicity constants, LogD and LogS of
organic compounds, we used the software package ACD Labs Chem Sketch 6.0 (Advanced
Chemistry Development, Inc., Toronto, ON, Canada).

3. Results
3.1. UV-Visible Absorption Spectrum

In order to elucidate the formation of a new compound, the electronic spectra of
ion associates ODA with MT have been studied. The shift of the absorption spectra for
octadecylamine was observed (Figure 1).
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Figure 1. Absorption spectra of: 1—MT, 2—ODA, 3—summation of curves 1 and 2, 4—ionic associate
ODAH+MT−.

The absorption spectra of the ionic associate are bathochromically shifted relative to
ODA and MT with a good hyperchromic effect, which indicates the formation of a new
compound. Further studies were carried out using the ionic associate ODAH+MT− as EAC.
The ionic associate ODAH+MT− was formed according to the scheme: Octadecylamine
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was dissolved in an equivalent amount in a flask with a capacity of 50.00 mL in hydrochloric
acid with a concentration of 1 × 10−2 M:

ODA + HCl = ODAH+Cl−

Chloroform was added in small portions and mixed with an aqueous solution of MT
(CMT = 1 × 10−2 M). The solution was transferred to a separatory funnel, the mixture was
shaken for two hours, the formed chloroform layer was separated from the aqueous phase
into a pre-weighed weighing bottle. Chloroform was evaporated in a water bath at the
temperature of 50–60 ◦C in order to avoid decomposition of the electrode active component
(EAC). o-NPOE was used as a plasticizer, and tetrahydrofuran (THF) was used as a solvent.
Ion exchange equation:

ODAH+Cl−org. + Na+MT−
aq. = ODAH+MT−

org. + NaClaq.

3.2. Optimization of the Preparation Conditions

It is well known that not only the nature of the ionophore, but also the membrane
composition has a significant effect on the sensitivity, as well as the selectivity and linearity
of the ISE. Four membranes were prepared; for the membrane compositions, see Table 1.
In order to obtain a membrane with the optimal composition of the metamizole-selective
electrode (MT-SE), the amounts of polymer, ionophore and plasticizer were varied. The
composition of the membranes is shown in Table 1.

Table 1. Composition of MT-SE membranes based on ODAH+MT– .

No Membrane Membrane Composition (wt.%)

EAC Plastisizer o-NPOE Polimer PVC S, mV/dec. Linear Working Concentration Range, M

1 0.9 66.1 33.0 −6.44 1 × 10−2–1 × 10−4

2 1.3 65.8 32.9 −8.93 1 × 10−2–1 × 10−4

3 1.7 65.5 32.8 −14.06 1 × 10−2–1 × 10−4

4 5.3 63.1 31.6 −48.5 1 × 10−2–1 × 10−4

5 7.0 62.0 31.0 −48.5 1 × 10−2–1 × 10−4

The optimized membrane had the composition wt.%: ODAH+MT− (5.3), o-NPOE
(63.1), PVC (31.6) and the slope of the electrode function, as close as possible to the theoret-
ical value for a singly charged ion S −48.5 mV/dec. As known, the high lipophilicity of
the ionophore of the PVC-plasticized membrane limits its release into the solution, which
contributes to the completeness of the electrode function, as well as the long lifespan
of the ISE. The lipophilicity value was calculated using the ACD/ChemSketch program,
which corresponds from 6.5 to 10.6 for octadecylamine. The dependency diagrams of
octadecylamine mole fraction have been studied vs. pH in aqueous solution (Figure 2).

In the pH range from 0 to 8 in aqueous solution, octadecylamine exists in the form of an
ionic particle ODAH+. Octadecylamine mole fraction and LogD from pH in organic/water
mixture have been studied the dependency graph (Figure 3) with semiempirical method
on ACDChem software package.

Taking into account ion pairs, the separation factor provides information that the
ODAH+ cation in the organic phase dominates at pH < 7 (Figure 3).

The ionic forms of MT in aqueous solution depending on the acidity of the medium
have been studied (Figure 4).
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Figure 2. Effect of pH on the molar fraction of protonated ODA particles in aqueous solution
and solubility.

0 2 4 6 8 1 0 1 2 1 4
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0  O D A
 O D A H +
 L o g D

p H

Mo
le 

Fra
ctio

n

5 . 0
5 . 5
6 . 0
6 . 5
7 . 0
7 . 5
8 . 0
8 . 5

 Lo
gD

Figure 3. Effect of pH on the molar fraction and distribution coefficient of octadecylamine particles.
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Figure 4. Mole fraction and LogS data of MT depending on pH by the calculated semiempirical
method using the ACDChem software package.
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At pH from 0 to 3.5, MT exists in the cationic form, at pH > 7, in the anionic form, and
in the acidity range of 3.5–7.0, tautomerism of the forms was observed. The dependence of
the membrane solubility on the acidity of the solution is shown in Figure 4. It follows from
the graph that at pH ≥ 7.3 MT has the maximum solubility and this interval is taken as the
theoretical pHtheor. functioning of the electrode.

Metamizole begins to protonate in acid medium: (1) the nitrogen in the pyrazole
ring (near the methyl) begins to protonate (pKa1 = 4.70 ± 0.35) (2) sodium is replaced by
hydrogen near the sulfo group (pKa2 = −2.93 ± 0.18) and the particle takes on a positive
charge Figure 5. In an acidic medium, metamizole is rather unstable; therefore, we did not
use this pH range.

Figure 5. The structural formula of sodium metamizole.

3.3. Dependence from pH

In order to study the pH-dependence of the electrode potential, the graph of emf
versus pH was constructed. The pH of the initial solutions was changed by the addition of
very small volumes of 1.0 M NaOH and HCl solution. Figure 6 shows a typical profile for a
1.0 × 10−3 M MT concentration. As seen, the potential is rather independent of pH in the
range 4.5–8.0. However, at very high acidic solution, a cationic response is observed which
is due to Donnan failure. Above pH 6, the potential response decreases drastically because
of the decreasing concentration of the cationic form of MT and an increase in hydroxide
ions (which also have an effect on pH). In an acidic media, there is a problem that MT
begins to degrade over time.
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Figure 6. Effect of pH of test solution on the potential response of the MT-SE.
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3.4. Analytical Performance

The Nernst region of functioning of the metamizole-selective electrode was determined
(Figure 7). The linear range of functioning of the MT-SE is 1 × 10−2–1 × 10−4 M with limit
of detection 4.58 × 10−5 M. The slope of the electrode function is −48.5 mV/dec. This
result is better than similar work [24]. The response time is 60 s.

-6 5 4- - - -3 2

120

140

160

180

200

220
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m
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Figure 7. Calibration graphic MT-SE.

3.5. Selectivity of the Sensor

The selectivity of the electrode with respect to some cations and anions has been
studied. The potentiometric coefficients of selectivity of MT-SE were determined by the sep-
arate solutions method (sometimes called the bi-ionic potentials method) for concentration
1.0 × 10−3 M (Table 2).

Table 2. Potentiometric selectivity coefficients (LogKPot
Prim.ion,Inter f .) for concentration 1.0 × 10−3 M.

Interferent LogKSel

Cloride −0.56 ± 0.12
Bromide −0.15 ± 0.31
Sulfate −0.90 ± 0.12
Nitrate −0.89 ±0.27
Phospate −0.88 ± 0.13
Bisulfite −0.80 ± 0.15
Citrate −0.01 ± 0.12

The study of the selectivity of MT-SE based on an ionic associate to the most important
inorganic cations—K+, Na+, Ca2+ showed that these cations do not interfere with the
determination of metamizole.

3.6. Application to Real Samples

Preparations containing metamizole sodium—baralgin, tempalgin, spazgan, spazmal-
gon, revalgin, andipal. The object of the study: baralgin is a combined medicinal product
that prevents the development of spasms, which consists of several active ingredients—
metamizole sodium, pitofenone hydrochloride, fenpiverinium bromide. It is produced
in various dosage forms—in the form of tablets, suppositories, injection solution. The
composition of the pharmaceutical product is presented in Table 3.
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Table 3. Active ingredients in a 5 ml baralgin ampoule.

Medical Product Composition

Metamizole sodium 2.5 g
Baralgin Pitofenone hydrochloride 0.01 g

Fenpiverinium bromide 0.0001 g

The possibility of determining MT in a medicinal product has been tested. The samples
of different commercial product, including tablets and injectables were analyzed with the
MT-SE. Table 4 gives the obtained values, and compares them with the results provided
from an analysis of the same products by the classical iodometric method. This was based
on the addition of 5.0 mL of 0.02 mol/L hydrochloric acid to the samples, followed by
titration at a temperature lower than 20 ◦C, with a 0.1 mol/L iodine solution.

Table 4. Determination of dipyrone in pharmaceutical preparations using the proposed MT-SE.

Obtainded Value/mg

Commercial Started MT-SE Iodometric Relative
Product Value Method Error

Baralgin 500 mg/mL 531 ± 15 498 ± 6 6.2
Analgin 500 mg/tablet 516 ± 11 501±8 3.2
Baralgin M 500 mg/tablet 481 ± 20 502 ± 5 3.8

An analysis of the results concludes a good agreement between the two methods
(relative error lower than 7.0%) with the coefficients of variation being lower than 5%, for
the MT-SE and idometric methods. The iodometric method for the determination of sodium
metamizole was carried out according to the pharmacopeial analysis, and the ionometric
method using the MT-SE based on the membrane of the selected composition.

Thus, the electrode with a membrane based on the ODAH+MT− ion associate can be
used to determine sodium metamizole in medicinal preparations.

4. Conclusions

1. In order to select the electrode-active component, the acid-base properties of sub-
stances have been studied: CPC, DAPPM, ODA. The analysis of the spectra has made
it possible to use ODA as the ionophore for further research.

2. The composition of the membrane (wt.%) of the metamizole-selective electrode has
corresponded to: EAC—5.3; o-NPOE—63.1; PVC—31.6.

3. EAC in the membrane phase functions as an ion associate ODAH+MT−.
4. Potentiometric characteristics of metamizole-selective electrode have been determined,

which corresponded to: linear range 1 × 10−2–1 × 10−4 with limit of detection
4.58 × 10−5 M, electrode function slope −48.5 mV/dec., working interval pH 4.5–8.0.
Response time t95% = 60 s. The time may vary in depending on the measurement
conditions (from 45 s to 1 min). Equation: y(x) = 31.7(±2.4) − 48.5(±8.7)·x in brackets
is the error for calibrations between three or more electrodes. For one electrode, the
error did not exceed 1 mV; accordingly, the error in the analysis results with a drift of
1 mV does not exceed 5%.

5. The potentiometric coefficients of selectivity of the MT-SE electrode with respect to
various ions have been determined. The most important inorganic cations do not
interfere with the determination of metamizole, and among the anions.

6. The possibility of determining metamizole in the baralgin ampoule has been tested.
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