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Abstract: The structure and material properties of polymer networks can depend 

sensitively on changes in the environment. There is a great deal of progress in the 

development of stimuli-responsive hydrogels for applications like sensors, self-repairing 

materials or actuators. Biocompatible, smart hydrogels can be used for applications, such 

as controlled drug delivery and release, or for artificial muscles. Numerical studies have 

been performed on different length scales and levels of details. Macroscopic theories that 

describe the network systems with the help of continuous fields are suited to study effects 

like the stimuli-induced deformation of hydrogels on large scales. In this article, we discuss 

various macroscopic approaches and describe, in more detail, our phase field model, which 

allows the calculation of the hydrogel dynamics with the help of a free energy that 

considers physical and chemical impacts. On a mesoscopic level, polymer systems can be 

modeled with the help of the self-consistent field theory, which includes the interactions, 

connectivity, and the entropy of the polymer chains, and does not depend on constitutive 

equations. We present our recent extension of the method that allows the study of the 

formation of nano domains in reversibly crosslinked block copolymer networks. Molecular 

simulations of polymer networks allow the investigation of the behavior of specific 

systems on a microscopic scale. As an example for microscopic modeling of stimuli 

sensitive polymer networks, we present our Monte Carlo simulations of a filament network 

system with crosslinkers.  

Keywords: hydrogel; polymer network; simulation; phase field theory; self-consistent 

field theory  
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1. Introduction 

If you put a gummy bear into a glass of water, the next day you will find the same bear grown in 

volume by more than a factor of five. (The effect depends on the choice of Gummy bears.) This is a very 

simple example of a polymer network that is strongly responsive to the stimuli of the environment (in 

this case humidity). Different kinds of smart polymer networks are sensitive to different stimuli, such as 

temperature changes [1,2], illumination [3,4], or properties of the solvent, such as the pH value [1,5–7], 

the ion concentration [7,8], or the chemical composition [5,8–10]. Some materials are responsive to 

more than one kind of stimuli [11,12]. Reversible networks can be switched back and forth between 

different states by turning the stimulus on and off. Smart polymer networks can be used for various 

applications, such as chemical sensors [8,13], biosensors [13,14], actuators [7,15], artificial muscles [5], 

or for drug transport and release [1,6,16]. For the development and optimization of these devices, it is 

crucial to investigate the network behavior, both experimentally and theoretically. In this article, we 

focus on numerical methods for studying intelligent polymer networks and describe modeling 

techniques on different scales, ranging from macroscopic methods to molecular modeling. 

There are two important types of smart polymer networks: (a) Covalently crosslinked networks that 

swell or shrink if exposed to a stimulus, and (b) networks with a variable topology, in which crosslinks 

can be broken or created by external stimuli.  

Both types of smart polymer networks can change their density, their mechanical properties, and 

their permeability in response to changes of the environment. The majority of applications use 

chemically crosslinked polymer networks (see the application references in the first paragraph), 

however, networks with stimuli-sensitive crosslinks are also used for the development of sensors [9] 

and for controlled drug delivery and release [5,17,18]. One important aspect of reversibly crosslinked 

polymer networks is their ability to rebuild broken bonds and to rearrange in a completely different 

topology and shape. This way, the polymer network can heal if it has been plastically deformed or 

broken [19]. On the other hand, a fixed network topology has its own advantages: Even strongly 

swollen, the gummy bear still keeps its shape.  

This article is dedicated to numerical studies of smart polymer networks that are sensitive to 

external stimuli. Modeling methods are discussed on different levels of details, from macroscopic 

theories to molecular modeling. The introduction to the different techniques is combined with more 

detailed descriptions of three numerical methods that have been developed by the authors. We think 

that they are particularly interesting examples of numerical studies of intelligent polymer networks that 

show novel routes for polymer network modeling [20–25]. We use these examples to describe 

important aspects of modeling methods on different levels of detail. For a comprehensive description 

of our numerical studies, we refer to the original articles [20–25]. 

We start with macroscopic models, in which all material properties are described by continuous 

fields. Here, we discuss various modeling principles, before we explain, in more detail, a phase field 

model for chemo-sensitive hydrogels that was recently presented by one of the authors [20]. Afterwards, 

we give a short introduction to self-consistent field theory. The starting point of the self-consistent 

field theory is the exact statistically physical description of a polymer model system so that 

constitutive equations are not required. It has been used, for many decades, for the studying of polymer 

melts. We elucidate an extension of the method that allows modeling reversibly crosslinked polymer 
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networks with switchable microphases [

and present, as an example, a Monte Carlo study of a network formed by stiff polymers and physical 

crosslinkers that, depending on external paramet

properties [24,25].  

2. Macroscopic Models, Finite Element 

Stimulated by external conditions

solvent, the volume of hydrogels can change strongly. For the investigation of hydrogel swelling on a 

macroscopic scale, various macroscopic models have been developed. Overviews on macroscopic 

hydrogel models have been presented in 

The first model, developed by Flory 

polymer network. There are various extensions of this statistical approach [

state of a hydrogel in a given environment can be calculated by minimizing the free energy

system. Relevant contributions to the free energy are the interaction and the entropy of polymer chains, 

the entropy of ions in the hydrogel and 

hydrogel models have been used, for exam

The equilibrium ion distribution in the hydrogel and in the bath can be obtained from the Donnan 

equilibrium and the postulation of electric neutrality, as discussed below. 

An important model for hydrogels is the multiphase mixture model, in which the system consists of 

two or more phases. In the biphasic theory, the system is divided into an incompressible polymer phase 

and an incompressible fluid phase that is in contact with a fluid reservoir [

extended to three-phase (or multiphase) mixture models that include a polymer phase, a solvent phase, 

and one or several ionic phases, formed by the mobile ions [

the theory of porous media, has been developed by Freiboth 

Macroscopic hydrogel theories are frequently based on conservation laws and constitutive 

equations [39,40,41,43]. If the ion, solvent, and polymer phases are incompressible, mass conservation 

leads to:  

where  and  are the volume fractions of the polymer network and the solvent phase, while 

 are the volume fractions of the 

corresponding concentrations . In the absence of chemical reactions, the conce

conservation law:  

where  is the µth component of the local velocity of phase 

convention for Greek indices that appear twice. 

Frequently, electric neutrality is postulated for the hydrogel

charged ions are attached to the polymer network with a concentration 

networks with switchable microphases [21–23]. Finally, we discuss molecular modeling techniques 

and present, as an example, a Monte Carlo study of a network formed by stiff polymers and physical 

crosslinkers that, depending on external parameters, can change its structural and topological 

lement and Phase Field Methods  

Stimulated by external conditions, such as a change of the pH or the chemical composition of the 

hydrogels can change strongly. For the investigation of hydrogel swelling on a 

macroscopic scale, various macroscopic models have been developed. Overviews on macroscopic 

hydrogel models have been presented in [26–28].  

The first model, developed by Flory and Rehner [29,30], is based on the entropy changes in a swelling 

polymer network. There are various extensions of this statistical approach [31

state of a hydrogel in a given environment can be calculated by minimizing the free energy

system. Relevant contributions to the free energy are the interaction and the entropy of polymer chains, 

the entropy of ions in the hydrogel and in the bath, and the Coulomb interactions. Thermodynamic 

hydrogel models have been used, for example, by Caykara et al. [35], and Kramarenko

The equilibrium ion distribution in the hydrogel and in the bath can be obtained from the Donnan 

equilibrium and the postulation of electric neutrality, as discussed below.  

drogels is the multiphase mixture model, in which the system consists of 

two or more phases. In the biphasic theory, the system is divided into an incompressible polymer phase 

and an incompressible fluid phase that is in contact with a fluid reservoir [37]

phase (or multiphase) mixture models that include a polymer phase, a solvent phase, 

and one or several ionic phases, formed by the mobile ions [38–41]. A multiphase approach, based on 

been developed by Freiboth et al. [42].  

Macroscopic hydrogel theories are frequently based on conservation laws and constitutive 

]. If the ion, solvent, and polymer phases are incompressible, mass conservation 

 

are the volume fractions of the polymer network and the solvent phase, while 

are the volume fractions of the  ion phases. The volume fractions 

. In the absence of chemical reactions, the conce

 

component of the local velocity of phase . In this article, we use the summation 

convention for Greek indices that appear twice.  

Frequently, electric neutrality is postulated for the hydrogel system [41,43

charged ions are attached to the polymer network with a concentration , electric neutrality requires

45 

]. Finally, we discuss molecular modeling techniques 

and present, as an example, a Monte Carlo study of a network formed by stiff polymers and physical 

ers, can change its structural and topological 

a change of the pH or the chemical composition of the 

hydrogels can change strongly. For the investigation of hydrogel swelling on a 

macroscopic scale, various macroscopic models have been developed. Overviews on macroscopic 

and Rehner [29,30], is based on the entropy changes in a swelling 

31–34]. The equilibrium 

state of a hydrogel in a given environment can be calculated by minimizing the free energy of the total 

system. Relevant contributions to the free energy are the interaction and the entropy of polymer chains, 

and the Coulomb interactions. Thermodynamic 

Kramarenko et al. [36]. 

The equilibrium ion distribution in the hydrogel and in the bath can be obtained from the Donnan 

drogels is the multiphase mixture model, in which the system consists of 

two or more phases. In the biphasic theory, the system is divided into an incompressible polymer phase 

]. The method has been 

phase (or multiphase) mixture models that include a polymer phase, a solvent phase, 

]. A multiphase approach, based on 

Macroscopic hydrogel theories are frequently based on conservation laws and constitutive  

]. If the ion, solvent, and polymer phases are incompressible, mass conservation 

(1) 

are the volume fractions of the polymer network and the solvent phase, while 

ion phases. The volume fractions  are proportional to 

. In the absence of chemical reactions, the concentrations obey the 

(2) 

. In this article, we use the summation 

41,43–45]. If negatively 

, electric neutrality requires: 
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Here,  and  are the valence number and the concentration of fixed ions, attached to the polymer 

network and  is the valence number of the mobile ion species 

the system is studied with the help of momentum equations [

phases, the forces induced by the chemical potential of solvent 

potentials of the ions, are balanced by the friction forces between the different phases that flow with 

different velocities. The equations are of the form

with chemical/electrochemical potentials 

 is the mass of a solvent molecule (

coefficients between phases  and 

where  are the components of the stress tensor. Furthermore, several co

used: Usually, the chemical potential is expressed by a linear combination of the ion concentrations 

and the hydrostatic pressure, while the electrochemical potentials of the ions can be expressed as a 

function of the chemical activity term, which is proportional to 

and a term that is proportional to the electric potential [

between the stress tensor of the polymer network and its elastic strain tensor

If the ion concentrations in the solvent are small, so that 

volume fractions of the mobile ions 

. Then, the volume fraction of water molecules is deter

fraction and does not have to be considered explicitly. 

The flow of ions can be treated more generally by using the Poisson equation instead of the electric 

neutrality condition. Models that include the Poisson equation have be

Wallmersperger et al. [47], Li et al

hydrogels induced by chemical and electric stimuli. 

Following the method used in [

with the Poisson equation. The time dependence of the concentration 

be described by the Nernst-Planck equation:

with the Faraday constant 

temperature . Ions of species  have diffusion constants 

to the continuity equation Equation

concentration gradient and the electric potential 

non-ideal mixing behavior of the solvent, extended versions of Eq

include a term for the chemical activity or other source terms for the ions [

 

are the valence number and the concentration of fixed ions, attached to the polymer 

s the valence number of the mobile ion species . In several models, the dynamics of 

the system is studied with the help of momentum equations [37–41,43,46]. For the solvent and the ion 

phases, the forces induced by the chemical potential of solvent molecules, and the electrochemical 

are balanced by the friction forces between the different phases that flow with 

different velocities. The equations are of the form: 

with chemical/electrochemical potentials . The mass densities  are given by 

is the mass of a solvent molecule ( ) or an ion ( ). The constants 

and . For the polymer phase, one has: 

 

are the components of the stress tensor. Furthermore, several constitutive equations are 

used: Usually, the chemical potential is expressed by a linear combination of the ion concentrations 

and the hydrostatic pressure, while the electrochemical potentials of the ions can be expressed as a 

vity term, which is proportional to  with an activity coefficient 

and a term that is proportional to the electric potential [39]. Furthermore, a linear or nonlinear relation 

between the stress tensor of the polymer network and its elastic strain tensor is considered [

If the ion concentrations in the solvent are small, so that  and  are distinctly larger than the 

volume fractions of the mobile ions  ( ), Equation (1) can be approximated by 

. Then, the volume fraction of water molecules is determined by the polymer volume 

fraction and does not have to be considered explicitly.  

The flow of ions can be treated more generally by using the Poisson equation instead of the electric 

neutrality condition. Models that include the Poisson equation have been used, for example, by 

et al. [48], and Chen et al. [39], to study the swelling and shrinking of 

hydrogels induced by chemical and electric stimuli.  

Following the method used in [48], here we discuss a typical set of equations used in combination 

with the Poisson equation. The time dependence of the concentration  of mobile ions of type 

Planck equation: 

 

, the gas constant 

have diffusion constants . The Nernst-Planck equation corresponds

uation (2) under the assumption that the ion flow is determined by the 

concentration gradient and the electric potential . For systems that show chemical reactions or a 

ideal mixing behavior of the solvent, extended versions of Equation (5) 

include a term for the chemical activity or other source terms for the ions [49

46 

(3) 

are the valence number and the concentration of fixed ions, attached to the polymer 

. In several models, the dynamics of 

6]. For the solvent and the ion 

and the electrochemical 

are balanced by the friction forces between the different phases that flow with 

 (4)

 
are given by , where 

). The constants  are friction 

nstitutive equations are 

used: Usually, the chemical potential is expressed by a linear combination of the ion concentrations 

and the hydrostatic pressure, while the electrochemical potentials of the ions can be expressed as a 

with an activity coefficient , 

]. Furthermore, a linear or nonlinear relation 

is considered [28].  

are distinctly larger than the 

can be approximated by 

mined by the polymer volume 

The flow of ions can be treated more generally by using the Poisson equation instead of the electric 

en used, for example, by 

to study the swelling and shrinking of 

ions used in combination 

of mobile ions of type  can 

 (5) 

, and the 

Planck equation corresponds 

under the assumption that the ion flow is determined by the 

show chemical reactions or a  

 have been used, which 

49]. In [39], a convection 
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term , with a flow velocity 

potential  obeys the Poisson equation

with the vacuum dielectric constant 

depends on the differences 

respective concentrations  at the external boundary of the hydrogel

The osmotic pressure causes a deformation 

non-linear deformations can be considered by finite strain theory [

small, they fulfill the linear equation

where  and  are components of the full pressure tensor in the hydrogel region and the unit 

tensor, respectively. The coefficients 

hydrogel. The Green-Lagrangian strain tensor 

For small deformations, the third term in the brackets can be neglected. Solving Eq

numerically, requires appropriate bo

the corresponding surface region is fixed. For the remaining surface region

with a surface normal vector  pointing outward and a surface traction vector 

Various types of stimuli-induced swelling and deformation of hydrogels have been investigated 

with transport theories. A numerical study of temperature

For hydrogel spheres in water, the radial polymer density dist

of swelling time [38]. Cheng et al.

non-uniform fixed charge density [

A system of particular interest, which is frequently investigated experiment

hydrogel strip in water between two electrodes. The electric field from the electrodes is perpendicular 

to the strip area. The strip is fixated at one end

electric field, leads to a bending of the non

which can be used for sensors and actuators in biological and other aqueous environments

reproduced and analyzed in detail in various numerical studies [

Equations (6)–(9) are typically solved with finite element methods. Alternatively, meshless methods 

have been used [39,40,50,53–56], which are conceptually more complex but avoid the definition and 

adaptation of a mesh grid during the simulation. In finite element and meshless methods, boundary 

conditions have to be defined on the hydrogel surface

with a flow velocity , is added to the right side of Equation

obeys the Poisson equation: 

  

with the vacuum dielectric constant  and the relative dielectric constant 

 between the ion concentrations  in the hydrogel and the 

at the external boundary of the hydrogel: 

 

The osmotic pressure causes a deformation  of the initial geometry of the hydrogel. 

considered by finite strain theory [45,46,48]. If the deformations are 

small, they fulfill the linear equation: 

 

are components of the full pressure tensor in the hydrogel region and the unit 

tensor, respectively. The coefficients  and  are the first and second Lamé coefficients of the 

Lagrangian strain tensor  is given by:  

 

For small deformations, the third term in the brackets can be neglected. Solving Eq

numerically, requires appropriate boundary conditions. If the hydrogel is firmly attached to a substrate, 

the corresponding surface region is fixed. For the remaining surface region, 

 

pointing outward and a surface traction vector 

induced swelling and deformation of hydrogels have been investigated 

with transport theories. A numerical study of temperature-dependent swelling is presented in [

For hydrogel spheres in water, the radial polymer density distribution has been calculated as a function 

et al. have studied the curling effect of articular cartilage with 

uniform fixed charge density [46].  

A system of particular interest, which is frequently investigated experiment

hydrogel strip in water between two electrodes. The electric field from the electrodes is perpendicular 

to the strip area. The strip is fixated at one end, or in the middle. The diffusion of ions

ds to a bending of the non-uniformly swelling strip. The deformation of the strip

can be used for sensors and actuators in biological and other aqueous environments

reproduced and analyzed in detail in various numerical studies [39,43,52].  

are typically solved with finite element methods. Alternatively, meshless methods 

], which are conceptually more complex but avoid the definition and 

adaptation of a mesh grid during the simulation. In finite element and meshless methods, boundary 

conditions have to be defined on the hydrogel surface, which typically moves at each time 

47 

Equation (5). The electric 

(6) 

. The osmotic pressure 

in the hydrogel and the 

(7) 

tial geometry of the hydrogel. Strong, 

]. If the deformations are 

 (8) 

are components of the full pressure tensor in the hydrogel region and the unit 

are the first and second Lamé coefficients of the 

(9) 

For small deformations, the third term in the brackets can be neglected. Solving Equations (6)–(9), 

undary conditions. If the hydrogel is firmly attached to a substrate, 

, one has:  

(10) 

.  

induced swelling and deformation of hydrogels have been investigated 

dependent swelling is presented in [50].  

ribution has been calculated as a function 

have studied the curling effect of articular cartilage with  

A system of particular interest, which is frequently investigated experimentally [51], consists of a 

hydrogel strip in water between two electrodes. The electric field from the electrodes is perpendicular 

or in the middle. The diffusion of ions, induced by the 

uniformly swelling strip. The deformation of the strip, 

can be used for sensors and actuators in biological and other aqueous environments, could be 

are typically solved with finite element methods. Alternatively, meshless methods 

], which are conceptually more complex but avoid the definition and 

adaptation of a mesh grid during the simulation. In finite element and meshless methods, boundary 

which typically moves at each time step so that 
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the hydrogel surface has to be traced during the swelling process. Recently, we have developed a phase 

field model, which avoids the precise localization of the phase boundaries and can be easily coupled 

with other phase fields that may descri

2.1. Phase Field Theory 

The phase field method (PF method in the following) is generally used to study multiphase systems 

with interfacial dynamics. It allows following the dynamics of the system interfaces inherently co

to all relevant physical and chemical driving fields. In recent years, there has been a growing number 

of articles that apply the PF method on polymer systems, 

polymer melt or a polymer solution (see, fo

that has been developed in our group [20]

the concept of the PF method and describe how it has been applied on polymer systems. Our 

motivation for the model’s development was to introduce a new modeling concept that can be easily 

adapted to different network properties and external conditions. 

The PF method, which is used to describe the non

based on a free energy functional 

of the form: 

where  is the free energy density of the bulk

considers spatial inhomogeneities

standard Ginzburg-Landau free energy

with coefficients  and . An overview over phase field methods and 

in [62]. Usually, one has an extended region in spa

another region in which the phase is absent and 

region of finite width, in which the phase field decreases smoothly. If 

the phase field is described by a Cahn

Here, the flux density is given by

with a variational derivative 

polymer blend,  is often taken as the concentration of one component and the bulk free energy 

density  is the Margules activity from the Flory

noise term  is added to the Cahn

the hydrogel surface has to be traced during the swelling process. Recently, we have developed a phase 

field model, which avoids the precise localization of the phase boundaries and can be easily coupled 

with other phase fields that may describe additional phases in the system. 

The phase field method (PF method in the following) is generally used to study multiphase systems 

with interfacial dynamics. It allows following the dynamics of the system interfaces inherently co

to all relevant physical and chemical driving fields. In recent years, there has been a growing number 

of articles that apply the PF method on polymer systems, i.e., systems in which at least one phase is a 

polymer melt or a polymer solution (see, for example, [57–61]). A phase field model for a hydrogel 

that has been developed in our group [20] is elucidated in detail below. To that end, we first introduce 

the concept of the PF method and describe how it has been applied on polymer systems. Our 

ation for the model’s development was to introduce a new modeling concept that can be easily 

adapted to different network properties and external conditions.  

The PF method, which is used to describe the non-equilibrium dynamics of phase boundaries, is 

. If there is only one phase field variable 

 

is the free energy density of the bulk and usually a double well potential. The second part 

considers spatial inhomogeneities. A simple example of the free energy in 

Landau free energy: 

 

. An overview over phase field methods and their

]. Usually, one has an extended region in space in which the phase field variable is 

another region in which the phase is absent and . Both regions are separated by an interface 

region of finite width, in which the phase field decreases smoothly. If  is conserved, the dynamics of 

eld is described by a Cahn-Hilliard equation [63]: 

 

Here, the flux density is given by: 

 

, and a mobility , which, in general, may depend on 

is often taken as the concentration of one component and the bulk free energy 

is the Margules activity from the Flory-Huggins theory [64,65]. In many cases, a Gaussian 

is added to the Cahn-Hilliard equation so that the equation has 

 

48 

the hydrogel surface has to be traced during the swelling process. Recently, we have developed a phase 

field model, which avoids the precise localization of the phase boundaries and can be easily coupled 

The phase field method (PF method in the following) is generally used to study multiphase systems 

with interfacial dynamics. It allows following the dynamics of the system interfaces inherently coupled 

to all relevant physical and chemical driving fields. In recent years, there has been a growing number 

systems in which at least one phase is a 

]). A phase field model for a hydrogel 

is elucidated in detail below. To that end, we first introduce 

the concept of the PF method and describe how it has been applied on polymer systems. Our 

ation for the model’s development was to introduce a new modeling concept that can be easily 

equilibrium dynamics of phase boundaries, is 

, the free energy is 

(11) 

usually a double well potential. The second part 

. A simple example of the free energy in Equation (11) is the 

(12) 

their applications are given  

ce in which the phase field variable is  and 

. Both regions are separated by an interface 

is conserved, the dynamics of 

(13) 

(14) 

, which, in general, may depend on . In a fluid 

is often taken as the concentration of one component and the bulk free energy 

]. In many cases, a Gaussian 

Hilliard equation so that the equation has a Langevin form: 

(15) 
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Considering a flow velocity 

equation with a noise term [66]: 

The fluid dynamics can be described by a continuity equation and a (advanced) Navier

equation, which is given by: 

where  is the mass density,  is the hydrostatic pressure, 

considers the surface tension from the interfaces [

gravity, while 

leading to viscoelastic behavior [

model [68], which has been used,

viscoelastic droplets [69] and the coalescence of polymer drops and interfaces [

The connection of the Cahn-Hilliard and the Navier

nomenclature of Hohenberg and Halperin [

polymer phase is described as a Newtonian fluid. In principle, all terms on the right hand side (beside 

) can be coupled to the phase field variable 

the composition. The model H has been used to study spinodal decomposition with and without 

external velocity fields and Rayleigh

slightly different Cahn-Hilliard free energy has been used to study the shape of fluid films on a 

dewetting substrate [73].  

The dynamics of non-conserved phase field variables 

equation [74]: 

where  is the mobility coefficient and 

term. In various studies, the Allen

polymer crystals [60,75,76]. In the following example, it is used to characterize the extension of the 

hydrogel [20].  

2.2. Phase Field Model of a Hydrogel

Recently, we have developed a PF model for studying the swelling behavior of a hydrogel 

as the ion concentration in the surrounding is changed

described to demonstrate the concept

the hydrogel is characterized by a phase field variable 

Equation (18), with a free energy [20]

, Equation (15) can be extended to the convective Cahn

 

The fluid dynamics can be described by a continuity equation and a (advanced) Navier

is the hydrostatic pressure,  is the viscous stress tensor

considers the surface tension from the interfaces [59]. The term  represents external forces

 denotes the elastic response of polymers to a flow field, 

leading to viscoelastic behavior [67]. An alternative description of viscoelasticity is the Oldroy

, together with the PF method, to study the 

viscoelastic droplets [69] and the coalescence of polymer drops and interfaces [

Hilliard and the Navier-Stokes equation is called “Model H

nomenclature of Hohenberg and Halperin [71]. In many cases, the  part 

polymer phase is described as a Newtonian fluid. In principle, all terms on the right hand side (beside 

) can be coupled to the phase field variable , as the involved material parameters may depend on 

the composition. The model H has been used to study spinodal decomposition with and without 

external velocity fields and Rayleigh-Taylor instabilities [57,59,72]. The described method with 

Hilliard free energy has been used to study the shape of fluid films on a 

conserved phase field variables  is described by the Allen

 

is the mobility coefficient and  consists again of a bulk free energy density and a gradient 

term. In various studies, the Allen-Cahn equation has been used to investigate the growth of 

76]. In the following example, it is used to characterize the extension of the 

Hydrogel 

Recently, we have developed a PF model for studying the swelling behavior of a hydrogel 

as the ion concentration in the surrounding is changed [20]. In the following, some details are 

described to demonstrate the concept. The system is sketched in Figure

the hydrogel is characterized by a phase field variable . The dynamics of 

energy [20] 

 

49 

can be extended to the convective Cahn-Hilliard 

(16) 

The fluid dynamics can be described by a continuity equation and a (advanced) Navier-Stokes 

 (17) 

is the viscous stress tensor, and  

represents external forces, such as 

denotes the elastic response of polymers to a flow field, 

of viscoelasticity is the Oldroyd-B 

to study the elongation and burst of 

viscoelastic droplets [69] and the coalescence of polymer drops and interfaces [61,70]. 

Stokes equation is called “Model H” in the 

 is neglected so that the 

polymer phase is described as a Newtonian fluid. In principle, all terms on the right hand side (beside 

the involved material parameters may depend on 

the composition. The model H has been used to study spinodal decomposition with and without 

]. The described method with 

Hilliard free energy has been used to study the shape of fluid films on a 

is described by the Allen-Cahn 

(18) 

nsists again of a bulk free energy density and a gradient 

Cahn equation has been used to investigate the growth of  

76]. In the following example, it is used to characterize the extension of the  

Recently, we have developed a PF model for studying the swelling behavior of a hydrogel  

[20]. In the following, some details are 

ure 1. The extension of  

. The dynamics of  is controlled by  

 (19) 
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The second term is a double well potential as used in Landau theory. The second and third term 

provide an interface region of finite width. 

of the mixture, respectively. In alloy systems, the coefficients 

the surface energy and the interface width. For the function 

, and , so that the derivative of the 

region. The term 

 is the osmotic pressure at the initial equilibrium configuration from which the displacement 

measured. The osmotic pressure 

The elastic energy density: 

includes the difference of the first Lamé coefficients in the hydrogel region 

bath region .  

Figure 1. Sketch of a hydrogel

attached to the network, and mobile cations and anions. In the phase field method, all 

system components are represented by continuous field variables. The extension of the 

hydrogel is characterized by a phase field variable

region (light green area). At the interface to the bath, the phase field decreases smoothly to 

 [20].  

The bath solution is assumed to be a shear

mechanical equilibrium for the strain tensor 

With 

defined by: 

The second term is a double well potential as used in Landau theory. The second and third term 

provide an interface region of finite width.  and  are the potential height and the molar volume 

of the mixture, respectively. In alloy systems, the coefficients  and 

the surface energy and the interface width. For the function 

, so that the derivative of the first part of  is only finite in the interface 

 is the difference between the osmotic pressure and 

is the osmotic pressure at the initial equilibrium configuration from which the displacement 

 is defined as [20]: 

 

includes the difference of the first Lamé coefficients in the hydrogel region 

Sketch of a hydrogel system with a polymer network, a surrounding bath, ions 

and mobile cations and anions. In the phase field method, all 

system components are represented by continuous field variables. The extension of the 

by a phase field variable, which is  inside the hydrogel 

region (light green area). At the interface to the bath, the phase field decreases smoothly to 

 

The bath solution is assumed to be a shear-free liquid. Analogously to Equation

mechanical equilibrium for the strain tensor  by an equation: 

 

 and . The concentration of fixed charges is 
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The second term is a double well potential as used in Landau theory. The second and third term 

are the potential height and the molar volume 

 can be extracted from 

 one has , 

is only finite in the interface 

is the difference between the osmotic pressure and , where 

is the osmotic pressure at the initial equilibrium configuration from which the displacement  is 

 (20) 

(21) 

 and in the surrounding 

system with a polymer network, a surrounding bath, ions 

and mobile cations and anions. In the phase field method, all 

system components are represented by continuous field variables. The extension of the 

inside the hydrogel 

region (light green area). At the interface to the bath, the phase field decreases smoothly to 

 

Equation (8), we ensure 

(22) 

. The concentration of fixed charges is 



Chemosensors 2013, 1 

 

 

where  and  are the concentration of fixed ions and the phase field variable at the initial 

equilibrium state. Note that 

of fixed charges is zero inside the bath region while it is a finite constant inside the hyd

The fields , , , , and  are coupled via 

Figure 2. Profiles of the phase field 

ion concentrations (a) 

Science, 289, 2011, 513-521, Phase field model simulations of hydrogel dynamics under 

chemical stimulation, Li, D., Yang, H.L., Emmerich, H.,

2011] with kind permission from Springer Science+Business M

(a) 

In the simulation, a hydrogel with negative fixed ions (

Na+ ( ) and Cl− (

hydrogel is . In the bath, the Na

. The initial values of 

Donnan equilibrium and electric neutrality conditions 

At the boundary of the system, the displacement and the electric potential is kept

the concentration  of mobile ions is continuously changed with time. The time step is chosen to 

be .  

In Figure 2, profiles of the phase field 

(Figure 2a) the gel is strongly swollen and shows a rather quadratic shape, due to the quadratic 

boundary of the simulation cell. At large ion concentration 

region becomes more circular in order to minimize the interface energy. 

 

 

 

 

 

are the concentration of fixed ions and the phase field variable at the initial 

 at all times. In the bath region, the concentration 

of fixed charges is zero inside the bath region while it is a finite constant inside the hyd

are coupled via Equations (19)–(23), which are solved simultaneously. 

Profiles of the phase field  that represents the hydrogel region for boundary 

 and (b)  [Springer, Colloid Polymer 

521, Phase field model simulations of hydrogel dynamics under 

stimulation, Li, D., Yang, H.L., Emmerich, H., Figure 4, © Springer

with kind permission from Springer Science+Business Media B.V. 

 
 (b) 

In the simulation, a hydrogel with negative fixed ions ( ) is studied in a bath solution with 

) ions. At the beginning, the concentration of fixed ions in the 

. In the bath, the Na+ and Cl− ions have a concentration of 

. The initial values of , , and  in the hydrogel region are determined by the 

Donnan equilibrium and electric neutrality conditions  

At the boundary of the system, the displacement and the electric potential is kept

of mobile ions is continuously changed with time. The time step is chosen to 

2, profiles of the phase field  are shown. At low ion concentration 

2a) the gel is strongly swollen and shows a rather quadratic shape, due to the quadratic 

boundary of the simulation cell. At large ion concentration  (Fig

region becomes more circular in order to minimize the interface energy.  
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(23) 

are the concentration of fixed ions and the phase field variable at the initial 

at all times. In the bath region, the concentration 

of fixed charges is zero inside the bath region while it is a finite constant inside the hydrogel region. 

, which are solved simultaneously.  

that represents the hydrogel region for boundary 

[Springer, Colloid Polymer 

521, Phase field model simulations of hydrogel dynamics under 

© Springer-Verlag 

 

 

) is studied in a bath solution with 

the concentration of fixed ions in the 

ions have a concentration of 

in the hydrogel region are determined by the 

 (24) 

At the boundary of the system, the displacement and the electric potential is kept zero, while  

of mobile ions is continuously changed with time. The time step is chosen to  

are shown. At low ion concentration   

2a) the gel is strongly swollen and shows a rather quadratic shape, due to the quadratic 

(Figure 2b) the hydrogel 
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Figure 3. Evolution of the gel fraction with time. In the shown time period, the boundary 

ion concentration is linearly decreased from 

to , and decreased again to 

289, 2011, 513-521, Phase field

stimulation, Li, D., Yang, H.L., Emmerich, H., 

kind permission from Springer Science+Business Media B.V.

Figure 3 demonstrates the swelling, shrinking and swelling dynamics of the hydrogel as the boundary

ion concentration is decreased to 

step 163,500), and decreased again to the initial value. The gel fraction follows the

boundary ion concentration with a short delay, which is too small to be visible in Fig

investigated in the numerical study [

shrinking with increasing ion concentr

experiments, in which the pH is kept constant and the ion concentration is varied [

Our new phase field model is an alternative approach for studying the dynamics of hydrogel 

swelling induced by the ion concentration of the bath. With the chosen decrease or increase rate 

 for the boundary ion concentration, the hydrogel swells and shrinks without 

significant hysteresis. The method goes without explicit boundary conditions at the hydrogel

and can be easily adapted to other hydrogel systems. For example, one can study a hydrogel shell that 

includes an active agent. Then, a concentration field of drug molecules can be added to the given 

model in order to study the drug release kineti

3. Self-Consistent Field Theory  

The macroscopic theories of polymer networks depend on phenomenological, constitutive 

equations. Microscopic aspects of the polymer system can be studied with molecular simulations but 

they are restricted to small time and length scales. An alternative method for polymer modeling is the 

self-consistent field theory. Here, polymers are represented by continuous lines. They interact by steric 

and attractive interactions, where the latter is weighted by the Flory parameter.

account the connectivity of polymer chains, the fact that two spatially separated monomers are much 

more correlated if they belong to the same polymer. For the given model system, the theory starts from 

Evolution of the gel fraction with time. In the shown time period, the boundary 

ion concentration is linearly decreased from  to 

, and decreased again to  [Springer, Colloid Polymer Science, 

521, Phase field model simulations of hydrogel dynamics under 

stimulation, Li, D., Yang, H.L., Emmerich, H., Figure 7, © Springer-Verlag 2011

kind permission from Springer Science+Business Media B.V. 

 
 

3 demonstrates the swelling, shrinking and swelling dynamics of the hydrogel as the boundary

 (time step 54,000), increased to 

and decreased again to the initial value. The gel fraction follows the

boundary ion concentration with a short delay, which is too small to be visible in Fig

investigated in the numerical study [20]. In general, the equilibrium gel volume is monotonously 

shrinking with increasing ion concentration in the bath. The result is in qualitative agreement with 

experiments, in which the pH is kept constant and the ion concentration is varied [

Our new phase field model is an alternative approach for studying the dynamics of hydrogel 

duced by the ion concentration of the bath. With the chosen decrease or increase rate 

for the boundary ion concentration, the hydrogel swells and shrinks without 

significant hysteresis. The method goes without explicit boundary conditions at the hydrogel

and can be easily adapted to other hydrogel systems. For example, one can study a hydrogel shell that 

includes an active agent. Then, a concentration field of drug molecules can be added to the given 

model in order to study the drug release kinetics. 

 

The macroscopic theories of polymer networks depend on phenomenological, constitutive 

equations. Microscopic aspects of the polymer system can be studied with molecular simulations but 

and length scales. An alternative method for polymer modeling is the 

consistent field theory. Here, polymers are represented by continuous lines. They interact by steric 

and attractive interactions, where the latter is weighted by the Flory parameter.

account the connectivity of polymer chains, the fact that two spatially separated monomers are much 

more correlated if they belong to the same polymer. For the given model system, the theory starts from 
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Evolution of the gel fraction with time. In the shown time period, the boundary 

, then increased 

[Springer, Colloid Polymer Science, 

model simulations of hydrogel dynamics under chemical 

Verlag 2011] with 

3 demonstrates the swelling, shrinking and swelling dynamics of the hydrogel as the boundary 

(time step 54,000), increased to  (time 

and decreased again to the initial value. The gel fraction follows the changes of the 

boundary ion concentration with a short delay, which is too small to be visible in Figure 2 but has been 

]. In general, the equilibrium gel volume is monotonously 

ation in the bath. The result is in qualitative agreement with 

experiments, in which the pH is kept constant and the ion concentration is varied [35,77]. 

Our new phase field model is an alternative approach for studying the dynamics of hydrogel 

duced by the ion concentration of the bath. With the chosen decrease or increase rate 

for the boundary ion concentration, the hydrogel swells and shrinks without 

significant hysteresis. The method goes without explicit boundary conditions at the hydrogel surface 

and can be easily adapted to other hydrogel systems. For example, one can study a hydrogel shell that 

includes an active agent. Then, a concentration field of drug molecules can be added to the given 

The macroscopic theories of polymer networks depend on phenomenological, constitutive 

equations. Microscopic aspects of the polymer system can be studied with molecular simulations but 

and length scales. An alternative method for polymer modeling is the 

consistent field theory. Here, polymers are represented by continuous lines. They interact by steric 

and attractive interactions, where the latter is weighted by the Flory parameter. The method takes into 

account the connectivity of polymer chains, the fact that two spatially separated monomers are much 

more correlated if they belong to the same polymer. For the given model system, the theory starts from 
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an exact partition function. Then, the equilibrium properties are typically determined with the help of a 

saddle-point approximation. The self

and Helfand [78,79], is a well-established method for polymer chains without 

Polymer networks with permanent random crosslinks 

theory [85–87], but the application of the method in numerical studies is difficult, since the fields are 

defined in the replica space. Recently, 

which allows studying smart polymer networks with reversible crosslinks [

application of the method for a blend of reversibly crosslinked 

and B homopolymers, is described. The monomers 

that the correspnding homopolymers would demix macroscopically in the absence of the 

copolymers. In the AB + A + 

crosslinks, the system has been studied in detail theoretically [

Many aspects of the model can be transferred to other systems with amphiphilic 

dissolved in a mixture of incompatib

non-covalent crosslinks, as in [92]. 

The model system resembles an incompressible polymer blend with a constant overall density 

and three types of polymers 

monomers and a length , (ii) 

polymers of type , which are symmetric diblock copolymers 

system stoichiometry is determined by th

and the relative A fraction of homopolymers

We use paths  with 

All chains have a Gaussian shape distribution 

 that can be divided into the density 

from the A part of the copolymers. Analogously, one has 

B monomers.  

Without crosslinks, the partition function of the 

with path integrals  over all configurations of the 

useful mathematical tools. They can be considered as the

integral that considers all configurations

L/N. In practice, most path integrals cannot be solved numerically. One exception is the path integral of a 

single Gaussian chain. The basic idea of the self

such that only path integrals of single Gaussian chains have to be solved. In 

interactions between polymers are considered by

hen, the equilibrium properties are typically determined with the help of a 

point approximation. The self-consistent field theory, which has been introduced by Edwards 

established method for polymer chains without 

Polymer networks with permanent random crosslinks have been studied with a replica field 

], but the application of the method in numerical studies is difficult, since the fields are 

defined in the replica space. Recently, we have developed an extended self-

which allows studying smart polymer networks with reversible crosslinks [21–

application of the method for a blend of reversibly crosslinked ABdiblock copolymers

is described. The monomers A and B are assumed to have a low compatibility so 

that the correspnding homopolymers would demix macroscopically in the absence of the 

+ B mixture, various nanostructures may form. Without reversible 

the system has been studied in detail theoretically [81,88,89] and experimentally [

Many aspects of the model can be transferred to other systems with amphiphilic 

dissolved in a mixture of incompatible solvents. We assume that the AB copolymers can bind with 

].  

The model system resembles an incompressible polymer blend with a constant overall density 

. The system consists of (i)  homopolymers of type 

 homopolymers of type b with B monomers and a length 

which are symmetric diblock copolymers AB that have a length of 

system stoichiometry is determined by the volume fraction of copolymers: 

 

fraction of homopolymers: 

     

 to parametrize the configuration of the 

All chains have a Gaussian shape distribution . A and B monomers have a local density 

that can be divided into the density  from type  homopolymers and the density 

part of the copolymers. Analogously, one has 

Without crosslinks, the partition function of the system is given by: 

 

over all configurations of the th polymer of type 

useful mathematical tools. They can be considered as the limit for 

integral that considers all configurations of a polymer with fixed length L and 

. In practice, most path integrals cannot be solved numerically. One exception is the path integral of a 

single Gaussian chain. The basic idea of the self-consistent field theory is to transform 

such that only path integrals of single Gaussian chains have to be solved. In Eq

interactions between polymers are considered by:  

53 

hen, the equilibrium properties are typically determined with the help of a 

consistent field theory, which has been introduced by Edwards 

established method for polymer chains without crosslinks [80–84]. 

been studied with a replica field  

], but the application of the method in numerical studies is difficult, since the fields are 

-consistent field theory, 

–23]. In Section 2.1, an 

diblock copolymers, mixed with A 

are assumed to have a low compatibility so 

that the correspnding homopolymers would demix macroscopically in the absence of the AB 

orm. Without reversible 

] and experimentally [90,91]. 

Many aspects of the model can be transferred to other systems with amphiphilic AB copolymers 

copolymers can bind with 

The model system resembles an incompressible polymer blend with a constant overall density  

homopolymers of type  with A 

monomers and a length , (iii)  

that have a length of . The 

(25) 

   (26) 

to parametrize the configuration of the th polymer of type . 

monomers have a local density 

homopolymers and the density  

 for the density of  

(27) 

th polymer of type . Path integrals are 

 of a 3N-dimensional 

and N atoms of diameter 

. In practice, most path integrals cannot be solved numerically. One exception is the path integral of a 

consistent field theory is to transform Equation (27) 

Equation (27), non-bonded 
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The Flory-Huggins interaction in the exponent includes a Flory parameter 

considers the incompressibility of the polymer blend. So far, the ansatz corresponds to that of Edwards 

and Helfand [78,79]. We have developed an extended model, which considers the formation of reversible

crosslinks. The result is the first self

The method is described in detail in [21]. In the following, we explain the basic concept. 

Self-Consistent Field Theory for Reversibly Crosslinked Polymer Networks

We apply our extended self-consistent field theory on an 

reversible crosslinks between the copolymers. We assume that crosslinks between adjacent monomer 

pairs A + A, A + B, or B + B form with a probability proportional to 

respectively. Here,  is the crosslink strength and 

types of the crosslinked monomers.

Setting , we use the crosslink strength 

to specify the crosslink properties. For convenience, the crosslink strength is represented by the 

parameter . 

With the help of the Hubbard-Stratonovich (HS) transformation a free energy can be derived, which 

can be solved with a saddle-point approximation. We present the resulting free energy expression with 

dimensionless quantities, indicated by a tilde. Dimensionless lengths are defined as 

gyration radius  of a free Gaussian polymer of length 
, while we use dimensionless free energies of the form 

system with  dimensions. We use 

field free energy can be divided into thr

with a Flory-Huggins part: 

a crosslink contribution:  

and a free energy term:  

which considers the entropy of the incompressible polymer blend for given average monomer densities. 

The auxiliary fields  and 

transformation. The quantity 

fluctuating in the auxiliary fields (see [

 

Huggins interaction in the exponent includes a Flory parameter 

considers the incompressibility of the polymer blend. So far, the ansatz corresponds to that of Edwards 

79]. We have developed an extended model, which considers the formation of reversible

first self-consistent field theory for reversibly crosslinked polymer networks. 

The method is described in detail in [21]. In the following, we explain the basic concept. 

Consistent Field Theory for Reversibly Crosslinked Polymer Networks 

consistent field theory on an AB + A + B polymer blend that may form 

reversible crosslinks between the copolymers. We assume that crosslinks between adjacent monomer 

form with a probability proportional to 

is the crosslink strength and  and  are weighting factors, considering the 

of the crosslinked monomers. The partition function can then be written as [

, we use the crosslink strength  and the crosslink asymmetry 

to specify the crosslink properties. For convenience, the crosslink strength is represented by the 

Stratonovich (HS) transformation a free energy can be derived, which 

point approximation. We present the resulting free energy expression with 

dimensionless quantities, indicated by a tilde. Dimensionless lengths are defined as 

of a free Gaussian polymer of length . Dimensionless d
, while we use dimensionless free energies of the form 

dimensions. We use  for the crosslink strength. The dimensionless mean 

field free energy can be divided into three terms [21]: 

 

 

 

which considers the entropy of the incompressible polymer blend for given average monomer densities. 

 with  and  are introduced in the HS 

 is the partition function of a single polymer chain of type 

fluctuating in the auxiliary fields (see [20]). It can be calculated numerically by solving modified 

54 

(28) 

Huggins interaction in the exponent includes a Flory parameter . The delta function 

considers the incompressibility of the polymer blend. So far, the ansatz corresponds to that of Edwards 

79]. We have developed an extended model, which considers the formation of reversible 

crosslinked polymer networks. 

The method is described in detail in [21]. In the following, we explain the basic concept.  

polymer blend that may form 

reversible crosslinks between the copolymers. We assume that crosslinks between adjacent monomer 

, , or , 

are weighting factors, considering the 

partition function can then be written as [21–23]: 

 (29) 

and the crosslink asymmetry  

to specify the crosslink properties. For convenience, the crosslink strength is represented by the 

Stratonovich (HS) transformation a free energy can be derived, which 

point approximation. We present the resulting free energy expression with 

dimensionless quantities, indicated by a tilde. Dimensionless lengths are defined as  with the 

. Dimensionless densities are given by 
 for a 

for the crosslink strength. The dimensionless mean 

(30) 

(31) 

(32) 

  (33) 

which considers the entropy of the incompressible polymer blend for given average monomer densities. 

are introduced in the HS 

is the partition function of a single polymer chain of type  

]). It can be calculated numerically by solving modified 
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diffusion equations. In the saddle p

the desired monomer densities 

energy with respect to , 

The method has been used to calculate a phase diagram as a function of the relative adhesion 

strength , the crosslink asymmetry 

investigated system has homopolymers of lengths 

 and a volume fraction 

can form a lamellar phase or a hexagonal phase

monomer densitities in Figure 4. The phase diagram has been determined by study

box length ratio of . The geometry supports the formation of a hexagonal as well as a 

lamellar phase. We have varied 

lowest free energy density. We find that for 

stable. Otherwise, the hexagonal phase is stable if 

phase boundaries between the hexagonal and the lamellar phase are shown for various 

the homopolymers in the range of 

The self-consistent field theory study shows that the reversibly crosslinked polymer network in an 

 blend switches from the hexagonal phase to the lamellar phase and back if 

the stoichiometry of the system or the crosslink properties are changed. The latter switching method can 

be achieved with crosslinks that depend on external parameters

illumination [3]. Note that in the hexagonal structure, the minority pha

domains, while in the lamellar phase the stripes are extended on a large length scale. This may be used 

for drug release applications. 

Figure 4. Nanostructures formed by a polymer blend of A and B homopolymers and 

reversibly crosslinked AB block copolymers. Shown are sketches of (

and (b) the lamellar phase. Blue and yellow lines represent 

copolymers, yellow circles denote crosslinkers. A and B homopolymer densities are 

indicated by the light blue and yellow background colors. Results of self

theory calculations for the monomer density 

structure [22]. Figure (a) and (

Emmerich: Phase behavior of polymer bl

field theory study. Journal of Material Research;

preparation, doi:10.1557/jmr.2013.315

(a) 

diffusion equations. In the saddle point approximation, the auxiliary fields 

 can be determined by considering that the variations of the free 

, and  must vanish. An algorithm is described in [

s been used to calculate a phase diagram as a function of the relative adhesion 

, the crosslink asymmetry , and the relative  fraction of homopolymers The 

investigated system has homopolymers of lengths  with 

and a volume fraction  of copolymers. In the studied parameter range, the system 

can form a lamellar phase or a hexagonal phase, as shown in the sketches and the calculated 

4. The phase diagram has been determined by study

. The geometry supports the formation of a hexagonal as well as a 

 in the range of  and determined the phase with the 

We find that for  and , only lam

stable. Otherwise, the hexagonal phase is stable if  and  are suitably small. In Fig

phase boundaries between the hexagonal and the lamellar phase are shown for various 

.  

consistent field theory study shows that the reversibly crosslinked polymer network in an 

blend switches from the hexagonal phase to the lamellar phase and back if 

of the system or the crosslink properties are changed. The latter switching method can 

achieved with crosslinks that depend on external parameters, such as 

Note that in the hexagonal structure, the minority phase is separated into small 

domains, while in the lamellar phase the stripes are extended on a large length scale. This may be used 

Nanostructures formed by a polymer blend of A and B homopolymers and 

slinked AB block copolymers. Shown are sketches of (a) the hexagonal phase 

) the lamellar phase. Blue and yellow lines represent the A and B parts of the 

yellow circles denote crosslinkers. A and B homopolymer densities are 

he light blue and yellow background colors. Results of self

theory calculations for the monomer density  in (c) a hexagonal, and (

) and (b) reproduced with permission from Thomas Gruhn

Phase behavior of polymer blends with reversible crosslinks–

Journal of Material Research; Materials Research Society, 

10.1557/jmr.2013.315.  

 
(b) 
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 and  and, finally, 

can be determined by considering that the variations of the free 

must vanish. An algorithm is described in [21]. 

s been used to calculate a phase diagram as a function of the relative adhesion 

fraction of homopolymers The 

, a Flory parameter of 

of copolymers. In the studied parameter range, the system 

as shown in the sketches and the calculated  

4. The phase diagram has been determined by studying unit cells with a 

. The geometry supports the formation of a hexagonal as well as a 

and determined the phase with the 

, only lamellar structures are 

are suitably small. In Figure 5, the 

phase boundaries between the hexagonal and the lamellar phase are shown for various  fractions of 

consistent field theory study shows that the reversibly crosslinked polymer network in an 

blend switches from the hexagonal phase to the lamellar phase and back if  

of the system or the crosslink properties are changed. The latter switching method can 

such as the temperature [2] or  

se is separated into small 

domains, while in the lamellar phase the stripes are extended on a large length scale. This may be used 

Nanostructures formed by a polymer blend of A and B homopolymers and 

) the hexagonal phase 

A and B parts of the 

yellow circles denote crosslinkers. A and B homopolymer densities are 

he light blue and yellow background colors. Results of self-consistent field 

and (d) a lamellar 

with permission from Thomas Gruhn, Heike 

–A self-consistent 

Materials Research Society, in 
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(c) 

Figure 5. Phase diagram of the 

phase boundaries between the hexagonal phase on the inside (small 

phase on the outside. Phase boundaries are shown for 

(red),  (green), 

Reproduced with permission from Thomas Gruhn, Heike Emmerich

polymer blends with reversible crosslinks

Material Research; Materials Research Society, 

4. Monte Carlo and Molecular D

Properties of polymer networks can be studied on a microscopic level with the help of 

simulations and molecular dynamic simulations, in which molecular details of the system can be 

investigated explicitly. Detailed descriptions of molecular simulation techniques can be found in [

and [94]. Special simulation methods for polym

Carlo (MC) simulations, small changes of the molecule configurations are performed randomly at each 

step and the new configuration is accepted with a probability depending on the energy change. The 

acceptance criterion produces a sequence of configurations with a Boltzmann distribution. Other 

ensembles, such as a grand-canonical ensemble or a constant

allowing changes of system parameters like the number of molecules or

molecular dynamics (MD) simulations, the positions and velocities of the atoms are obtained from 

equations of motion that depend on external and interatomic forces. The method allows direct 

investigation of the dynamical prope

dynamic simulations that include a random noise term and diffusive particle dynamic (DPD) 

Figure 4. Cont 

 
(d) 

Phase diagram of the AB + A + B polymer blend: The colored curves denote the 

phase boundaries between the hexagonal phase on the inside (small 

phase on the outside. Phase boundaries are shown for  (dark blue), 

 (brown),  (magenta), 

Reproduced with permission from Thomas Gruhn, Heike Emmerich: Phase behavior of 

ends with reversible crosslinks–A self-consistent field theory study

Material Research; Materials Research Society, in preparation, doi:10.1557/jmr.2013.315

 

Dynamic Simulations of Polymer Networks 

Properties of polymer networks can be studied on a microscopic level with the help of 

simulations and molecular dynamic simulations, in which molecular details of the system can be 

investigated explicitly. Detailed descriptions of molecular simulation techniques can be found in [

]. Special simulation methods for polymer systems are described in [95

Carlo (MC) simulations, small changes of the molecule configurations are performed randomly at each 

step and the new configuration is accepted with a probability depending on the energy change. The 

tance criterion produces a sequence of configurations with a Boltzmann distribution. Other 

canonical ensemble or a constant-pressure ensemble can be sampled by 

changes of system parameters like the number of molecules or the volume of the system. In 

molecular dynamics (MD) simulations, the positions and velocities of the atoms are obtained from 

equations of motion that depend on external and interatomic forces. The method allows direct 

investigation of the dynamical properties of the system. Similar simulation techniques are Brownian 

dynamic simulations that include a random noise term and diffusive particle dynamic (DPD) 
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polymer blend: The colored curves denote the 

) and the lamellar 

(dark blue),  

 (cyan) [22]. 

Phase behavior of 

consistent field theory study, Journal of 

10.1557/jmr.2013.315.  

 

Properties of polymer networks can be studied on a microscopic level with the help of Monte Carlo 

simulations and molecular dynamic simulations, in which molecular details of the system can be 

investigated explicitly. Detailed descriptions of molecular simulation techniques can be found in [93] 

in [95]. In canonical Monte 

Carlo (MC) simulations, small changes of the molecule configurations are performed randomly at each 

step and the new configuration is accepted with a probability depending on the energy change. The 

tance criterion produces a sequence of configurations with a Boltzmann distribution. Other 

pressure ensemble can be sampled by 

the volume of the system. In 

molecular dynamics (MD) simulations, the positions and velocities of the atoms are obtained from 

equations of motion that depend on external and interatomic forces. The method allows direct 

rties of the system. Similar simulation techniques are Brownian 

dynamic simulations that include a random noise term and diffusive particle dynamic (DPD) 
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simulations, in which the dynamics of interpenetrating spheres resemble the flow behavior of different

species in the system (see [93,94

colloids from stimuli-responsive microgel capsules [

studied with Brownian dynamics [97]. Compared to field

details but are restricted to much smaller time and length scales. In multiscale simulations, material 

parameters obtained in molecular simulations are used in field

on larger scales.  

Atomistic simulations of polymers are very time consuming. Consequently, only a few atomistic 

simulations of polymer networks have been performed [98

reactions in epoxy networks, atomistic simulations

simulation effort can be reduced by using a coarse

In this case, a polymer is approximated by a chain of beads, where each bead represents a monomer or

a sequence of neighboring monomers. A model potential for a polymer chain is often composed of a 

bond length potential , which depends on the distance of neighboring beads, a bending potential 

, which considers the angle between neighboring bond vectors

torsion of the polymer chain. Then, the potential energy of a linear polymer with 

where  is the distance vector between the centers of mass of neighbor atoms 

angle between and , while 

. This type of potentials has been used in Gibbs ensemble MD simulations o

polymer networks [104]. In a more coarse

that is distinctly longer than the persistence length of the polymer. In this case, the angular dependent 

parts of the polymer potential can be neglected. The remaining bond length potential is typically 

modeled by a harmonic spring or a

The resulting chains are rather flexible and can be used to represent suitably long polymers on the 

respective length scale. If the persistence length is comparable with the polymer length, which is often 

the case for short biopolymers, a wormlike chain

bond-length and the bending potential but neglects the torsion [

polymers, one can also neglect the bending and bond

polymer by a rigid rod. While this approach neglects many internal degrees of freedom, it enables very 

efficient sampling of the configuration space. 

simulations, using the example of our filament network simulations 

Monte Carlo Simulation of Filament 

We have used this method by studying a system of rigid filaments that can form filament networks 

with the help of reversibly binding crosslinkers [

short actin biopolymers and myosin crosslinkers. The system can form various structures

dissolved actin filaments, separated bundles of actin filaments

bundle structures. In living cells, the filament network is a dynamic system. Using ATP, the actin 

simulations, in which the dynamics of interpenetrating spheres resemble the flow behavior of different

94]). DPD simulations have been used to investigate the release of 

responsive microgel capsules [96]. Polyelectrolytes in electric fields have been 

dynamics [97]. Compared to field theories, molecular simulations provide more 

to much smaller time and length scales. In multiscale simulations, material 

parameters obtained in molecular simulations are used in field-based or other coarse

Atomistic simulations of polymers are very time consuming. Consequently, only a few atomistic 

simulations of polymer networks have been performed [98–101]. In a multiscale simulation of curing 

reactions in epoxy networks, atomistic simulations have been combined with DPD simulations [102]. The 

simulation effort can be reduced by using a coarse-grained model, such as the united atom model [103].

In this case, a polymer is approximated by a chain of beads, where each bead represents a monomer or

a sequence of neighboring monomers. A model potential for a polymer chain is often composed of a 

, which depends on the distance of neighboring beads, a bending potential 

, which considers the angle between neighboring bond vectors, and a potential 

torsion of the polymer chain. Then, the potential energy of a linear polymer with 

is the distance vector between the centers of mass of neighbor atoms 

, while  is the angle between the vectors 

. This type of potentials has been used in Gibbs ensemble MD simulations o

]. In a more coarse-grained approach, each bead can represent a chain sequence 

ly longer than the persistence length of the polymer. In this case, the angular dependent 

parts of the polymer potential can be neglected. The remaining bond length potential is typically 

modeled by a harmonic spring or a finitely extensible nonlinear elastic (FENE) 

The resulting chains are rather flexible and can be used to represent suitably long polymers on the 

respective length scale. If the persistence length is comparable with the polymer length, which is often 

the case for short biopolymers, a wormlike chain model is frequently used, which includes the 

length and the bending potential but neglects the torsion [108,109]. In the case of very stiff 

polymers, one can also neglect the bending and bond-length fluctuations and represent the whole 

rigid rod. While this approach neglects many internal degrees of freedom, it enables very 

efficient sampling of the configuration space. We elucidate the method and facilities of rigid rod 

our filament network simulations [24,25]. 

ilament Networks with Reversibly Binding Crosslinkers

We have used this method by studying a system of rigid filaments that can form filament networks 

with the help of reversibly binding crosslinkers [24]. One example for such systems are mixtures of 

short actin biopolymers and myosin crosslinkers. The system can form various structures

dissolved actin filaments, separated bundles of actin filaments, and filament networks with and without 

ving cells, the filament network is a dynamic system. Using ATP, the actin 
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simulations, in which the dynamics of interpenetrating spheres resemble the flow behavior of different 

]). DPD simulations have been used to investigate the release of 

]. Polyelectrolytes in electric fields have been 

theories, molecular simulations provide more 

to much smaller time and length scales. In multiscale simulations, material 

based or other coarse-grained methods 

Atomistic simulations of polymers are very time consuming. Consequently, only a few atomistic 

101]. In a multiscale simulation of curing 

have been combined with DPD simulations [102]. The 

the united atom model [103].  

In this case, a polymer is approximated by a chain of beads, where each bead represents a monomer or 

a sequence of neighboring monomers. A model potential for a polymer chain is often composed of a 

, which depends on the distance of neighboring beads, a bending potential 

, and a potential  for the local 

torsion of the polymer chain. Then, the potential energy of a linear polymer with  beads is given by:  

 (34) 

is the distance vector between the centers of mass of neighbor atoms  and ,  is the 

is the angle between the vectors  and 

. This type of potentials has been used in Gibbs ensemble MD simulations of swelling 

grained approach, each bead can represent a chain sequence 

ly longer than the persistence length of the polymer. In this case, the angular dependent 

parts of the polymer potential can be neglected. The remaining bond length potential is typically 

(FENE) potential [105–107]. 

The resulting chains are rather flexible and can be used to represent suitably long polymers on the 

respective length scale. If the persistence length is comparable with the polymer length, which is often 

model is frequently used, which includes the  

]. In the case of very stiff 

length fluctuations and represent the whole 

rigid rod. While this approach neglects many internal degrees of freedom, it enables very 

the method and facilities of rigid rod 

rosslinkers 

We have used this method by studying a system of rigid filaments that can form filament networks 

r such systems are mixtures of 

short actin biopolymers and myosin crosslinkers. The system can form various structures, such as 

and filament networks with and without 

ving cells, the filament network is a dynamic system. Using ATP, the actin 
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polymers can change their length and the myosin crosslinkers can perform directed walks along the 

actin filaments. In vitro, in the absence of ATP, the system is passivated and the 

fixed length. Filaments with lengths in the range of the persistence length can be created with the help of 

suitable proteins. The resulting biomimetic hydrogels are of great interest 

the structure of the network depends sensitively on the filament density, the crosslinker

and the temperature, and can be altered reversibly, by mechanical, chemical

We have studied the system with the help of Monte Carlo simulations. The filaments are 

represented by long hard spherocylinders, while the crosslinkers are modeled by short spherocylinders 

with specifically binding ends. A snapsho

have a diameter D and the cylindrical part has a length of 

crosslinkers, respectively. The configuration of a

a unit vector  that is parallel to the cylinder axis. Steric interactions between spherocylinders 

are considered by a potential 

Each crosslinker, , has adhesive sites at the both ends, with which it can physically bind to a

neighboring filament, . The definition of the adhesion potential is based on the shortest distances 

between the axis of filament, , and the adhesive sites of the crosslinker

with . The centers of the adhesive sites are localized on the 

away from the crosslinker’s center of mass. We use 

sites lie inside the hemispheres of the crosslinkers. 

The adhesion is mimicked by a square

where  is the potential depth. The condition 

filaments (which have a monodisperse length distribution). With a potential range 

crosslinker can only bind to the filament if the surface of the spherocylinders ar

and if the crosslinker axis is almost perpendicular to the filament surface. The total energy is given by

The filament hydrogel is modeled with the help of a Metropolis algorithm. At each step, position 

and/or orientation of a filament or a crosslinker is changed randomly by a small amount

configuration is accepted with a probability 

change of the configurational energy. 

In the simulations, we have studied the occurrence of filament bundles and the pe

of the system. A cluster is defined as a set of filaments that are interconnected by crosslinker bonds. 

A filament bundle is a cluster in which the filaments are suitably well aligned. We have analyzed the 

average structure of the filament hydrogel in phase diagrams as a function of the filament volume 

fraction , the crosslinker-filament ratio 

which more than  of the filaments are part of a bundle, is called the 

polymers can change their length and the myosin crosslinkers can perform directed walks along the 

, in the absence of ATP, the system is passivated and the 

fixed length. Filaments with lengths in the range of the persistence length can be created with the help of 

suitable proteins. The resulting biomimetic hydrogels are of great interest as they are biocompatible and 

network depends sensitively on the filament density, the crosslinker

and the temperature, and can be altered reversibly, by mechanical, chemical, or temperature stimuli.

We have studied the system with the help of Monte Carlo simulations. The filaments are 

represented by long hard spherocylinders, while the crosslinkers are modeled by short spherocylinders 

with specifically binding ends. A snapshot of the system is given in Figure 6a. The spherocylinders 

and the cylindrical part has a length of  and 

crosslinkers, respectively. The configuration of a filament  is determined by the center of mass 

o the cylinder axis. Steric interactions between spherocylinders 

 that gets infinite if the two spherocylinders overlap. 

has adhesive sites at the both ends, with which it can physically bind to a

. The definition of the adhesion potential is based on the shortest distances 

and the adhesive sites of the crosslinker, : 

   

. The centers of the adhesive sites are localized on the crosslinker axis a distance 

away from the crosslinker’s center of mass. We use  and 

sites lie inside the hemispheres of the crosslinkers.  

The adhesion is mimicked by a square-well potential:  

 

is the potential depth. The condition  denotes that crosslinkers can only adhere to 

filaments (which have a monodisperse length distribution). With a potential range 

crosslinker can only bind to the filament if the surface of the spherocylinders ar

and if the crosslinker axis is almost perpendicular to the filament surface. The total energy is given by

The filament hydrogel is modeled with the help of a Metropolis algorithm. At each step, position 

ment or a crosslinker is changed randomly by a small amount

configuration is accepted with a probability 

change of the configurational energy.  

In the simulations, we have studied the occurrence of filament bundles and the pe

of the system. A cluster is defined as a set of filaments that are interconnected by crosslinker bonds. 

A filament bundle is a cluster in which the filaments are suitably well aligned. We have analyzed the 

ent hydrogel in phase diagrams as a function of the filament volume 

filament ratio , and the adhesion strength . The phase diagram region, in 

of the filaments are part of a bundle, is called the bundle region

58 

polymers can change their length and the myosin crosslinkers can perform directed walks along the 

, in the absence of ATP, the system is passivated and the actin polymers have a 

fixed length. Filaments with lengths in the range of the persistence length can be created with the help of 

they are biocompatible and 

network depends sensitively on the filament density, the crosslinker-filament ratio, 

or temperature stimuli. 

We have studied the system with the help of Monte Carlo simulations. The filaments are 

represented by long hard spherocylinders, while the crosslinkers are modeled by short spherocylinders 

6a. The spherocylinders 

 for filaments and 

is determined by the center of mass  and 

o the cylinder axis. Steric interactions between spherocylinders  and  

that gets infinite if the two spherocylinders overlap. 

has adhesive sites at the both ends, with which it can physically bind to a 

. The definition of the adhesion potential is based on the shortest distances 

   (35) 

crosslinker axis a distance  

, so that the adhesion 

(36) 

denotes that crosslinkers can only adhere to 

filaments (which have a monodisperse length distribution). With a potential range  the 

crosslinker can only bind to the filament if the surface of the spherocylinders are closer than  

and if the crosslinker axis is almost perpendicular to the filament surface. The total energy is given by:  

 (37) 

The filament hydrogel is modeled with the help of a Metropolis algorithm. At each step, position 

ment or a crosslinker is changed randomly by a small amount, and the new 

, where  is the 

In the simulations, we have studied the occurrence of filament bundles and the percolation behavior 

of the system. A cluster is defined as a set of filaments that are interconnected by crosslinker bonds.  

A filament bundle is a cluster in which the filaments are suitably well aligned. We have analyzed the 

ent hydrogel in phase diagrams as a function of the filament volume 

The phase diagram region, in 

bundle region. The percolation 
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threshold is determined by studying the cluster size distribution 

largest cluster : At the percolation threshold, the fraction 

of the form  with the Fisher e

at the percolation threshold. In Fig

adhesion strength  and the filament volume fraction 

A percolated network forms if the filament volume fraction and the adhesion strength are large 

enough. This means, that a percolated network can be created and destroyed, reversibly, by changing 

the hydrogel volume or the temperature. Furthermore, the system fo

filament volume fractions. This can be explained as follows: The system favors crosslinkers that are 

bound to filaments on both ends. Parallel filaments can be interconnected by a large number of 

crosslinks forming a ladder-like structure. At low filament concentrations, only aligned groups of 

filaments make it possible that large numbers of crosslinkers can bind on both ends. At high filament 

concentrations, crosslinkers can bind on both ends, even if the filament network is di

phase diagram shows that percolated network may form with and without pronounced bundling and 

bundling can form with and without the formation of a percolated network. 

The network and bundle formation can also be induced by increasing the cr

Another interesting aspect is the dependence of the percolation threshold on the filament length [

Interestingly, we found that for a given crosslinker

fraction, the binding strength  at which percolation sets in, is rather independent of the filament 

length that has been varied in the range between 

reproduced qualitatively with a simple analytic model. Note

given at a fixed ratio  of filament to crosslink number density. In practice, the ratio 

to filament monomers can be more important. For suitably large filament lengths one has 

so that the percolation threshold is independent of the filament length if 

Figure 6. Model network with stiff filaments (blue) and short crosslinkers (yellow) with 

adhesive ends (red), studied with Monte Carlo simulations. (

structure. (b) Phase diagram as a function of the adhesion strength over temperature 

the filament volume fraction 

Matter, 2009, 5, 1504)—Reproduced 

(a) 

 

threshold is determined by studying the cluster size distribution  and the fraction of filaments in the 

: At the percolation threshold, the fraction  of clusters containing 

with the Fisher exponent . For a sufficiently large system, one has 

In Figure 6a, phase diagram of the system is shown as a function of the 

and the filament volume fraction  for fixed crosslinker

colated network forms if the filament volume fraction and the adhesion strength are large 

enough. This means, that a percolated network can be created and destroyed, reversibly, by changing 

the hydrogel volume or the temperature. Furthermore, the system forms bundles for suitably low 

filament volume fractions. This can be explained as follows: The system favors crosslinkers that are 

bound to filaments on both ends. Parallel filaments can be interconnected by a large number of 

e structure. At low filament concentrations, only aligned groups of 

filaments make it possible that large numbers of crosslinkers can bind on both ends. At high filament 

concentrations, crosslinkers can bind on both ends, even if the filament network is di

phase diagram shows that percolated network may form with and without pronounced bundling and 

bundling can form with and without the formation of a percolated network.  

The network and bundle formation can also be induced by increasing the cr

Another interesting aspect is the dependence of the percolation threshold on the filament length [

Interestingly, we found that for a given crosslinker-filament ratio  and a fixed filament volume 

at which percolation sets in, is rather independent of the filament 

length that has been varied in the range between  and 

reproduced qualitatively with a simple analytic model. Note, that the independence of the length is 

of filament to crosslink number density. In practice, the ratio 

to filament monomers can be more important. For suitably large filament lengths one has 

tion threshold is independent of the filament length if  is kept fixed. 

Model network with stiff filaments (blue) and short crosslinkers (yellow) with 

adhesive ends (red), studied with Monte Carlo simulations. (a) Snapshot of a network 

) Phase diagram as a function of the adhesion strength over temperature 

the filament volume fraction . Figures from (R. Chelakkot, R. Lipowsky and T. Gruhn,

Reproduced with permission of The Royal Society of 

 
(b) 

59 

and the fraction of filaments in the 

of clusters containing  filaments is 

For a sufficiently large system, one has  

phase diagram of the system is shown as a function of the 

for fixed crosslinker-filament ratio . 

colated network forms if the filament volume fraction and the adhesion strength are large 

enough. This means, that a percolated network can be created and destroyed, reversibly, by changing 

rms bundles for suitably low 

filament volume fractions. This can be explained as follows: The system favors crosslinkers that are 

bound to filaments on both ends. Parallel filaments can be interconnected by a large number of 

e structure. At low filament concentrations, only aligned groups of 

filaments make it possible that large numbers of crosslinkers can bind on both ends. At high filament 

concentrations, crosslinkers can bind on both ends, even if the filament network is disordered. The 

phase diagram shows that percolated network may form with and without pronounced bundling and 

The network and bundle formation can also be induced by increasing the crosslink-filament ratio. 

Another interesting aspect is the dependence of the percolation threshold on the filament length [25]. 

and a fixed filament volume 

at which percolation sets in, is rather independent of the filament 

. The results could be 

that the independence of the length is 

of filament to crosslink number density. In practice, the ratio  of crosslinkers 

to filament monomers can be more important. For suitably large filament lengths one has  

is kept fixed.  

Model network with stiff filaments (blue) and short crosslinkers (yellow) with 

) Snapshot of a network 

) Phase diagram as a function of the adhesion strength over temperature  and 

R. Chelakkot, R. Lipowsky and T. Gruhn, Soft 

permission of The Royal Society of Chemistry. 
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5. Summary and Conclusions 

Various macroscopic models and molecular simulation techniques have been developed, which 

allow the study of various kinds of stimuli-sensitive polymer networks. With these methods, the 

response of polymer networks on external stimuli can be analyzed and optimized on various time and 

length scales. The behavior of a hydrogel can depend, in a complex way, on many physical and 

chemical properties of the environment, such as the pH value, ion concentrations, the concentration of 

specific molecules, external electric fields, temperature, or illumination. The development and 

optimization of tailored, stimuli-sensitive polymer networks requires a good understanding of the 

interplay of all these aspects. Here, numerical modeling and simulations are crucial. Molecular 

simulations require a comparably low amount of parameters. For atomistic simulations only reasonable 

interatomic potentials are needed, which, in many cases, are provided by simulation software. 

However, time scales and system sizes that can be studied with atomistic simulations are small so that 

only a small number of network meshes can be studied. More coarse-grained simulations require 

model interaction parameters, which are often not available for the polymer network of interest. The 

parameters can be extracted from atomistic simulations on a small length scale or by comparing 

material properties of the model system with experimental measurements. If the parameters are found, 

very detailed information can be found about system properties like the swelling behavior of the 

network, the breaking and healing of bonds, changes of the polymer configurations and the network 

structure or, for networks with suitably small mesh sizes, the elastic and inelastic responses of the 

network on applied strains. Results of molecular simulations help to interpret the experimental 

measurements but they can also support macroscopic models, which depend on material properties 

such as the elastic constants of the polymer network for a given composition of the solvent or the 

permeability of a hydrogel for a specific molecule. For systems with chain lengths that are too large for 

molecular simulations, approaches like the self-consistent field theory can be a good alternative, 

especially, if the system consists of copolymers and forms nanostructures. Our extended self-consistent 

field theory allows the modeling of polymer systems on an intermediate length scale and helps to fill 

the gap between macroscopic theories and molecular simulations. Thus far, only a very small number 

of multi-scale methods have been used for the modeling of stimuli-sensitive networks on various 

length scales. This is one of the major tasks for the future.  

One particularly important aspect of smart polymer networks is the response time. Quantitative 

predictions of absolute time scales are a big challenge for numerical methods. Many macroscopic 

models are restricted to stationary or steady-state systems. Macroscopic numerical studies of network 

dynamics are based on parameters like diffusion constants that have to be taken from molecular 

simulations or experiments. This shows, once more, the necessity of numerical studies on various 

levels of detail and of multiscale studies that combine these methods.    

Another challenge is the numerical study of polymer networks with spatial inhomogeneities on the 

microscale rather than on the nanometer scale. Experimentally, such inhomogeneities can be inferred, 

for example, by differential photo-crosslinking of polymers [110] or by applying an irradiation pattern 

on a thermosensitive gel [111].  
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As documented in this article, numerical methods for small and large time scales are available such 

that in the future multi-scale simulations should play an important role for a comprehensive 

understanding of these fascinating and multifunctional materials.  
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