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Abstract: Ventilatory pump failure is a common cause of death for patients with neuromuscular
diseases. The vital capacity plateau value (VCPLAT) is an important indicator to judge the status
of ventilatory pump failure for patients with congenital myopathy, Duchenne muscular dystrophy
and spinal muscular atrophy. Due to the complex relationship between VCPLAT and the patient’s
own condition, it is difficult to predict the VCPLAT for pediatric disease from a medical perspective.
We established a VCPLAT prediction model based on data mining and machine learning. We first
performed the correlation analysis and recursive feature elimination with cross-validation (RFECV)
to provide high-quality feature combinations. Based on this, the Light Gradient Boosting Machine
(LightGBM) algorithm was to establish a prediction model with powerful performance. Finally, we
verified the validity and superiority of the proposed method via comparison with other prediction
models in similar works. After 10-fold cross-validation, the proposed prediction method had the best
performance and its explained variance score (EVS), mean absolute error (MAE), mean squared error
(MSE), root mean square error (RMSE), median absolute error (MedAE) and R2 were 0.949, 0.028,
0.002, 0.045, 0.015 and 0.948, respectively. It also performed well on test datasets. Therefore, it can
accurately and effectively predict the VCPLAT, thereby determining the severity of the condition to
provide auxiliary decision-making for doctors in clinical diagnosis and treatment.

Keywords: ventilatory pump failure; vital capacity plateau value; biomedical engineering; RFECV;
disease prediction; LightGBM

1. Introduction

The central nervous system, peripheral nervous system, neuromuscular tissue and
thorax that drive or regulate respiratory movement are collectively referred to as the
ventilatory pump. Respiratory failure caused by dysfunction in these parts is called venti-
latory pump failure. Pump failure mainly causes patients to have ventilatory dysfunction,
manifested as type II respiratory failure. Common neurological diseases causing ventila-
tory pump failure include brain trauma, brain stroke, brain tumor, encephalitis, myelitis,
motor neuron disease, acute inflammatory polyradiculoneuropathy, myasthenia gravis,
polymyositis, muscular dystrophy and drug poisoning.

Ventilatory pump failure can be an acute on chronic condition that without ventilatory
assistance leads to poor prognosis and even death in patients with critical neurological
diseases. The rapid diagnosis and accurate treatment of ventilatory pump failure can
effectively reduce the mortality of patients and provide opportunities for the recovery of
nervous system function. Therefore, it is important to determine the disease severity for
pediatric diseases to prevent sudden deterioration of the condition. In order to do this, it is
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helpful to monitor changes in the relevant medical indicators. CA Pandit et al. described
the current evidence for daytime pulmonary function tests and their ability to predict
imminent respiratory morbidity [1].

For children with certain diseases (such as Duchenne muscular dystrophy), the vi-
tal capacity plateau value (VCPLAT) is one of the key indicators. VCPLAT refers to the
maximum value that the lung capacity of pediatric patients with neuromuscular disease
(normally congenital myopathy, Duchenne muscular dystrophy and spinal muscular at-
rophy) can rise to and remain unchanged for a period of time. Once vital capacity drops
from this value, it indicates that the condition has deteriorated, leading to aggravation of
ventilatory pump dysfunction. The vital capacity plateaus on normal people at 19–20 years
of age. In Duchenne muscular dystrophy (DMD) the VCPLAT at mean age 13 (range 9–17)
depending on how rapidly progressive the dystrophy. In spinal muscular atrophy (SMA)
type 1 the vital capacity (VC) can be highest at birth then go to zero or as late as age 4 or
later because SMA is not rapidly progressive.

Predicting the patient’s VCPLAT in advance can help doctors take preventive measures
such has indicating when to introduce lung volume recruitment to possibly preserve VC,
thereby reducing the severity of respiratory pump dysfunction. For example, Rideau
Y Jack pointed out that for respiratory function in the muscular dystrophies, the vital
capacity (VC) underwent ascending, plateau and descending stages during the course of
the disease. The VC at the plateau stage (VCPLAT) may be used as an estimate of life
span. The severity of DMD, including the prognosis of severe scoliosis and the need for
ventilatory support, have been confirmed as a function of VCPLAT [2]. Bach JR describes
and correlates VCPLAT with spinal muscular atrophy (SMA) severity and prognosis for
autonomous breathing. The results indicate that vital capacity should be monitored from
birth. The VCPLAT correlates with prognosis with SMA 1A VCs not exceeding 100 mL
or 1B 200 mL. Patients who attained 200 mL at any time (milder 1C) retain some ability
to breathe after 10 years of age [3]. In order to consider the effect of active lung volume
recruitment on rate of decline in VC, M Chiou introduced air stacking using volume-preset
ventilation or manual resuscitator bag to all patients after they reached their VCPLAT with
a lifetime maximum. The results show that for patients with DMD, active lung volume
recruitment may help to preserve vital capacity and effects on post-plateau vital capacity
may be a useful outcome measure for therapeutic trials [4]. Existing research showed that
medical practitioners have studied the relationship between VCPLAT and disease severity,
and some follow-up treatment methods based on VCPLAT have been established. If the
patient’s VCPLAT can be known in advance, the delay of treatment can be avoided and the
doctor can take corresponding measures in advance. Therefore, the prediction of VCPLAT
is an important medical problem. However, due to the complex relationship between
VCPLAT and the patient’s own condition, it is relatively difficult to predict VCPLAT from
a medical perspective.

Machine learning has achieved many successful applications in the medical field [5–11].
This provides new ideas for VCPLAT prediction. The existing relating research involving
machine learning mainly focus on the diagnosis and classification of neuromuscular dis-
eases based on electromyography (EMG) signals and pay less attention to pump failure
prediction [12–19]. For example, A Subasi’s showed that PSO-SVM can diagnose neu-
romuscular diseases, and the overall accuracy on 1200 EMG signals was 97.41% [15]. A
Subasi also uses different machine learning models to automatically classify EMG signals
as normal, neurogenic or myopathy [16]. NF Güler et al. used support vector machines
(SVM) and artificial neural network (ANN) to classify EMG signals of normal, neuropa-
thy and myopathy subjects. The best percentage of correct classification is obtained in
SVM with 94.4%. In ANN, the correct classification value is 91.6%. SVM shows a higher
performance with AUC value 0.954 while it is 0.927 in ANN [17]. SB Choi et al. used
four different feature selection methods to achieve the efficient and rapid classification
of 11 neuromuscular diseases. The study found that when the classification models of
SVM-one-versus-one (OVO), SVM-one-versus-rest (OVR) and directed acyclic graph SVM
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(DAGSVM) are used together with the ratio of genes between-categories to within-category
sums of squares (BW) feature selection method, it can distinguish neuromuscular diseases
from the control group with 100% accuracy using only four features [19].

By analyzing the medical data of neuromuscular patients from a large American center,
this study aimed to complete three tasks. First, we used correlation analysis and RFECV to
automatically select high-quality feature combinations to identify key factors of VCPLAT
among a large number of medical indicators. Second, we proposed a new method based
on LightGBM to predict the VCPLAT of patients with neuromuscular diseases. Third, we
evaluated the predictive performance of the model and compared it with other common
machine learning models in similar works to prove the advantages of the proposed method.

This article is divided into five parts. The specific organizational structure is as
follows: Section 1 mainly introduces the research background, literature review, research
contents and ideas. Section 2 introduces the materials and methods and proposes a
VCPLAT prediction model based on RFECV and LightGBM. Section 3 is the practical
application of the proposed model, the results of which are analyzed and discussed to
verify the effectiveness of the proposed method. Section 4 is the discussion. Section 5 is
the conclusion.

2. Materials and Methods
2.1. Data Description

The research data came from a neuromuscular disease clinic in the United States,
provided by Professor Bach from Rutgers New Jersey Medical School, who collected and
compiled the electronic medical record data of 3103 neuromuscular disease patients over
the past 30 years. According to the purpose of the study, we selected the part of the
data where the VCPLAT was recorded which is only for pediatric diseases (Duchenne
muscular dystrophy, congenital myopathy and spinal muscular atrophy type 1–3). The
data used in this study totaled 2518 medical records of 704 patients, involving 40 features
and 5 pediatric diseases. Table 1 shows the name, description, mean, std, data type, data
distribution interval and other data information of some medical indicators in the data set.
In Appendix A, Table A1 shows the all 40 features and their explanations. Figure 1 shows
the types of diseases involved. Due to the large number of missing values, outliers and
duplicate values in the data, this study first preprocessed the data.

Figure 1. Types of diseases involved in the data and distribution of records.
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Table 1. Description of partial medical indicators.

No. Name Description Type Value Range Mean Value Std.

1 HE_SHE Gender Categorical Male or Female / /
2 BICEPSL Left bicep strength Categorical (0 to 5+) / /
3 AGE Age Numeric (0, 83) 15.65 12.5
4 VCSIT Sitting vital capacity Numeric (0, 6060) 887.3 921
5 VCSUPINE Supine vital capacity Numeric (0, 5300) 133.3 483.5
6 MIC Maximum blowing capacity Numeric (0, 5980) 621 872.7
7 PCF Peak cough flow rate Numeric (0, 12.5) 1.58 1.99
8 SAO2LOW Observed low oxygen content Numeric (0, 99) 73.17 41.5
9 SAO2HIGH Observed high oxygen content Numeric (0, 99) 73.94 41.9
10 ETCO2MAX Maximum end-tidal carbon dioxide Numeric (0, 72) 27.66 17.88
11 ROMLTKNEE Range of motion of left knee Numeric (0, 99) 4.432 13.4
12 ROMHIPEXL Range of motion of left hip extension Numeric (0, 99) 4.141 9.07
13 VCPLAT Vital capacity plateau value Numeric (0, 3350) 369.8 810.2
14 AGEPLAT Lifetime maximum age Numeric (0, 17) 0.603 2.61

2.2. Data Preprocessing
2.2.1. Missing Value Processing by Deletion and KNN

The proportion of missing data in some samples or features is relatively large. They
are meaningless for research because they contained little useful information [20]. So, this
study chooses to delete them directly. The deletion rules are as follows:

(1) Delete features with missing values exceeding 50%.
(2) Delete samples with missing values exceeding 50%.

For the parts that still have missing values afterwards, this study uses the KNN (k-
Nearest Neighbor) algorithm for interpolation, a good and normal way of handling missing
value [21]. K represents the number of samples closest to the sample to be filled and it is
a user-defined constant [22]. The idea of this algorithm is to find K similar samples for a
sample with missing values and fill in the missing parts according to the characteristics
of similar samples. There is no specific method, in determining the K value for the KNN
missing data imputation [23,24]. For example, U Pujianto et al. used the KNN method as
an imputation carried out in several cases with different mechanisms and missing data
model, and set k to 1, 3, 5 and 7, respectively. The results show that handling missing data
with KNN-based imputation can reach the accuracy of complete data in each case with
a low accuracy difference [23]. If K is too large, it is easy to cover samples with farther
similarity. If K is too small, the filling value is easily affected by noise samples. In practical
applications, it is generally recommended to use a relatively small K value [25]. In this
study, K was determined to be 3. The filling rules are as follows:

(1) If the missing variable to be filled is a discrete variable, the K nearest neighbor
classifier is used to fill in the missing part with the most frequent category of the
K neighbors.

(2) If the missing variable to be filled is a continuous variable, the K nearest neighbor
regressor is used to fill in the missing part with the average value of the variable
among K neighbors.

2.2.2. Category Feature Conversion

Generally, in the medical field, the database may involve all the type of small or exten-
sive categorical dataset, which makes the disease prediction analysis more complicated [26].
Most machine learning algorithms require the input to be numeric data; therefore, the
category features need to be converted. The category with no inherent order is called
Nominal Feature, such as gender (male/female), which can be converted in the form of
one-hot coding. The category with an internal order is called Ordinal Feature, such as mild,
normal, severe and critically ill. Due to the degree of progressive relationship, numbers
can be used for direct conversion [25]. For example, L Cui et al. used the 2-dimensional
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one-hot vector to express the gender of a patient and used embedding methods to map
each medical code to a low-dimensional continuous vector [27]. The Nominal category
feature in this study is gender. The conversion standard is: male is 0, female is 1. The
Ordinal category features in this study are muscle strength test indicators.

Muscle strength refers to the strength of muscle contraction when the limb is exercising
freely. The strength test indicators involved in this study include: SHOULDERL, SHOUL-
DERR, BICEPSL, BICEPSR, WRISTL, WRISTR, MPHIPFLLT, MPHIPFLRT, MPQUADLT,
MPQUADRT, MPDORSILT and MPDORSIRT, a total of 12 features. The conversion criteria
for this category are shown in Table 2.

Table 2. Muscle strength feature conversion.

Original Value 0 1− 1 1+ 2− 2 2+ 3− 3 3+ 4− 4 4+ 5− 5 5+

Converted Value 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Muscle strength is mainly divided into six levels of 0–5, of which, 0 is completely paralyzed, 1 is the slight
contraction of the muscle and the joint cannot move, 2 is full range of joint movements under weight loss, 3 means
muscle can resist gravity for full range of joint movement but not resistance, 4 means muscle can exercise against
gravity and resistance, and 5 is normal. The severity increases sequentially from 5 to 0, of which, each value
additionally has a + and − value surrounding it, i.e., 2− is between 2 and 1+, and 2+ is between 2 and 3−.

2.2.3. Data Normalization

As the dimensions of various medical indicators are not uniform, this study used
maximum and minimum standardization to normalize the data. It is a linear transformation
of the original data, which can map the data values to the [0, 1] interval. The transformation
function is as follows:

x∗ =
x−min

max−min
, (1)

where max is the maximum value of the data, and min is the minimum value of the data.

2.3. Correlation Analysis and Significance Test

There are autocorrelation features in the data, resulting in feature redundancy. Fur-
thermore, not all medical features are related to the vital capacity plateau. Correlation
analysis aims to study the correlation between random variables [28]. For example, IY
Jung et al. conducted the correlation analysis of functional factors and age with Duchenne
Muscular Dystrophy. The results showed that the Brooke scale, Vignos scale and passive
range of motion (PROM) of ankle dorsi-flexion were partially available to assess DMD pa-
tients [29]. Correlation coefficients that are commonly used include the Pearson correlation
coefficient and Spearman’s rank correlation coefficient [28]. The former applies to data that
meets a normal distribution, while the latter applies to data of any distribution. After the
normality test, most of the medical data used in this study did not meet the normal distri-
bution. Therefore, Spearman’s rank correlation coefficient was to measure the correlation
among various medical indicators, which can simplify the medical feature dimensions, and
preliminarily analyze the medical variables that are correlated with the VCPLAT.

The rank of a number is the average descending position of the number in the overall
data. If X and Y are the two observed variables, and the sample size is n, then for each
sample Xi, Yi, the corresponding rank is xi, yi. Then, the Spearman’s rank correlation
coefficient between these two variables is:

ρ = 1−
6 ∑ d2

i
n(n2 − 1)

(2)

where di = xi − yi and this represents the rank difference between the two indicators of the
i-th sample.

The Spearman’s rank correlation coefficient ranges from −1 to 1. When the absolute
value is closer to 1, this indicates that the two variables are more correlated. When the
value is 1, this represents a completely positive correlation; when the value is −1, this



Healthcare 2021, 9, 1306 6 of 24

represents a completely negative correlation; and when the value is 0, this indicates it is
completely uncorrelated.

In order to confirm the authenticity of the correlation between the two variables, the
significance test of the correlation coefficient should also be performed. According to the
significance coefficient p value, the significance test standard is as follows:

p < 0.05: Statistical differences exist, reject the null hypothesis and the two variables
are correlated.

p > 0.05: No statistical difference exists, accept the null hypothesis and the two
variables are not correlated.

2.4. Recursive Feature Elimination with Cross-Validation (RFECV)

The filtered data after correlation analysis may still have a high feature dimension with
a great deal of redundant information and noise, which lead to greater learning burden
and lower running efficiency on the model. Therefore, feature selection is needed.

Recursive feature elimination with cross-validation (RFECV) is a wrapper feature
selection. Wrapped feature selection uses the performance evaluation of the machine
learning model as the evaluation criterion of the selected feature subset [30]. It selects
features by recursively reducing the size of the feature set. The main steps are as designed
as follows:

(1) We determine LightGBM as the base prediction learner.
(2) Use all original features as initial feature subset.
(3) Train the prediction model on the feature set. Assign a weight to each feature based

on the impact of the feature on the predictor’s performance.
(4) The feature with the smallest absolute weight is kicked out of the feature set.
(5) Repeat (3) and (4) recursively until the number of remaining features reaches the best

performance score.

RFECV performs RFE through cross-validation to select the optimal number of fea-
tures. For a set of n features, the number of all its subsets is 2n − 1 (excluding the empty
set). RFECV calculates the validation error of all subsets through the base learner and then
selects the subset with the smallest error as the final feature set.

RFECV has been successfully applied in the medical field, especially in the evaluation
of the importance of medical features and the selection of medical indicators [31–33]. For
example, K Akyol et al. showed through experiments that medical decision support
systems with more accurate predictions could be developed using RFECV and this can be
helpful in selecting the treatment method for the experts in the field [33].

For RFECV in this paper, the cross-validation method was a 10-fold cross-validation,
the evaluation criteria were root mean square error (RMSE), mean squared error (MSE),
mean absolute error (MAE), median absolute error (MedAE), explained variance score
(EVS) and R2 Score.

2.5. LightGBM

LightGBM is a boosting ensemble model [34]. We train the input data (patient’s
various medical indicators after RFECV) and the output data (the patient’s VCPLAT)
with LightGBM to establish an integrated decision tree structure to reflect the mapping
relationship between medical indicators and VCPLAT. After the training is completed, the
model can predict the VCPLAT of a new patient when his medical characteristics are input.
In this study, the parameter adjustment method was Grid Search.

Boosting algorithms, such as XGBoost and GBDT are powerful algorithms in the
current field of machine learning [35]. For example, P Bahad et al. evaluated the use of
Gradient Boosting ensemble machine learning techniques for two-class prediction. The
experimental result shows that prediction accuracy of Gradient Boosting algorithm is better
than traditional machine learning to classify patients with diabetes using diabetes risk
factors [36]. C Chen et al. proposed a new protein interaction prediction method based on
LightGBM. The results of the 5-fold cross-validation show that the accuracy of this method
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is significantly better than traditional prediction methods [37]. Wang D et al. compared
the performance of different machine learning methods on the recognition of miRNA in
patients with breast cancer, and found that LightGBM performs better in many aspects [38].
Y Amirgaliyev et al. compared and discussed four supervised machine learning algorithms
on five gastric diseases detection. The results show that LightGBM has a higher accuracy
on the test data set, reaching more than 95% [39]. In summary, LightGBM has mature
applications in various fields of medicine, and can analyze various types of medical data to
accurately classify and predict diseases.

Traditional boosting algorithms often perform poorly when dealing with large medical
samples and high-dimensional data. This is because they need to scan all the sample points
for each feature to select the best split point when calculating the information gain, which
is obviously very time-consuming, resulting in low efficiency and scalability of the model.

LightGBM solves this problem well. Similar to GBDT and XGBoost, LightGBM uses
the negative gradient of the loss function as the residual approximation of the current
decision tree to fit the new decision tree. LightGBM mainly includes the following three
algorithms to improve the defects of the original boosting algorithm.

The first algorithm is gradient-based one-side sampling (GOSS). Samples with large
gradients have a greater impact on information gain. Therefore, GOSS retains all samples
with large gradients and uses random sampling on samples with small gradients. In order
to offset the impact on the data distribution, GOSS introduces a constant multiplier to the
data with small gradients when calculating the information gain. Specifically, the data are
first sorted in descending order according to the absolute value of their gradient and the
top a × 100% samples are selected as data subset A. Then, it randomly selects b × 100%
samples in the remaining data Ac as data subset B. Finally, it uses the following formula to
calculate the information gain of splitting feature j at point d:

Ṽj(d) =
1
n


(

∑xi∈Al
gi +

1−a
b ∑xi∈Bl

gi

)2

nj
l(d)

+
(∑xi∈Ar gi +

1−a
b ∑xi∈Br gi)

2

nj
r(d)

 (3)

where Al =
{

xi ∈ A : xij ≤ d
}

, Ar =
{

xi ∈ A : xij > d
}

, Bl =
{

xi ∈ B : xij ≤ d
}

,
Br =

{
xi ∈ B : xij > d

}
, n is total number of samples in a training set, the coefficient

1−a
b is used to normalize the sum of the gradients over B back to the size of Ac and

the gi (i = 1 . . . n) are the negative gradients of the loss function with respect to the output
of the model in each iteration of gradient boosting. For medical data in this study, there
are many patients with incomplete data records with low information value and small
difference, so LightGBM can prevent such samples from affecting the prediction model.

The second algorithm is exclusive feature bundling (EFB). The high-dimensional fea-
ture space is often very sparse, and there are many mutually exclusive features. Therefore,
some features can be bundled into one feature, thereby reducing the dimension of the
feature and the consumption of finding the best cut point. Specifically, EFB first sorts the
features according to the number of non-zero values. Then, it calculates the conflict ratio
between the different features. Next, it iterates over each feature and attempts to merge
features to minimize the conflict ratio.

The third algorithm is Leaf-wise, an efficient decision tree growth strategy with depth
limitation. As shown in Figure 2, LightGBM finds the leaf with the largest split gain from
all the current leaves, and then splits the leaf. Then it continuously loops this process. In
contrast, XGBoost uses a Level-wise growth strategy as shown in Figure 3, which can split
the leaves of the same layer at the same time. Many leaves have a low split gain, so there
are many unnecessary searches and splits. Therefore, compared with Level-wise, in the
case of the same number of splits, Leaf-wise has a lower error and higher accuracy. The
limitation of the maximum depth prevents overfitting.
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Figure 2. Leaf-wise tree growth strategy.

Figure 3. Level-wise tree growth strategy.

In summary, LightGBM is a fast, distributed, high-performance gradient boosting
framework based on the decision tree algorithm. It uses GOSS and EFB to reduce the
amount of calculated data and the number of features, respectively, without losing its accu-
racy. Using Leaf-wise ensures faster training efficiency. LightGBM can process large-scale
medical data, support parallel learning and achieve low memory usage with high accuracy.

2.6. Model Evaluation Methods

In order to evaluate the performance of the prediction model, we adopted the follow-
ing evaluation criteria: Explained variance score (EVS), Mean absolute error (MAE), Mean
squared error (MSE), Root mean squared error (RMSE), Median absolute error (MedAE)
and R2 Score.

Assuming that yi is the true value of the i-th sample, fi is the corresponding predicted
value and y is the mean of y, i.e., y = 1

n ∑n
i=1 yi, then the evaluation indexes of n samples

are given by the following formulas.
(1) Explained Variance Score (EVS):

Explained Variance = 1−
∑n

i=1

(
(yi − fi)− (yi − fi)

)2

∑n
i=1(yi − y)2 (4)

where yi − fi represents the mean of yi − fi, i.e., yi − fi =
1
n ∑n

i=1(yi − fi) . EVS measures
how close the difference between all predicted values and the sample is to the sample itself.
The maximum value is 1. The closer to 1, the better.

(2) Mean Absolute Error (MAE):

MAE =
1
n

n

∑
i=1
| fi − yi| (5)

MAE is used to describe the difference between the predicted value and the true value.
The smaller the value, the better.

(3) Mean Squared Error (MSE):

MSE =
1
n

n

∑
i=1

( fi − yi)
2 (6)

Mean Squared Error, also known as Mean Squared Deviation (MSD), measures the
degree to which the overall sample deviates from the predicted value of the model. The
smaller the value, the better.
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(4) Root Mean Squared Error (RMSE):

RMSE =

√
1
n ∑n

i=1( fi − yi)
2 (7)

The RMSE is very sensitive to the large or small error in a group of measurements, so
it can reflect the precision of the measurement well. The smaller the value, the better.

(5) Median Absolute Error (MedAE):

MedAE(y, f ) = median(|y1 − f1|, . . . , |yn − fn|) (8)

The MedAE can reduce the effect of outliers. The smaller the value, the better.
(6) R2 Score:

R2 = 1− ∑n
i=1(yi − fi)

2

∑n
i=1(yi − y)2 (9)

R2 Score, also called the Coefficient of Determination, judges the degree of fit between
the predicted value and the real data. The best value is 1, and it can be negative. The closer
to 1, the better.

The verification methods included 10-fold cross-validation and test set evaluation
(Figure 4). We divided the medical data into training set, validation set and test set. The
training set and the validation set account for 70% of the data volume and are used for
10-fold cross training and validation. The test set accounts for 30% of the data volume and
is completely independent from the model optimization procedure. The evaluation results
of the test set can show the generalization performance of the model. After verification, we
use statistical tests (Friedman-Nemenyi test) to evaluate the significance of the results.

Figure 4. 10-fold cross-validation and test set evaluation methods. E represent the results of the
regression evaluation criteria such as EVS, MAE, MSE, RMSE, MedAE, R2.

2.7. Research Process

The research process is shown in Figure 5. First, the data from patients with neu-
romuscular disorder is obtained. In order to eliminate missing values, duplicate values,
outliers, etc. in the data, this study performed data preprocessing. It quantifies text features
through categorical feature conversion, deals with missing values by deletion and KNN
interpolation and finally carries out data normalization to obtain a unified dimension.
Then, in order to reduce the degree of data autocorrelation, and to analyze the correlation
of VCPLAT, we use Spearman’s rank correlation coefficient and significance test for cor-
relation analysis. Next, since not all features have impact on the prediction model, we
use RFECV to determine the best feature subset and feature number. On this basis, we
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construct a prediction model of VCPLAT based on LightGBM, using the extracted data
set for training and grid search method to adjust the parameters to optimize the model
during the training process. Finally, we use six evaluation indicators through 10-fold
cross-validation as well as test set evaluation and compares it with four machine learning
models to evaluate the results. In the end, we can obtain a highly-efficient prediction model
with the best performance which can output the patient’s VCPLAT when their medical
indicators are input.

Figure 5. Prediction model construction process and application.

2.8. Computation Environments

All data analysis methods and algorithm implementations in this study are written
by Python 3 language for programming and run on the professional version of PyCharm
(Anaconda).

3. Results
3.1. Data after Preprocessing

The box plot in Figure 6 shows the data distribution after data preprocessing. It can
display the maximum, minimum, median, outlier and upper and lower quartiles of a set of
data. There are 494 samples and 37 features in total. Figure 7 specifically shows the age
distribution of different diagnosis. After standardization, the values of all variables are
between 0 and 1. Figure 8 shows the violin chart of VCPLAT distribution under different
diagnoses. It displayed the distribution status and probability density of multiple sets
of data.
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Figure 6. Data box plot after preprocessing. The middle horizontal line represents the median value of the data. The
positions of the two ends of the rectangular box correspond to the upper and lower quartiles of the data, respectively. The
two lines outside the rectangular box are the upper and lower limits of the data. Discrete points represent outliers.

Figure 7. Box plot of age distribution.

Figure 8. Violin plot of VCPLAT for different diagnoses.
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3.2. Feature Correlation Coefficient Analysis Results

In this study, by calculating the Spearman’s rank correlation coefficient, the correlation
between each two features was obtained, thereby the correlation coefficient matrix of
medical features was constructed, as shown in Figure 9.

Figure 9. Correlation coefficient matrix heat map. The horizontal and vertical axes represent medical
features, and the numbers in the small squares represent the Spearman correlation coefficients
between the two features. Color represents the degree of correlation. The larger the correlation
coefficient, the darker the color, which means that the two features are more related.

The threshold for judging two variables as redundant features is that the Spearman
correlation coefficient exceeds 0.95. Highly correlated feature pairs include [SHOULDERL,
SHOULDERR], [BICEPSL, BICEPSR], [WRISTL, WRISTR], [MPHIPFLLT, MPHIPFLRT],
[MPQUADLT, MPQUADRT], [MPDORSILT, MPDORSIRT], [ROMDORSIL, ROMDORSIR],
[ROMLTKNEE, ROMRTKNEE], [ROMHIPEXL, ROMHIPEXR] and [ROMITBLT, ROMIT-
BRT]. Indexes with a high degree of autocorrelation are basically muscle strength test
indexes. Based on Figure 9, we retained only one of the two highly autocorrelated features
to obtain the optimized medical feature set with simplified number of variables. The
corresponding correlation matrix was shown in Figure 10.
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Figure 10. Optimized VCPLAT correlation coefficient matrix heat map. The horizontal and vertical axes represent medical
features, and the numbers in the small squares represent the Spearman correlation coefficients between the two features.
Color represents the degree of correlation. The larger the correlation coefficient, the darker the color, which means that the
two features are more related.

After the significance test, features whose p-value was less than 0.05 included DIAG-
NOSIS, HE_SHE, AGE, BICEPSR, MPHIPFLRT, VCSUPINE, MIC, PCF, APCF, SAO2LOW,
SAO2HIGH, ETCO2MAX and LASTVC, a total of 13 features. We rejected the original
hypothesis and considered that they have a correlation with VCPLAT.

3.3. Feature Selection Based on RFECV

Based on LightGBM and 10-fold cross-validation, this study used RFECV to select
features from the optimized dataset by correlation analysis. The results are shown in
Figure 11, which depicts the trend of the model evaluation value as the number of retained
features increases under different evaluation criteria.
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Figure 11. RFECV results under different evaluation criteria: (a) RMSE; (b) MSE; (c) MAE; (d) MedAE; (e) EVS; (f) R2.

According to Figure 11, as the number of features increases, the performance of the
model gradually tends to be flat. When the number of features is 19, there is no significant
change in model performance. Taken together, the optimal number of features was 19.

According to the total number of times the features are used for splitting in all decision
trees of LightGBM, we obtained the importance ranking of the features. The results are
shown in Figure 12. According to Figure 12, age (AGE) had the greatest influence on the
prediction result of VCPLAT, followed by the sitting vital capacity (VCSIT) and its value at
the last visit (LASTVC). The maximum blowing capacity (MIC), peak cough flow rate (PCF),
maximum end-tidal carbon dioxide (ETCO2MAX) and right bicep strength (BICEPSR)
had a certain effect on VCPLAT, while the gender (HE-SHE) and fall to the ground every
month (FALLPERMO) had a weak influence on VCPLAT. How fast the patient can walk
within 10 yards (WALK10YDS) and time for patients to stand up from sitting on the floor
(UPFROMSIT) had almost no effect on VCPLAT prediction.
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Figure 12. VCPLAT feature importance ranking. The numbers in the figure represent the number of
times the feature is used (splited) in LightGBM.

In summary, we selected the first 19 features in the feature importance ranking as the
best feature combination and as the input variables of LightGBM.

3.4. Prediction Model Based on LightGBM
3.4.1. Parameter Tuning

After the grid search, the determined LightGBM parameters are shown in Table 3.
Figure 13 shows the comparison of model performance before and after tuning. As shown
in Figure 13, after parameter tuning, LightGBM obtained better performance and can more
accurately predict the patient’s VCPLAT.

Table 3. LightGBM parameters.

Parameter Explanation Value

n_estimators Number of iterations 700
max_depth The maximum depth of the tree 5
num_leaves The number of leaf nodes 12

max_bin An integer representing the maximum number of buckets. 15
min_child_weight The sum of the smallest hessian on a leaf node. 0.001

lambda_l1 Regularization parameters that can reduce overfitting. 0.001
lambda_l2 Regularization parameters that can reduce overfitting. 0
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Table 3. Cont.

Parameter Explanation Value

min_split_gain Minimum gain to perform segmentation 0
learning_rate Smaller learning rate can improve accuracy. 0.085

min_data_per_leaf The minimum number of samples per leaf node. 1

sub_row Sample sampling can make bagging run faster and prevent
overfitting. 0.6

bagging_freq The frequency of bagging. 0

sub_feature Feature sub-sampling can be used to prevent overfitting and
improve training speed. 0.8

Figure 13. Comparison before and after LightGBM tuning by 10-fold cross-validation under different
evaluation criteria: (a) The lower the criteria value, the better the model performance; (b) The higher
the criteria value, the better the model performance.

3.4.2. Comparison with Four Machine Learning Models

In order to further verify the superiority of the proposed model, we compared the
results of LightGBM with the following four commonly used machine learning models:
support vector machine (SVM), cart decision tree (Cart DT), random forest (RF) and XG-
Boost. The optimal feature subsets selected by correlation analysis and the RFECV method
were used for modeling. The comparison results of each model under different evaluation
criteria are shown in Table 4, which are the average of the 10-fold cross-validation results
(mean ± std). The comparison results on test set are shown in Table 5. Figure 14 (corre-
sponding to Table 4) and Figure 15 (corresponding to Table 5) show more intuitively the
performance scores of five models under six performance metrics.

Table 4. Comparison of the machine learning model results.

Model
Criteria

EVS MAE MSE RMSE MedAE R2

SVM 0.689 ± 0.101 0.089 ± 0.013 0.014 ± 0.004 0.116 ± 0.016 0.071 ± 0.019 0.669 ± 0.093
Cart DT 0.788 ± 0.145 0.081 ± 0.016 0.009 ± 0.007 0.091 ± 0.035 0.063 ± 0.011 0.776 ± 0.157

RF 0.854 ± 0.100 0.053 ± 0.016 0.006 ± 0.004 0.075 ± 0.026 0.038 ± 0.012 0.848 ± 0.103
XGBoost 0.885 ± 0.074 0.051 ± 0.015 0.005 ± 0.004 0.068 ± 0.022 0.039 ± 0.015 0.877 ± 0.083

LightGBM 0.949 ± 0.026 0.028 ± 0.007 0.002 ± 0.002 0.045 ± 0.014 0.015 ± 0.005 0.948 ± 0.027

Data presented in the table are the results of 10-fold cross-validation under different evaluation criteria (mean ± std).
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Table 5. Test set evaluation results of different machine learning models.

Model
Criteria

EVS MAE MSE RMSE MedAE R2

SVM 0.721 0.095 0.016 0.127 0.074 0.683
Cart DT 0.633 0.074 0.019 0.137 0.072 0.631

RF 0.801 0.070 0.010 0.100 0.052 0.801
XGBoost 0.847 0.068 0.008 0.091 0.052 0.836

LightGBM 0.867 0.061 0.007 0.083 0.051 0.865

Data presented in the table are the results of test set evaluation under different criteria. The value reflects the difference between the
predicted value and the true value.

Figure 14. Prediction performances of five machine learning models by 10-fold cross-validation under different evaluation
criteria: (a) The lower the criteria value, the better the model performance; (b) The higher the criteria value, the better the
model performance. The data types presented in (a,b) are the results of the 10-fold cross-validation under each regression
indicators in Table 4. The length of the histogram represents the mean of the cross-validation, and the error bars represent
the standard deviation.

We used the Friedman-Nemenyi statistical test to verify the significance of the 10-fold
cross-validation results in Table 4. At the significance level α = 0.05, we used Friedman
statistic τF and the corresponding p-value to provide the quantitative information for the
significance of the difference between methods.

Table 6 shows the calculation results of the Friedman Nemenyi statistical test, i.e.,
the average ordinal value and statistics of each algorithm in the 10-fold cross-validation
under each criterion. Taking the criterion MAE as an example, the Friedman test p-value
matrix of 5 algorithm is shown in Table 7 and Figure 16. In Figure 16, the blue represents
no-significance (NS), and the darker the red, the more significant the difference in algorithm
performance. Figure 17 visually showed the results after Nemenyi post-hoc test under
criterion MAE.
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Figure 15. Prediction performances of five machine learning models on test set under different evaluation criteria: (a) The
lower the criteria value, the better the model performance; (b) The higher the criteria value, the better the model performance.
The data types presented in (a,b) are the results of the test set under each regression indicators in Table 5. The length of the
histogram represents evaluation value, reflecting the difference between the predicted value and the true value.

Table 6. The average ordinal value of each algorithm and Friedman statistics.

Model
Criteria

SVM Cart DT RF XGBoost LightGBM τF

EVS 4.6 4.4 2.9 1.9 1.2 79.24
MAE 4.5 4.3 3 2.2 1 54.38
MSE 4.6 4.4 2.9 1.9 1.2 79.24

RMSE 4.6 4.4 2.9 1.9 1.2 79.24
MedAE 4.4 4.4 2.5 2.6 1.1 34.69

R2 4.6 4.4 2.9 1.9 1.2 79.24

The data type is the average ordinal value of each algorithm on 10 sets of data (derived from ten-fold cross-validation) under 6 criteria.

Table 7. The Friedman test p-value matrix under criterion MAE.

Model
Criteria

SVM Cart DT RF XGBoost LightGBM

SVM \ 0.9 0.210897 0.010068 0.001
Cart DT 0.9 \ 0.351727 0.024841 0.001

RF 0.210897 0.351727 \ 0.763265 0.037722
XGBoost 0.010068 0.024841 0.763265 \ 0.437421

LightGBM 0.001 0.001 0.037722 0.437421 \
The data type is the p-value of Friedman test.
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Figure 16. The p-value matrix heat map of Friedman test under criterion MAE. The data is from
Table 7. NS stands for insignificant. The darker the color, the more significant the difference between
the algorithms.

Figure 17. Friedman-Nemenyi test chart of 5 models under criterion MAE (CD = 1.928). The vertical
axis in the figure shows each algorithm, and the horizontal axis is the average ordinal value. For each
algorithm, a dot is used to display its average sequence value, and the horizontal line segment with
the dot as the center represents the size of the critical value range. If the horizontal line segments of
the algorithms overlap, it means that there is no significant difference between the two algorithms,
otherwise, a significant difference exists.

4. Discussion

From the perspective of data mining and machine learning, we proposed a VCPLAT
prediction model combining RFECV and LightGBM to help judge ventilatory pump failure.
We target five pediatric neuromuscular diseases and analyzed 2518 lines of medical records
of 704 patients with neuromuscular disorders from an American Clinic to verify the
prediction model. Figure 8 shows that the overall distribution of VCPLAT in patients with
SMA type 3 is relatively high, followed by DMD. The distribution of VCPLAT in patients
with SMA type 1 is the lowest while it is more concentrated in CM patients.

As can be seen from Table 4 and Figure 14, the best performing model among all
models was LightGBM. Its MAE, MSE, RMSE and MedAE in 10-fold cross-validation were
0.028, 0.002, 0.045 and 0.015, respectively, which are lower than the other machine learning



Healthcare 2021, 9, 1306 20 of 24

models. Its EVS and R2 in 10-fold cross-validation were 0.949 and 0.948, respectively, which
are higher than the other machine learning models. Therefore, the VCPLAT prediction
model based on LightGBM achieved the best results. Table 5 and Figure 15 show that the
LightGBM generated after training also achieved good performance on the test set. Its EVS,
MAE, MSE, RMSE, R2 were superior to other methods with 0.867, 0.061, 0.007, 0.083, 0.051
and 0.865, respectively. This shows that LightGBM has good generalization performance
and can be applied to VCPALT prediction of new samples.

Friedman-Nemenyi statistical test confirms the significance of the research results.
Table 6 confirms that no matter which evaluation standard is used, the performance of
the algorithms is significantly different (τF > 2.634). Table 7, Figures 16 and 17 further
distinguish the significance between the algorithms. The results show that the boosting
ensemble learning algorithms (such as XGBoost or LightGBM) is significantly better than
Cart DT, SVM and other methods within 95% confidence interval. LightGBM is better than
XGBoost, but the difference is not very significant.

From the results, correlation analysis and feature selection indicate that AGE, VCSIT,
LASTVC, MIC, PCF, ETCO2MAX, BICEPSR, WRISTR and APCF have a greater influence
on the prediction of the VCPLAT. Therefore, doctors need to focus on these indicators for
pediatric patients with Duchenne muscular dystrophy, congenital myopathy and spinal
muscular atrophy type 1–3.

After the VCPLAT prediction model was established, once the predicted value of the
patient’s VCPLAT was obtained, the doctor can take targeted measures according to the
value of the VCPLAT.

Compared with similar works in medical science, we provided a complete system
of VCPLAT prediction methods and implementation process from data mining, bringing
method innovation to the analysis in the medical field. Existing studies have established
disease severity judgment and treatment methods based on VCPLAT but have not yet
solved the key VCPLAT prediction problem. This study is based on a data-driven approach
to fill this gap, which is helpful to assist doctors in subsequent diagnosis and treatment. At
present, medical staff mainly rely on real-time VC monitoring to formulate treatment plans.
Vital capacity changes are related to the patient, and it is difficult to determine VCPLAT,
which leads to a delay in the treatment plan. The methods proposed in this paper can
predict the patient’s VCPLAT in advance, and doctors can take timely countermeasures,
thereby effectively improving the patient’s condition and reducing the probability of
ventilatory pump failure.

Compared with similar works in machine learning, we have verified through experi-
ments that machine learning regression methods can achieve good results in the prediction
of important medical indicators. Among them, ensemble boosting learning methods have
significant advantages. Existing research generally focused on the diagnosis and classi-
fication of neuromuscular diseases and pay less attention to the analysis and prediction
of important indicators of patients. The methods proposed in this article realizes the
innovation of machine learning in the medical application of neuromuscular diseases.

5. Conclusions

Comparing and analyzing the experimental results, we can draw the following conclu-
sions: (1) Correlation Analysis and RFECV can screen valuable parts from many medical
indicators and provide high-quality input variables for prediction model. (2) The prediction
model combining RFECV and LightGBM algorithm performed well in both cross validation
and test set evaluation, which can accurately and effectively predict VCPLAT values in
patients with neuromuscular disorders.

The model proposed in this paper can provide guidance and aid decision-making for
doctors in clinical diagnosis and treatment and has the significance of theoretical research
and practical application. First, the model greatly reduces the number of medical indicators
needed to determine the value of VCPLAT. This can reduce the number of testing items
for patients.
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Second, the model can accurately predict the patient’s VCPLAT. The VCPLAT is an
indication of disease severity for pediatric diseases. For Duchenne muscular dystrophy, the
progression rate of disease is related to VCPLAT. Doctors can use the predictive value of
VCPLAT to help predict the severity of ventilatory pump failure for patients with Duchenne
muscular dystrophy. So, doctors can prepare in advance and take corresponding protective
measures such has indicating when to introduce lung volume recruitment to possibly
preserve vital capacity, which enables patients to be treated promptly and properly when
ventilatory pump failure occurs.

Third, the model can indicate which medical indicators have an impact on the VCPLAT.
The model provides guidance for medical research. Experts and scholars in the medical
field can analyze the correlation between various indicators and the VCPLAT from a
pathological perspective.

6. Limitations and Further Study

The study in this paper has the following limitations for further research.
First, due to the difficulty in collecting medical data and the rarity of the disease, the

amount of data used in this research is still small. With more samples accumulated and
collected in the future, the model can be further optimized and adjusted.

Second, as a prediction target, VCPLAT is applicable to a small range of diseases.
VCPLAT occurs in normal people at the age of 20, while it occurs earlier in children
with Motor neuron disease (NMD). Therefore, the entire data concerning VCPLAT can
only be for cases of pediatric onset diseases, such as Duchenne, SMA 1–3, and congenital
myopathies. This study will choose more widely applicable indicators as prediction targets,
such as End-Tidal Carbon Dioxide (ETCO2) and Pulse Oximetry (SPO2).

Third, this study temporarily did not consider the impact of patients’ disease progres-
sion and treatment methods on ventilatory pump failure due to lack of enough relevant
data, but only predicted VCPLAT from the perspective of data mining. Each disease has
a different rate of progression from the VCPLAT and actual respiratory failure is more
dependent on how the doctors treat the patients (with CNVS and MIE or Cough Assist)
than on how weak the patient is. Therefore, the model proposed in this study is more
suitable for patients with Duchenne muscular dystrophy since evolution rates are related
to the VCPLAT for this condition. As for other diseases, the predictive nature for future
complications depends on other factors such as rate of progression and individual clinical
care. In future study, we will further consider the effects of treatment methods and other
factors on ventilatory pump failure.
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Appendix A

Table A1 is a list of all the 40 medical features that are considered in this study.

Table A1. 40 medical features and their explanations.

No. Abbreviations Explanation Type

1 NAME name of patients Categorical
2 HE_SHE gender Categorical
3 AGE age Numeric
4 FALLPERMO fall to the ground every month Numeric
5 SHOULDERL left shoulder flexion and extension strength Categorical
6 SHOULDERR right shoulder flexion and extension strength Categorical
7 BICEPSL left bicep strength Categorical
8 BICEPSR right bicep strength Categorical
9 WRISTL left wrist extension Categorical
10 WRISTR right wrist extension Categorical
11 MPHIPFLLT left hip flexion strength Categorical
12 MPHIPFLRT right hip flexion strength Categorical
13 MPHIPEXLT left hip extension strength Categorical
14 MPHIPEXRT right hip extension strength Categorical
15 MPQUADLT left quadriceps strength Categorical
16 MPQUADRT right quadriceps strength Categorical
17 MPDORSILT left dorsiflexion strength Categorical
18 MPDORSIRT right dorsiflexion strength Categorical
19 WALK10YDS how fast the patient can walk within 10 yards Numeric
20 UPFROMSIT time for patients to stand up from sitting on the floor Numeric
21 VCSIT sitting vital capacity Numeric
22 VCSUPINE supine vital capacity Numeric

23 MIC maximum blowing capacity (maximum air stack
volume) Numeric

24 PCF peak cough flow rate Numeric
25 PCFMIC peak cough flow measured from MIC Numeric
26 APCF assisted cough peak flow Numeric
27 SAO2LOW observed low oxygen content Numeric
28 SAO2HIGH observed high oxygen content Numeric
29 ETCO2MAX maximum end-tidal carbon dioxide Numeric
30 LASTVC sitting vital capacity at the last visit Numeric
31 ROMDORSIL range of motion of left ankle dorsiflexion Numeric
32 ROMDORSIR range of motion of right ankle dorsiflexion Numeric
33 ROMLTKNEE range of motion of left knee Numeric
34 ROMRTKNEE range of motion of right knee Numeric
35 ROMHIPEXL range of motion of left hip extension Numeric
36 ROMHIPEXR range of motion of right hip extension Numeric
37 ROMITBLT range of motion of left iliotibial bandage Numeric
38 ROMITBRT range of motion of right iliotibial bandage Numeric
39 VCPLAT vital capacity plateau value Numeric
40 AGEPLAT lifetime maximum age Numeric
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