Next Article in Journal
Minerals and Trace Elements Intakes and Food Consumption Patterns of Young Children Living in Rural Areas of Tibet Autonomous Region, P.R. China: A Cross-Sectional Survey
Previous Article in Journal
Conceptual Foundations of Systems Biology Explaining Complex Cardiac Diseases
Article Menu

Export Article

Open AccessArticle
Healthcare 2017, 5(1), 11; doi:10.3390/healthcare5010011

WearSense: Detecting Autism Stereotypic Behaviors through Smartwatches

1
Department of Physical Therapy, College of Public Health, Temple University, Philadelphia, PA 19140, USA
2
Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI 02881, USA
3
Smart Monitor Co., San Jose, CA 95119, USA
*
Author to whom correspondence should be addressed.
Academic Editor: Sampath Parthasarathy
Received: 14 December 2016 / Revised: 16 February 2017 / Accepted: 21 February 2017 / Published: 28 February 2017
View Full-Text   |   Download PDF [2179 KB, uploaded 2 March 2017]   |  

Abstract

Autism is a complex developmental disorder that affects approximately 1 in 68 children (according to the recent survey conducted by the Centers for Disease Control and Prevention—CDC) in the U.S., and has become the fastest growing category of special education. Each student with autism comes with her or his own unique needs and an array of behaviors and habits that can be severe and which interfere with everyday tasks. Autism is associated with intellectual disability, impairments in social skills, and physical health issues such as sleep and abdominal disturbances. We have designed an Internet-of-Things (IoT) framework named WearSense that leverages the sensing capabilities of modern smartwatches to detect stereotypic behaviors in children with autism. In this work, we present a study that used the inbuilt accelerometer of a smartwatch to detect three behaviors, including hand flapping, painting, and sibbing that are commonly observed in children with autism. In this feasibility study, we recruited 14 subjects to record the accelerometer data from the smartwatch worn on the wrist. The processing part extracts 34 different features in each dimension of the three-axis accelerometer, resulting in 102 features. Using and comparing various classification techniques revealed that an ensemble of 40 decision trees has the best accuracy of around 94.6%. This accuracy shows the quality of the data collected from the smartwatch and feature extraction methods used in this study. The recognition of these behaviors by using a smartwatch would be helpful in monitoring individuals with autistic behaviors, since the smartwatch can send the data to the cloud for comprehensive analysis and also to help parents, caregivers, and clinicians make informed decisions. View Full-Text
Keywords: autism; m-health; smartwatch; ASD; activity recognition autism; m-health; smartwatch; ASD; activity recognition
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Amiri, A.M.; Peltier, N.; Goldberg, C.; Sun, Y.; Nathan, A.; Hiremath, S.V.; Mankodiya, K. WearSense: Detecting Autism Stereotypic Behaviors through Smartwatches. Healthcare 2017, 5, 11.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Healthcare EISSN 2227-9032 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top