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Abstract: Encouraging healthy aging in postmenopausal women involves advocating for lifestyle
modifications, including regular physical exercise like combined training (CT) and functional training
(FT). Regarding this population, age-related alterations in body composition, such as decreased
muscle mass and heightened adipose tissue, impact health. The aim of this study was to analyze the
effects of FT and CT on body recomposition in postmenopausal women. About the methods, we
randomly allocated 96 post-menopausal women to the FT, CT, or control group (CG). We measured
body composition by bioimpedance and lower limb muscle strength by sit-to-stand test in five
repetitions, respectively. The training protocol lasted 16 weeks, and we measured body composition
and lower limb muscle strength every 4 weeks, totaling five assessments. Regarding results, we notice
that both training groups increased lean mass from the 8th week of training. In addition, a reduction
was observed in total fat percentage and an increase in appendicular lean mass from the 12th week of
intervention. No differences were found for body mass. Furthermore, only the experimental groups
increase muscle strength, starting from the 4th week of training. The conclusion was that FT and CT
promote similar adaptations in body recomposition without affecting body mass in postmenopausal
women.

Keywords: aging; body composition; exercise; health

1. Introduction

Among the physical capacities that are affected by aging, declines in strength and
cardiorespiratory capacity have a direct negative impact on health and functionality, and are
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associated with pathological conditions such as sarcopenia and cardiovascular disease [1,2].
In addition, balance, coordination, flexibility, and muscle power are also reduced during
the aging process; these are essential for a low risk of falls and maintaining activities of
daily living [3,4]. To promote healthy aging, the current literature encourages changes in
lifestyle habits, with emphasis on regular physical exercise [5–7]. Therefore, exercise has
been used to reduce the effects of senescence and increase longevity in postmenopausal
women, either as resistance or aerobic training methods [8,9].

Currently, training proposals that stimulate more than one physical capacity have
been widely used, such as combined training (CT) and functional training (FT) [10,11].
Specifically, CT uses two different training approaches in the same session; commonly, these
are strength training and endurance training, prioritizing stimulus in strength and aerobic
capacity [12]. Meanwhile, FT is characterized as multicomponent training, addressing
different capacities such as strength, coordination, flexibility, power, aerobic endurance,
and balance in the same session [13]. These types of training stand out for their ability
to promote functionality, autonomy, and body composition, mainly in postmenopausal
women [14,15].

In this specific populational group, the aging-associated changes in body composition,
such as the reduction in muscle mass and increases in adipose tissue [16,17], are more
pronounced due to the postmenopausal estrogen drop [18,19]. In turn, body composition
stands out as a good health indicator related to postmenopausal women’s health. Addition-
ally, body composition changes are related to inflammatory status [20,21], longevity [22],
physical disability [23], and mortality [24,25]. Corroborating this, Bosch et al. (2015) showed
that the fat percentage of 38.3% for women and 23.4% for men represent thresholds in
adiposity. Above this percentage, increases are associated with increased cardiovascular
risk and insulin resistance [26]. Increases in fat percentage in older people are related to
fat infiltration in muscle tissue, negatively impacting the neuromuscular function and,
consequently, the functionality and health of older people [27,28].

Among the training proposals, FT and CT presented good impacts in the body compo-
sition, increasing lean mass and reducing body fat [29,30]. However, there are discrepancies
in the literature results, possibly due to different intervention proposals, training doses, and
measurement methods [29,31–34]. Specifically with regard to FT, the fact that it is presented
as multicomponent training with exercises that mimic functionality brings it closer to the
proposals presented in the latest guidelines for training older people [11,15]. However,
these characteristics reinforce the need for more technical details about the methods used.
Furthermore, there are no studies that show these improvements on body composition in
a simultaneous way, reducing body fat and increasing muscle mass in postmenopausal
women. One of the main limitations of the studies is probably the duration of exposure to
physical exercise, with shorter interventions lasting up to 12 weeks [29,30].

To improve health, the events of simultaneously increasing lean mass and reducing
body fat receive the name of body recomposition [35]. To verify this phenomenon, it is
necessary to understand how long it takes for FT and CT to promote changes in lean mass
and body fat in postmenopausal women, and if these changes appear in a simultaneous way.
The literature points out that the sequence of adaptations to resistance training involves
improvements in lean mass increase, directly associated with hypertrophy, starting around
8 weeks of training [36]. Regardless of adaptations in muscle mass, there have already been
improvements in muscle strength in the initial weeks of the training, this being related to
neural adaptations of exercise [37]. In this way, it is important to verify the impact of these
morphological adaptations on the muscle strength.

This gap stems from the fact that most studies only perform assessments at the be-
ginning and end of interventions; this design may impede the identification of valuable
information for this population, such as the minimum time required for significant adapta-
tions to occur. In this view, a time course design can provide insight into the visualization
of these variables. Additionally, FT and CT may be an appropriate option to mitigate the
effects of menopause on body composition, strength, and functionality. In view of this
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scenario, understanding the timing and simultaneity of adaptations in body composition
promoted by CT and FT in older women can guide the practice of movement professionals
and the application of these protocols in public health policies. Therefore, the objective of
this study was to analyze and compare the effects of FT and CT on the body recomposition
of postmenopausal women. Our hypothesis is that 16 weeks of both training methods could
increase lean mass and decrease fat mass in postmenopausal women in a simultaneous
way, in addition to promoting strength and functionality in a similar way.

2. Materials and Methods
2.1. Experimental Design

This study is a randomized controlled clinical trial, registered in the Clinical Trials
Registry at clinicaltrials.gov (RBR-2d56bt) and approved by the Ethics Committee of the
Federal University of Sergipe (protocol code 3.225.938; approval date: 27 March 2019).
It was applied with one protocol of FT and another of CT (independent variables) and
evaluated the body composition and lower limb muscle strength every 4 weeks (dependent
variables) in postmenopausal women. The intervention featured 2 weeks of participant
familiarization with the intervention protocols and another 16 weeks committed to the
training protocols. The participants were submitted to five moments of evaluation. Evalua-
tions of body composition and lower limb muscle strength were performed in all moments
(W0, W4, W8, W12, and W16) and conducted in the physiology laboratory of the Federal
University of Sergipe (Figure 1). Recruitment was conducted from March 2019 and the
follow-up period was between April and October 2019. This study report followed the
CONSORT 2010 checklist (Supplementary Material).
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Figure 1. Experimental design. Notes: W0: pre-intervention moment; W4: moment after 4 weeks of
intervention; W8: moment after 8 weeks of intervention; W12: moment after 12 weeks of intervention;
W16: moment after 16 weeks of intervention.

2.2. Participants

The recruitment was carried out through dissemination on social media and leafleting
around the Federal University of Sergipe, as well as by attending public markets and religious
events. We calculated the sample size in G*Power software (version 3.1.9.2, Kiel, Germany)
based on the observed changes in fat percentage by Resende-Neto et al. (2019a) [31]. Specifically,
adopting an alpha of 0.05 and power of 80%, 27 participants per group were required. We
included 32 participants per group, increasing the sample size by 20% assuming their eventual
loss throughout the intervention. A total of 200 volunteers reported to the laboratory. Consider-
ing the inclusion criteria necessary for participation in the study (60 years old or older; female;
have no menstrual bleeding in the past 12 months; have no musculoskeletal or cardiovascular
contraindications to the practice of high-intensity physical training; have not exercised regularly
for at least 6 months), 96 participants were randomly distributed to one of the following groups:
functional training (FT); combined training (CT); and control group (CG) (Figure 2). In the case
of participation in another systematized exercise program, non-attendance in three consecutive
sessions, or absence in more than 15% of the training sessions, the participant was removed
from the program.
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The distribution between groups was conducted using block randomization. Par-
ticipants were ranked based on body fat percentage, grouped into a block of three, and
allocated to each group equally. The distribution process was blind and randomized by an
independent researcher.

Additionally, the volunteers were asked to sign an informed consent form and had the
risks and benefits of the research explained to them.

2.3. Intervention Protocols

The protocols consisted of 44 training sessions, conducted from 6 to 8 a.m., lasting
45 min, performed on non-consecutive days over 16 weeks, three times per week, by the
FT and CT groups. During the familiarization weeks, all the subjects participated in two
sessions of each protocol (FT, CT and CG). In these sessions, the main intention was for
all of them to learn the exercises used. In this sense, aspects of intensity were adjusted to
enable learning.

When the training protocol began, the participants performed all the exercises at a
maximum concentric speed. To control the external load, we maintained a range between 8
and 12 repetition maximum (RM) during the exercises, with adjustments in the external
load (of 5 or 10%) or complexity of the exercises performed, when necessary (i.e., when
the participant performed 7 repetitions or fewer in the proposed time, the external load or
complexity was reduced. On the other hand, when the participant performed 13 repetitions
or more, the external load or complexity was increased). We monitored the participants
through the rate of perceived exertion scale (RPE), which was answered after each session
of training [38]. We used the RPE because of its ease of application in large groups. For
both experimental groups (FT and CT), progressions based on complexity were used from
the 8th week of training onwards.

The intervention protocols were performed at the gym of the Federal University of
Sergipe. Trained professionals supervised the participants (1:6) to ensure the performance
and safety of the exercises. Additionally, we oriented the participants to maintain food
habits and daily activity habitually.

2.3.1. Functional Training

As shown in Table 1, the exercise protocol was composed of four parts aimed at
different physical capacities, as follows: Part 1, 3 minutes of preparing for movement; Part
2, 10 min of exercises focused on muscle power, agility, and speed; Part 3, 10 min of exercise
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aimed at muscle strength in functional movement patterns, such as squatting, pushing,
pulling, and carrying; and Part 4, 10 min of intermittent aerobic exercises [32].

Table 1. FT and CT training protocols.

PART 1 PART 2 PART 3 PART 4

FUNCTIONAL
TRAINING (FT)

Mobility, muscle
activation, and motor

coordination.

Exercises for muscle
power, agility, and

balance.

Exercises for strength
in functional patterns

using free weights.
Interval running.

Time: 3 min.

Time: 10 min
Stations: 5
Passages: 2

Density: 30/30
RPE: 6–7.

Time: 10 min
Stations: 8
Passages: 2

Density: 40/40
RPE: 7–9

Intensity: 8–12 RM.

Time: 10 min
Density: 40/40 RPE:

6–7.

COMBINED
TRAINING (CT)

General and specific
warm-up.

Exercises for strength
using analytical

machines.

Intermittent walking
and running. Active stretching.

Time: 3 min.

Time: 16 min.
Stations: 8.
Passages: 2.

Density: 40/40.
RPE: 7–9.

Intensity: 8–12 RM.

Time: 10 min.
Density: 40/40.

RPE: 6–7.

Time: 5 min.
Density: 40/40.

RPE: 3–4.

Abbreviations: RM: Repetition Maximum. RPE: Rated Perceived Exertion Scale.

2.3.2. Combined Training

Similar to the FT protocol, there were four distinct parts used in the CT protocol, as
shown in Table 1: Part 1, 3 min of general and specific warm-up; Part 2, 16 min of exercises
focused on muscle strength realized on typical gym machines; Part 3, 10 min of exercises
aimed at cardiorespiratory fitness; and Part 4, stretching exercises for the major muscle
groups [39].

2.3.3. Control Group

The control group performed submaximal static stretching exercises with two sets of
15 s for the major muscle groups and meditation practices. These exercises were performed
in 45 min sessions, three times per week, for 16 weeks.

2.4. Data Collection Procedure

Data collection included outcome variables (body composition and lower limb muscle
strength) and sample characterization variables; these were obtained from anthropometric
scales (Líder®, P150C, São Paulo, Brazil) and the anamnesis of each participant. The
procedures were conducted by previously trained evaluators, who performed the same
tests during the whole study, and were blinded to all experimental groups.

2.4.1. Body Composition

We evaluated the body composition with an octapolar electric bioimpedance scale
(Tanita BC-558 Ironman®, Tokyo, Japan). This bioimpedance system uses an electric current
with a frequency of 50 kHz that measures the amount of intracellular and extracellular
water. This system estimates values referring to total body fat and lean mass, appendicular
lean mass, and body mass, subsequently for analysis [40,41].

The measurement was standardized according to the manufacturer’s recommenda-
tions: fasting for at least 6 h; no physical exercise on the day before the test; no caffeine,
alcohol or diuretic drinks within 24 h before the evaluation; and normal water intake [42].
The participants were instructed to follow the recommendations prior to assessment. We
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only performed the evaluation if we could confirm that the participant followed all the
recommendations. If the required protocol was not confirmed, the participant would
undergo the assessment on the following day.

The intraclass correlation coefficient (ICC) for the use of this equipment was previously
calculated with 31.25% of the sample (n = 30) and presented a value of 0.91, considered
excellent [43]. On the other hand, regarding validity, this equipment presents an intermeth-
ods agreement considered very high with the Dual-energy X-ray absorptiometry, being for
fat mass, r = 0.95, and for lean mass, r = 0.93 [41].

2.4.2. Lower Limb Muscle Strength

We evaluated the lower limb muscle strength of the sample in a test that reproduces its
functionality. For the five times sit-to-stand test (FTSTS), the individual must perform five
repetitions of sitting down and getting up from a chair (45 cm, fixed base, AT51, Araquari,
Santa Catarina, Brazil) as quickly as possible. The individual’s positioning should involve
the arms crossed over the trunk. The test is counted in time, starting with the evaluator’s
verbal command (now!) and ending with the performance of the last repetition. This test
has excellent reproducibility with an ICC of 0.95 [44].

2.5. Statistical Analysis

For the categorical variables, the values were expressed as relative and absolute
frequency, and the Chi-Square test was used to verify the differences between the groups.
For the numerical variables, the values were expressed as mean and standard deviation,
had their normality checked by the Shapiro–Wilk test, and one-way Analysis of Variance
(ANOVA) was used to verify the differences between the groups.

For the outcome variable values, these data were expressed as mean and standard
deviation and analyzed using the Shapiro–Wilk test for normality and Levene’s test for
homogeneity. We used an intention-to-treat analysis. Then, we used a repeated-measures
ANOVA with two factors (time x group) and Bonferroni post hoc. A Mauchly’s test of
sphericity was used to test this assumption, and a Greenhouse–Geisser correction was used
when necessary. For all group and time comparisons, we calculated the effect size (ES)
using the methodological procedures defined by Cohen [45] and percentage change (∆).
All tests were two-tailed, and we adopted p < 0.05. Experienced researchers performed the
statistical processing using Jamovi (The jamovi project, Sydney, Australia, version 2.3.28.

3. Results

The groups showed no statistical differences at W0 (Table 2). Furthermore, throughout
the 16 weeks of training, there was a sample loss of 3.13% in the FT group, 15.63% in the
CT group, and 12.5% in the CG group (Figure 2).

We detected a time effect for all variables (Figure 3), with the exception of the body
mass, that none of the groups showed changes over time (F (GL) = 0.212; p = 0.334;
η2 = 0.000) (Figure 3A). Regarding the fat percentage, experimental groups showed significant
decrease at W12 compared to W0 (FT: ∆ = −3.9%, ES = −0.30, p = 0.002; CT: ∆ = −4.8%,
ES = 0.31, p < 0.001), maintaining such differences also at W16 compared to W0 (FT: ∆ = −5.2%,
ES = 0.40, p < 0.001; CT: ∆ = −5.8%, ES = 0.38, p < 0.001) (Figure 3B).

Regarding lean mass, compared to W0 significant increases were noted for the FT and
CT groups at W8 (FT: ∆ = +2.0%, ES = 0.16, p = 0.028; CT: ∆ = +2.1%, ES = 0.19, p = 0.048),
W12 (FT: ∆ = +3.2%, ES = 0.27, p = 0.002; CT: ∆ = +3.6%, ES = 0.34, p < 0.001), and W16
(FT: ∆ = +3.7%, ES = 0.31, p < 0.001; CT: ∆ = +4.3%, ES = 0.41 p < 0.001) (Figure 3C). As
for appendicular lean mass, the data show increases for the FT and CT groups starting at
W12 (FT: ∆ = +3.4%, ES = 0.25, p = < 0.001; CT: ∆ = +2.3%, ES = 0.19, p = 0.031), and being
maintained at W16 (FT: ∆ = +3.4%, ES = 0.25, p < 0.001; CT: ∆ = +2.3%, ES = 0.19, p = 0.019)
(Figure 3D).
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Figure 3. Observed results on body composition variables. Body Mass (A). Fat Percentage (B). Lean
Mass (C) and Appendicular Lean Mass (D) over 16 weeks of intervention. Note. *: effect of time
relative to FT. #: effect of time relative to CT. Values are expressed as mean and standard error mean.
Statistical difference verified by repeated-measures ANOVA. Abbreviations: FT: Functional Training.
CT: Combined Training. CG: Control Group.

Table 2. Participants’ characterization.

Characteristics FT CT CG p

Anthropometry (mean and standard deviation)

Age (years) 63.6 ± 3.4 65.2 ± 4.5 67.1 ± 5.8 0.063

Height (m) 1.54 ± 0.06 1.55 ± 0.06 1.53 ± 0.06 0.802

BMI (kg/m2) 28.84 ± 4.81 27.80 ± 4.54 29.23 ± 5.28 0.527

Smoking (relative and absolute frequency)

Smoker 3.2 (1) 0.0 (0) 10.7 (3)

0.362Ex-smoker 25.8 (8) 18.5 (5) 21.4 (6)

Never smoked 71.0 (22) 81.5 (22) 67.9 (19)

Medical History (relative and absolute frequency)

Hypertension 45.2 (14) 51.9 (14) 57.1 (16) 0.653

Diabetes 19.4 (6) 14.8 (4) 25.0 (7) 0.650

Dyslipidemia 41.9 (13) 51.9 (14) 39.3 (11) 0.613

Alcohol intake 29.0 (9) 25.9 (7) 25.0 (7) 0.934
Abbreviations: BMI: Body Mass Index. FT: Functional Training. CT: Combined Training. CG: Control Group.
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For lower limb muscle strength and functionality, using the FTSTS data we found a
statistically significant reduction in the time needed to perform the task starting at W4
for the FT and CT, maintaining such differences until the end of the intervention. The CG
showed no statistically significant differences over time (Table 3).

Table 3. Observed results on FTSTS for lower limb muscle strength and functionality.

W0 W4 W8 W12 W16

FT (s) 6.88 ± 1.70 6.01 ± 1.63 * 5.64 ± 1.49 *# 5.28 ± 1.22 *# 5.04 ± 1.06 *#

CT (s) 8.01 ± 1.79 7.19 ± 1.81 * 6.33 ± 1.58 * 5.97 ± 1.37 *# 5.82 ± 1.28 *

CG (s) 7.43 ± 1.66 7.51 ± 1.89 7.96 ± 2.02 7.76 ± 2.02 7.68 ± 2.05
Note. *: effect relative to W0. #: effect relative to CG.

4. Discussion

Our main findings confirm our initial hypothesis since the FT and CT promoted similar
increases in lean mass and similar reductions in the percentage of fat in postmenopausal
women in a simultaneous way. To the best of our knowledge, this is the first study that
targeted body recomposition with these training proposals in this population. For both
training groups, the increase in lean mass was detected in the 8th week of training, while the
reduction in fat percentage was in the 12th week. These changes in body composition were
maintained at the end of the intervention period. Thus, our findings point to the efficacy of
both training methods applied to the promotion of body recomposition in postmenopausal
women and provide subsidies for the performance of exercise professionals.

The body composition changes observed in the present study reinforce previous findings
regarding the benefits of exercise on this variable [46,47]. Resende-Neto et al. (2019) approached
a model of FT and CT similar to the one adopted in the present study, finding fat percentage
decreases after the application of FT and lean mass increases after a CT protocol in older
women, both for 12 weeks [31]. These data should be interpreted with caution since the study
does not present a proper equalization of training volume between groups. In addition, it
is only 12 weeks long, and only the pre- and post-intervention periods were evaluated, not
allowing for the verification of the simultaneity of changes in the variables. Possibly, the similar
adaptations between FT and CT in our study were derived from the volume equalization, since
the improvements in body composition appear to be related to this variable [48,49].

We observed an increase in lean mass from 8 weeks for both interventions; specifically,
on the adaptations in appendicular lean mass, our study observed increases from 12 weeks
of intervention. A possible mechanism for this is the sequence of adaptations provided by
resistance training, starting with neural adaptations that occurred in the initial weeks of
training, followed by muscular adaptations involving hypertrophy and changes in muscle
architecture, which are commonly reported after 8 weeks of training [50,51]. Our data
regarding muscle strength reinforce this theory since improvements in lower limb muscle
strength were found after the first 4 weeks, when there were still no significant differences
in lean mass, possibly due to neural adaptations promoted by the exercise. Similarly,
Nascimento et al. (2019) performed 12 weeks of resistance training in older women and
found increases in lean mass and appendicular lean mass [52]. Thus, the importance of
increasing muscle mass to decrease the risk of mortality and counteracting the process of
sarcopenia in older people should be emphasized [53].

Our sample presented body fat reduction after 12 weeks of intervention. This fat reduction
can be explained by the energy expenditure provided by physical exercise [54]; it is important
to understand the time aspects that involve this reduction. Timmons et al. (2018) showed
reduced body fat in older people after 6 weeks of aerobic training or CT; however, the resistance
training group only showed this adaptation after 12 weeks of intervention [30], demonstrating
that different types of training require different periods to provide adaptations in body fat. It
is worth pointing out that high levels of body fat are related to the onset of cardiovascular
diseases [26,55].
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Despite improvements in body composition, the absence of differences in body mass
can be explained by the possible offset between increased lean mass and reduced adipose
tissue at the same time, causing the phenomenon of body recomposition [35]. We can
notice that both training protocols promoted body recomposition in our study. Without
presenting effects on body mass, the proposed interventions acted simultaneously on the
percentage of fat and lean mass throughout the time course. The same phenomenon was
seen in a previous study that used resistance training in healthy men and women [56].
These data reinforce the importance of specifically analyzing total body fat and lean mass
measurements for a more accurate interpretation of body composition in this population,
suggesting the replacement of more generalist markers such as body mass index (BMI) [57].

Some limitations of our study are that there was no nutritional and physical activity
control of the sample; however, we instructed the participants to maintain the same eating and
physical activity habits throughout the intervention period. Furthermore, Swift et al. (2018)
demonstrated that exercise interventions without eating control can reduce body fat and increase
lean mass [58]. In this way, important studies have been published about body composition
adaptations through physical training without nutritional and physical activity control [59,60],
which tend to approximate more closely to conditions resembling real-world scenarios.

Thus, our study brings out several positive points concerning the current literature,
such as the time-course of the adaptations promoted by exercise on body composition.
In addition, it is noteworthy that the functional training modality has proven to be more
attractive in our study, because in this group there was greater adherence to this proposal
of training. One possible explanation lies in the fact that functional training has a more
dynamic approach, providing greater enjoyment levels in training sessions than traditional
training [61]. From a practical point of view, our study provides data on two different
methods of training, both of easy applicability in public health policies, that promote body
recomposition in postmenopausal women. In this way, our study provides important
information for professional practice and the setting up of public health policies.

5. Conclusions

Sixteen weeks of FT and CT have similar effects in promoting body recomposition,
increasing muscle mass from the 8th week of training and reducing body fat from the 12th
week of training. In addition, both proposals of training promote increases in lower limb
muscle strength in postmenopausal women from the 4th week of training. Thus, FT and
CT present as stimulating alternatives beyond traditional resistance or aerobic training,
for health promotion in this public, promoting functionality through a multicomponent
proposal.
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