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Abstract: After COVID-19 emerged, alternative methods to laboratory tests for the individualized
prediction of SARS-CoV-2 were developed in several world regions. The objective of this investi-
gation was to develop models for the individualized prediction of SARS-CoV-2 infection in a large
municipality of Mexico. The study included data from 36,949 patients with suspected SARS-CoV-2
infection who received a diagnostic tested at health centers of the Alvaro Obregon Jurisdiction in
Mexico City registered in the Epidemiological Surveillance System for Viral Respiratory Diseases
(SISVER-SINAVE). The variables that were different between a positive test and a negative test were
used to generate multivariate binary logistic regression models. There was a large variation in the
prediction variables for the models of different pandemic waves. The models obtained an overall
accuracy of 73% (63–82%), sensitivity of 52% (18–71%), and specificity of 84% (71–92%). In conclusion,
the individualized prediction models of a positive COVID-19 test based on SISVER-SINAVE data
had good performance. The large variation in the prediction variables for the models of differ-
ent pandemic waves highlights the continuous change in the factors that influence the spread of
COVID-19. These prediction models could be applied in early case identification strategies, especially
in vulnerable populations.

Keywords: COVID-19; statistical modeling; logistic regression; risk factors; symptoms

1. Introduction

SARS-CoV-2 is a type of coronavirus that causes the COVID-19 disease, which has
several symptoms. In Mexico, during the first months of the pandemic, about 24% of
patients needed hospitalization [1,2]. Since the beginning of the COVID-19 pandemic, the
world has been overwhelmed by the number of infections in very short periods [2]. Over
the last two years, the pandemic has developed through different infection peaks with
different SARS-CoV-2 virus variants. Up until the beginning of 2023, six waves of contagion
had been reported globally [2]. Alpha and beta are known to affect humans the most out
of these strains. In Mexico, the waves corresponded to those reported worldwide by the
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WHO, reporting up to 29 November 2022, 7.13 million infections and 330,000 deaths, with
almost 2500 new infections confirmed daily [1–4].

At the beginning of the pandemic, in Mexico, the only diagnostic methods were SARS-
CoV-2 PCR tests from the Diagnostic and Epidemiological Reference Institute (InDRE),
which had 98% efficacy. The diagnostic methods were scarce compared to the number
of daily infections [1]. Initially, in Mexico City, tests were only available to patients who
visited specialized centers designated for treating the disease and displayed apparent signs
of severe symptoms. Later, private laboratories began conducting tests, but at a high cost
of up to USD 200 to USD 300. In Mexico, testing was only available in large hospitals and
COVID centers in cities, and rural populations had virtually no access to them or treatment
for the disease; many people still cannot afford to pay for them or must travel long hours
and wait long periods to obtain one from the public health system [1,2,5–8].

With the emergence and spread of the virus in 2020, several proposals have been
published to solve the problem of the lack of testing that led to many more infections. Statis-
tical models were developed by different methods, from mathematical analysis to artificial
intelligence [9–16]. The new methods, mainly using similar variables in their prediction
models, use known data from patients diagnosed as positive for the virus by laboratory
tests. Known data may include symptomatology, comorbid diseases, demographic charac-
teristics, and recent mobility, although some models included data from other laboratory
tests obtained from hospitalized patients [9–16]. Furthermore, new methods have been de-
veloped to diagnose COVID-19 by applying artificial intelligence (AI) (up to 99% accuracy),
“immunoassay” and “biosensor-based identification” (66–95% accuracy), mobile devices or
smart rings (up to 99% predicted), “plasma biosensors”, and “electromechanical biosensors”
as well as the analysis of chest X-rays with artificial intelligence (98% of hits), the use of
cough and breath sounds, and “COVID-19 symptom tracker” (98% sensitivity) [16].

In Mexico, diagnostic test data have been collected by the National Epidemiological
Surveillance System (SINAVE). The variables in the SINAVE databases include patient data,
the symptoms of the virus, contact with a suspicious case, contact with animals, disease
evolution, comorbid diseases, and information from the sampling and test results [3].
Although epidemiological models have been developed for the prediction of COVID-19
tests or to estimate the risk of hospitalization or mortality, no models have been reported for
the individualized prediction of SARS-CoV-2 infection for the Mexican population [9–16].

The objective of this work was to develop a model for the individual test prediction of
COVID-19 based on SINAVE data for patients with suspected SARS-CoV-2 infection who
underwent a test at the Alvaro Obregon Jurisdiction health centers in Mexico City during
the six waves of contagion that occurred between 2020 and 2023.

2. Materials and Methods
2.1. Study Design and Participants

The study design was observational and retrospective. The study was conducted with
data from patients who attended the health centers of the Alvaro Obregon Jurisdiction
of Mexico City between April 2020 and January 2023. All patients were selected within
3 weeks at the peak of each of the waves according to data reported in SINAVE 3 (Table 1).
We included patients who requested the PCR test due to suspicion of COVID-19 and
who were older than 18 years. Patients with inconclusive results in their PCR test were
excluded. The research protocol was approved by the Ethics and Research Committee
of the Universidad Autónoma del Estado de Hidalgo (protocol number Comiteei.icsa
017/2022 approved on 18 March 2022). All procedures adhered to the principles stated in
the Declaration of Helsinki.



Healthcare 2024, 12, 764 3 of 13

Table 1. Characteristics of the data for each of the six waves of the COVID-19 pandemic.

Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 Wave 6

Period 19 April–21
June 2020

4–24 January
2021

19 July–8
August 2021

3–23 January
2022

20 June–10 July
2022

27 November
2022–14

January 2023

Main variant Original strain Alpha, Beta,
and Gama Delta Omicron Omicron

(sub-lineages)
Omicron

(sub-lineages)
Total patients 2081 13,535 15,368 6159 1177 3332

Excluded
patients 72 1196 2072 822 167 840

Final sample
size 2009 12,339 13,296 5337 1010 2492

2.2. Procedure for Obtaining Study Data and Variables

Data were obtained from the Epidemiological Surveillance System for Viral Respiratory
Diseases (SISVER/SINAVE) database of the Ministry of Health of Mexico, which contains
the information variables of those patients who came to the health centers of the Alvaro
Obregon Jurisdiction for suspicion of infection with the COVID-19 virus [3]. These data
were collected by the health professionals attending to the patients and recorded in the
system with an identifier number per patient.

The samples of each of the patients were taken at COVID centers especially designated
for this type of care using pharyngeal and nasopharyngeal exudates; these were sent
to InDRE, and the results were subsequently recorded in the SINAVE database. The
results were recorded as a field in the database named “Final result” and were classified
as “SARS-CoV-2”, “Negative”, “Rejected”, “Unsuitable”, “Non-subscribed”, “Positive”,
and empty fields. The results classified as “SARS-CoV-2” and “Positive” were considered
positive tests and recoded as 1, while the results classified as “Negative” were considered
negative tests and recoded as 0 for further analysis. The results classified with other criteria
(“Rejected”, “Unsuitable”, Non-subscribed”, or empty fields) were removed as they were
not suitable for analysis [3].

The variables included in the regression analysis were selected from a literature review
regarding the main characteristics presented by patients diagnosed as positive within
each wave as it was shown that some of these characteristics changed concerning the
SARS-CoV-2 virus subtypes; these were included in a general way for the models since the
database did not record information on the variant of the virus with which the positive
patient was infected [3,9–19].

The following variables were included: sex, age, main comorbidities for the Mexican
population (diabetes, hypertension, and obesity [9]), smoker, contact with a suspicious
case, and presence of symptoms (fever, cough, odynophagia, dyspnea, irritability, diarrhea,
chest pain, chills, headache, myalgia, arthralgia, rhinorrhea, polypnea, vomit, abdominal
pain, conjunctivitis, cyanosis, anosmia, dysgeusia). All variables except age and sex were
classified as “YES” and “NO” and were recorded as 1 and 0, respectively. Cases with
captured data such as “IGNORED” and empty fields were excluded [3].

The SISVER/SINAVE database was consulted to obtain all of the cases registered for
the health centers in the Alvaro Obregon Jurisdiction during each peak of the first six waves
of the pandemic (Table 1). The dates with the highest number of cases of each wave were
identified. For waves 2, 3, 4, 5, and 6, an interval of one week before and one week after the
week with more cases was selected (total sampling period of 3 weeks per wave). During
wave 1, there was little availability of evidence, and the criteria for defining a suspicious
case were stricter, resulting in a low rate of negative cases. Therefore, for the wave 1 sample,
an interval of two weeks before and two weeks after the week with more cases was selected
(a total sampling period of 5 weeks).
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2.3. Statistical Analysis

Since a Kolmogorov–Smirnov test showed that age had no normal distribution (p < 0.01),
it was described as median (25th percentile–75th percentile) and compared between waves
and between positive or negative results of each wave by Mann–Whitney U tests. The nom-
inal variables were described as absolute values and percentages and compared between
waves and between test results (positive or negative) with the Chi-square test.

To predict the SARS-CoV-2 test result, binary logistic regression analyses were per-
formed, obtaining a regression model for each of the six waves. Only the variables with
significant differences between each wave’s positive and negative groups were included.
We used the conditional forward method of binary logistic regression with the goodness of
Hosmer–Lemeshow adjustment. An analysis of influential points was performed using
Cook’s distance for the final model of each wave. The odds ratio (OR) with a 95% confidence
interval (CI) is reported for the significant variables in each model. The statistical analysis
was performed with SPSS version 21.0. A value of p < 0.01 was considered significant.

3. Results

Table 2 shows the characteristics of the study participants. The asterisk symbols
(*) show that wave 1 had a greater age, a higher percentage of women, and a larger
proportion of smokers, hypertension, obesity, diabetes, and contact with a suspicious case
compared to subsequent waves (2 to 6). Compared to wave 2 (symbol &), the age in
subsequent waves 3 and 4 was lower, and was higher in waves 5 and 6. Wave 2 also had
a higher proportion of smokers (compared to waves 3, 5, and 6), a higher proportion of
hypertension and diabetes (compared to waves 3 and 4), a lower proportion of obesity
(compared to wave 4), and less contact with a suspicious case (in the subsequent 3 waves
3, 4, 5, and 6). Wave 4 had the lowest proportion of comorbidities (hypertension, obesity,
diabetes). Compared to wave 3 (symbol #), waves 4 and 5 had significant differences in
age, number of smokers, the proportion of patients with hypertension, obesity (only in
wave 4), diabetes (only in wave 5), and contact with a suspicious case (only in wave 5).
Wave 6 (symbol ̸=) showed statistically significant differences with the other waves in
most variables.

Table 2. Sociodemographic characteristics and comorbidities of the study population. Data are shown
as absolute value and percentage or median (25th–75th percentile).

Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 Wave 6
Variable (N = 2009) (N = 12339) (N = 13296) (N = 5337) (N = 1010) (N = 2492)

Age (years) 46
(35–57)

40 *
(29–52)

35 *&

(26–48)
38 *&#

(29–51)
43 *&#$

(31–58)
42 *&#$

(31–56)

Sex * * * *&$ *&#$

Female 1006 (50%) 6668 (54%) 7306 (55%) 2854 (53%) 590 (58%) 1491 (59.8%)
Male 1003 (50%) 5671 (46%) 5990 (45%) 2483 (47%) 420 (42%) 1001 (40.2%)

Smoker 240 (12%) 1234 (10%) 1036 (8%) *& 560 (11%) # 41 (4%) *&#$ 152 (6%) *&#$ ̸=

Hypertension 367 (18%) 1124 (9%) * 818 (6%) *& 267 (5%) *&# 112 (11%) *#$ 224 (9%) *#$

Obesity 355 (18%) 672 (5%) * 721 (5%) * 110 (2%) *&# 41 (4%) *$ 149 (6%) *$

Diabetes 301 (15%) 941 (8%) * 606 (5%) *& 212 (4%) *& 73 (7%) *#$ 162 (7%) *#$

Contact with a
suspicious case 833 (62%) 7202 (59%) 5198 (39%) *& 2125 (41%) *& 236 (24%) *&#$ 548 (22%) *&#$

* p < 0.01 vs. wave 1, & p < 0.01 vs. wave 2, # p < 0.01 vs. wave 3, $ p < 0.01 vs. wave 4, ̸= p < 0.01 vs. wave 5.
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Table 3 shows the sociodemographic and morbidity data of the participants compared
with the test results (positive or negative); the asterisks indicate statistically significant
differences between positive and negative within the same wave (p < 0.01). In wave 1,
the different variables between positive and negative (indicated with *) were: age, sex,
hypertension, diabetes, and contact with a suspicious case. In wave 2, the different variables
between positive and negative are age, smoking, hypertension, obesity, diabetes, and
contact with a suspicious case. In wave 3, the positive ones differed from the negative
ones in age, sex, smokers, obesity, diabetes, and contact with a suspicious case. In wave 4,
the positive cases differed from the negative ones in hypertension, obesity, and contact
with a suspicious case. In wave 5, the variables with the differences between positive and
negative were age, smoking, hypertension, obesity, diabetes, and contact with a suspicious
case. Wave 6 showed differences between age, diabetes mellitus, and contact with a
suspicious case.

Figure 1 and Table S1 in the Supplementary Materials compare the prevalence of
symptoms in patients with positive vs. negative tests within each wave. The symptoms
were ordered from the most prevalent to the least prevalent within the following groups of
symptoms: respiratory system (cough, rhinorrhea, dyspnea, cyanosis, and odynophagia),
digestive or gastrointestinal system (anosmia, dysgeusia, diarrhea, abdominal pain, and
vomit), pain related (headache, myalgia, arthralgia, and chest pain), and other types (fever,
chills, irritability, and conjunctivitis). In wave 1, the percentage of symptoms among the
positive and negative patients was different in most variables: cough, rhinorrhea, dyspnea,
polypnea, anosmia, dysgeusia, headache, myalgia, arthralgia, chest pain, fever, and chills.
In waves 2 and 3, all variables presented statistically significant differences between positive
and negative, which were cough, rhinorrhea, dyspnea, polypnea, cyanosis, odynophagia,
anosmia, dysgeusia, diarrhea, abdominal pain, vomiting, headache, myalgia, arthralgia,
chest pain, fever, chills, irritability, and conjunctivitis. Wave 4 presented differences in the
following variables: cough, rhinorrhea, odynophagia, diarrhea, abdominal pain, headache,
myalgia, arthralgia, chest pain, fever, chills, and irritability. Wave 5 presented differences
in cough, rhinorrhea, dyspnea, polypnea, odynophagia, dysgeusia, diarrhea, abdominal
pain, headache, myalgia, arthralgia, chest pain, fever, chills, irritability, and conjunctivitis.
In wave 6, only cough, rhinorrhea, dyspnea, and vomit showed a statistically significant
prevalence between patients with positive and negative tests.

Figure 2 presents the binary logistic regression analysis results with models to predict
the outcome of the SARS-CoV-2 test (positive or negative) as a dependent variable. A
different model was calculated in each wave including independent variables with sig-
nificant differences between positive and negative (Supplementary Materials, Table S2).
For example, the initial wave 1 model included age, female sex, hypertension, diabetes,
contact with a suspicious case, cough, rhinorrhea, dyspnea, polypnea, anosmia, dysgeu-
sia, headache, myalgia, arthritis, chest pain, fever, and chills. The variables not initially
included in the wave 1 model, indicated as “Not included,” were smoker, obesity, cyanosis,
odynophagia, diarrhea, abdominal pain, vomiting, irritability, and conjunctivitis. When
applying the logistic regression analysis in model 1 with the later conditional method, the
variables that did not have a significant contribution to the dependent variable, indicated
as “Eliminated”, were eliminated: age, hypertension, diabetes mellitus, contact with a
suspicious case, rhinorrhea, polypnea, anosmia, myalgia, arthralgia, chest pain, and chills.
The final wave 1 model had the following variables with a significant odds ratio (p < 0.05):
female sex, diabetes, cough, dyspnea, dysgeusia, headache, and fever.
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Table 3. Sociodemographic characteristics and morbidities of the study population (positive and negative test results for each wave). Data are shown as absolute
value and percentage or median (25th–75th percentile).

Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 Wave 6

Variable Positive
(N = 1119)

Negative
(N = 874)

Positive
(N = 6372)

Negative
(N = 5363)

Positive
(N = 5435)

Negative
(N = 7658)

Positive
(N = 1150)

Negative
(N = 3229)

Positive
(N = 298)

Negative
(N = 616)

Positive
(N = 960)

Negative
(N = 1532)

Age (years) 48
(37–60)

43 *
(34–55)

40
(30–52)

39 *
(28–51)

34
(25–46)

36 *
(26–49)

39
(29–51)

38
(29–50)

49
(33–66)

40 *
(29–55)

45
(33–58)

40 *
(30–55)

Sex * *
Female 45.0% 56.4% 54.2% 53.8% 52.5% 56.8% 53.0% 53.7% 57.4% 59.3% 60.0% 59.7%
Male 55.0% 43.6% 45.8% 46.2% 47.5% 43.2% 47.0% 46.3% 42.6% 40.7% 40.0% 40.3%

Smoker 11.9% 12.2% 11.2% 8.5% * 8.4% 7.4% 11.6% 11.0% 7.1% 2.3% * 5.8% 6.3%

Hypertension 21.6% 14.4% * 10.3% 7.5% * 6.5% 5.8% 7.0% 4.9% * 20.3% 5.5% * 9.4% 8.8%

Obesity 19.0% 16.1% 7.1% 3.1% * 6.6% 4.6% * 3.6% 2.0% * 7.8% 2.3% * 5.8% 6.1%

Diabetes 20.0% 8.9% * 8.6% 6.3% * 5.3% 3.9% * 5.3% 3.9% 11.9% 3.9% * 5.8% 7.0%

Contact with a
suspicious case 58.0% 65.0% * 54.7% 62.7% * 42.5% 37.1% * 44.3% 37.1% * 37.5% 18.5% * 25.6% 20.5% *

* p < 0.01 compared with the positive of the same wave.
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Applying the same logistic regression analysis strategy, the final models of subsequent
waves had different predictor variables (Figure 2). The final wave 2 model had age,
smoking, obesity, contact with a suspicious case, cough, rhinorrhea, dyspnea, polypnea,
odynophagia, anosmia, dysgeusia, vomiting, headache, arthralgia, chest pain, fever, chills,
irritability, and conjunctivitis as predictors, while the final wave 3 model had age, female
sex, cough, rhinorrhea, cyanosis, odynophagia, anosmia, dysgeusia, diarrhea, abdominal
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pain, headache, myalgia, arthralgia, fever, chills, and irritability as predictors. The final
wave 4 model had cough, odynophagia, myalgia, fever, chills, and irritability as the final
predictor variables. The final wave 5 model had age, cough, rhinorrhea, headache, fever,
and chills as predictors. Predictors included in the final model for wave 6 included age,
contact with a suspicious case, cough, dyspnea, and vomit. For comparative analysis,
we verified whether the confidence intervals for the odds ratio in the different waves
overlapped (Supplementary Materials, Table S2). The odds ratio of age during wave 5 was
larger than during wave 3. The odds ratio of being a smoker was lower during wave 3 than
during wave 2. Compared to waves 1 and 2, the odds ratio of cough was consistently higher
during waves 3, 4, and 5. Odynophagia also had a higher odds ratio during waves 3 and 4
than during wave 2. Headache had higher odds ratios during waves 2, 3, and 5 than during
wave 1. The odds ratio of fever during wave 3 was larger than in wave 2, and wave 5 also
had a larger odds ratio of fever than wave 2 and wave 4. Finally, the odds of irritability
were larger in wave 4 compared to waves 2 and 3.

Table 4 shows the performance results of the models. The models’ determination
coefficients (R2) ranged from 0.051 to 0.535. The global predictions also varied according
to the wave, with an average overall accuracy of 73% (range between 63% and 82%), an
average sensitivity of 52% (range between 18 and 71%), average specificity of 84% (range
between 71 and 92%), average positive predictive value of 68% (range between 55 and
76%), and an average negative predictive value of 73% (range between 56 and 76%). In
the final models, the Cook statistic for influence was calculated, and we did not find any
influential observations (Supplementary Materials, Figure S1).

Table 4. Summary of the performance of the SARS-CoV-2 individual test prediction models.

Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 Wave 6

R2 0.172 0.267 0.405 0.201 0.535 0.051

Overall prediction (%) 65.7% 71.1% 77.0% 76.6% 82.4% 62.7%

Sensitivity 56.0% 71.0% 63.7% 34.1% 71.4% 18.2%

Specificity 73.9% 71.1% 86.2% 91.7% 87.8% 91.0%

Positive predictive value 64.8% 74.4% 76.1% 59.3% 74.3% 56.2%

Negative predictive value 66.3% 67.5% 77.4% 79.6% 86.1% 63.6%

4. Discussion
4.1. Main Contribution

The main contribution of this work is to demonstrate the development of statistical
models for the individual prediction of SARS-CoV-2 virus infection from sociodemographic
data and symptoms usually collected in Mexico’s epidemiological surveillance system.
As a test population, the work focused on a sample by the census of all cases registered
in the Alvaro Obregon Jurisdiction, one of the most populated with great socioeconomic
heterogeneity, in one of the most populous cities in the world, Mexico City. This munici-
pality has remained one of the most affected since the beginning of the pandemic and has
even been the epicenter of cases of COVID-19 infection in Mexico. The prediction models
showed very good performance, so they are a potential new tool to deal with new waves
of contagion. They promote an early risk diagnosis and thus favor measures that reduce
infections. The models also show that the prediction variables varied widely between
the six waves, highlighting the continuous change in factors that influence the spread of
COVID-19, hence the importance of considering statistical models for individual prediction
that can be updated, as these factors evolve with data from the same population.
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4.2. Comparison to Other Models for Personalized Prediction of SARS-CoV-2 Infection

Some similar models have already been developed in different parts of the world,
mainly in the United States. There is a report based on variables and methods like the
present work in California [9], with a model based on symptoms of smell and taste, which
also included morbidities and the symptomatology most frequently reported until then
with that variable in the year 2020, where they also applied logistic regression models with
a correct prediction of 75%. Another previous work [10] also determined the probability
of having the disease or not from surveys and risk factors. Another model developed
in Alabama [14] used a risk calculator from an electronic recording of the most reported
risk factors such as the mentioned symptoms, smokers, and psychological factors. On the
other hand, in Minnesota, they developed another model that used the same variables plus
patient mobility and applied multivariate logistic regression, which showed the predictor
variables with the highest probability of being positive patients.

Most prediction models for COVID-19 tests are applied using logistic, binary, or
multivariable regression [9–16], whose results generally obtain percentages of between
70 and 80% of correct prediction. However, other models are also applied to test predictions
for such a disease. Some have applied artificial intelligence to predict the pandemic’s
development or make individualized prediction models. One example was developed
in Israel, in which they used the basic information and symptomatology of patients as
dichotomous variables, plus contact with positive cases, achieving an accuracy reported as
high [11]. Some of the latest models also apply electronic devices such as smartwatches or
even new materials to measure the bio-signals that will be analyzed [16].

The current work focused on applying the most precise and straightforward statistical
approach to unravel the patient characteristics and symptoms that would better predict
an individual’s positive or negative SARS-CoV-2 test. The approach was applied to a
valuable large dataset from a densely populated municipality in one of the world’s most
inhabited urban areas. This is the first work that shows the variables that better predicted
an individual’s COVID-19 infection during each of the first six waves of the pandemic.
Our results are an incentive for further studies when there are more advanced methods to
improve the accuracy, based, for instance, on artificial intelligence. Furthermore, structural
equation modeling based on the groups of symptoms described in Figure 1 could help
identify latent predictor variables from particular systems that are most affected in certain
patients or by specific virus variants.

4.3. Heterogeneity in the Variables of Models for Individual Epidemic Waves

Different variables were used in the prediction model of each wave, which were se-
lected from the significant differences between each wave’s positive and negative cases. As
already mentioned, at each of the peaks of each wave, different variants of the SARS-CoV-2
were presented, so the variables in the models changed depending on these characteristics.
In addition, after the first wave, vaccination schemes began in older people, and as the pan-
demic progressed, they continued to be vaccinated by age group to reach the youngest. This
could influence changes in the behavior of the variables of the models as the pandemic pro-
gressed, being that the fifth wave raised the age again, with the hypothesis that this sector
of over 50 years was the first to be vaccinated and by this time, adults over 60 were already
receiving the vaccination scheme again [9,10]. Currently, COVID-19 testing has become
more accessible to the population, both in the public and private sectors, which influenced
an increase in negative tests in the databases [8]. The determinant variables in this study
and the literature agree with those previously reported in other populations [1–3,17,19–25].
It should be noted that no models had been made with the six waves separately and in
general, so comparing the present work with previous reports regarding individual waves
was impossible.

It can be observed, for example, that certain variables were not included in the model
from the significance, and that others were excluded during the regression analysis. Age
was one of the variables included in waves 2, 3, 5, and 6, but not in 1 and 4, where there was
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either no vaccination or the first block became the one that had the longest with the scheme.
Sex was the only variable predictor in wave 1, being a smoker only in wave 2. In contrast,
comorbidities such as hypertension and diabetes did not appear in any model, obesity in
wave 2, while contact with a suspicious case was a predictor only in waves 2 and 6.

Regarding symptomatology, cough was present in all waves as a predictor, dyspnea
was included in waves 1, 2, and 6, polypnea in wave 2, cyanosis in wave 3, odynophagia
in waves 2, 3, and 4, dysgeusia in 1, 2, and 3, and diarrhea and abdominal pain in wave
3. Vomit only was a predictor in wave 2 and headache occurred in all waves except in
waves 4 and 6, myalgia in waves 3 and 4, arthralgia in waves 2 and 3, and chest pain in
wave 2. Fever was present in all waves; chills were not a predictor in wave 1. Irritability
was in waves 2, 3, and 4, and conjunctivitis only in waves 2 and 6. As can be seen, the
gastrointestinal symptoms agreed with the appearance of Delta. Fever and cough were in
all waves; most variables were present in at least three of the waves, and others were only
excluded in one such as headache and chills. At the same time, it can be concluded that the
first wave included the largest number of variables.

Despite the high heterogeneity of variables included in the final models for the six
waves, some predictors in more than one wave showed changes in the magnitude of the
odds ratio when compared between different waves (Supplementary Materials, Table S2).
For instance, cough, the symptom predictor in all waves, had consistently larger odds ratios
during waves 3, 4, and 5 compared to the initial waves 1 and 2. This consistent increase in
the relative weight that a symptom (i.e., cough) had on the risk of a positive SARS-CoV-2
test could be related to differences in the symptoms experienced in most patients with
different variants (Table 1). However, in most variables present in models of two or more
waves, there was an overlap in the confidence intervals of the odds ratio, and therefore,
observing a changing pattern in the relative weight of a symptom throughout the pandemic
was most likely an exception rather than the rule.

4.4. Potential Practical Applications

The results of this work show that it is possible to create new methods for predicting
COVID-19 tests by adapting them to the characteristics of the study population. In contrast,
infections will increase with new waves in the future, and studies suggest that it will be a
endemic disease. The virus continues to change, and today, more than ever, people must
have access to alternatives to laboratory methods that are also faster. The epidemiological
implications of this research work are the possible reduction in infections in the Mexican
population by providing new tools to care for their health that are faster and cheaper. This
also opens the door for the further development and investigation of such methods applied
to the Mexican population. As mentioned, each population has its specific characteristics,
and the variables considered for the prediction models change between populations and
within the same population over time. Among the clinical considerations of the results,
we can see the possible relief of the medical services that continue to provide services to
COVID-19 patients, and although vaccination schemes have helped the population to face
the pandemic, we cannot ignore the fact that the SARS-CoV-2 virus has come to stay as an
endemic disease [8].

In many developing countries in Latin America, the minimum salary ranges from USD
3.61 in Venezuela to USD 687 in Costa Rica, with an average of USD 360.44 [26]. The cost
of COVID PCR tests in these countries can range from 10–100% (USD 62) of this amount,
making it difficult for many people to access them [27,28]. Additionally, people living in
extreme poverty, particularly in Africa, often need more resources and technology for the
early assessment of COVID-19. Thus, the number of infections is still being determined,
particularly in low-income countries. This study proposes a COVID-19 detection model
that could be an accessible and cost-effective alternative to PCR tests, which is most relevant
for vulnerable populations with difficult access to clinical facilities (either public or private).
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4.5. Study Limitations

Among the study’s limitations are the above-mentioned variables and the fact that only
patients with severe symptoms were tested during the first wave. Hence, the test results
had few negatives to include in the model. Another major area for improvement is that
recent travel records were not included in the database since this variable was considered
a potential predictor at the beginning of the study and according to the literature review.
Another limitation of the study is the lack of information on the virus variant from which
patients were infected since the test result was only classified as positive or negative.
Therefore, it was not possible to classify the variables corresponding to each variant of
the SARS-CoV-2 virus. However, the variable not included that is probably the most
important is the vaccination scheme. Since vaccination began, many variables have changed
simultaneously such as symptomatology, the number of patients who went to health centers
to be tested, and the percentages of positive and negative patients. However, another major
limitation of the study is that vaccination-related information was not considered as it was
only recently included in the SINAVE database, and no data were available for most waves.

The variables selected for the initial model of each wave were identified by a com-
parison of positive versus negative tests from the entire dataset of each wave, and then
using the forward conditional method to test the effect of each added variable on the
model’s goodness of fit. Although this is a common (and widely accepted) approach to
identifying the model variables that we considered good enough as a first approximation
to obtain an individualized prediction of SARS-CoV-2 infection in Mexico, future studies
are needed to address the potential model selection bias through more robust methods
such as cross-validation or bootstrapping.

Future studies are also needed to identify sources of data variation and prediction
results between waves. Finally, the SINAVE database includes information on the symp-
toms’ presence, but not the severity, which may help to improve the prediction accuracy.
However, our study was primarily based on patients from outpatient clinics, where the
severity of symptoms was mild or moderate and comprise the most significant proportion
of infected patients in the overall population. Further studies are required to test the
feasibility of using the presence of early symptoms during the acute infection to predict
severe chronic symptoms such as fatigue, syncope, and delirium or brain fog, associated
with the development of long-COVID syndrome.

5. Conclusions

In the present work, individual test prediction models were developed in a sample
of Mexico City that showed a good percentage of global correct prediction. The models
developed here could be very useful for the health care of the Mexican population. Because
these were based on a simple methodology and data publicly available through the coun-
try’s health system, these models are likely to achieve, with more sophisticated methods
such as structural equation modeling or artificial intelligence, an increase in the sensitivity
and specificity. Moreover, our findings show a high heterogeneity in the variables that
comprised each model of the six waves, highlighting the dynamic change in the primary
factors driving the epidemic. Therefore, we recommend that further research on prediction
models of SARS-CoV-2 infection should consider from the start all the symptoms reported
in the SINAVE database and other factors such as age, sex, and comorbidities. Our results
encourage the future inclusion in the SINAVE database of information regarding the vac-
cination history and the severity of the symptoms. This may be relevant for models to
predict the acute infection with SARS-CoV-2 (as in the present work) and for predicting
long-term outcomes (such as long-term COVID syndrome) based on the early response
during the acute infection.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/healthcare12070764/s1, Table S1: Prevalence of symptoms (positive
and negative for each wave). Table S2: Binary logistic regression analysis to predict an individual
SARS-CoV-2 test for each wave. Figure S1: Cook’s distance plot was calculated from each wave’s
final regression model to identify potential influential points.
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