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Abstract: Neuroimaging studies using autobiographical recall methods investigated the neural
correlates of happy autobiographical memories (AMs). The scope of the present activation likeli-
hood estimation (ALE) meta-analysis was to quantitatively analyze neuroimaging studies of happy
AMs conducted with autobiographical recall paradigms. A total of 17 studies (12 fMRI; 5 PET) on
healthy individuals were included in this meta-analysis. During recall of happy life events, con-
sistent activation foci were found in the frontal gyrus, the cingulate cortex, the basal ganglia, the
parahippocampus/hippocampus, the hypothalamus, and the thalamus. The result of this quantita-
tive coordinate-based ALE meta-analysis provides an objective view of brain responses associated
with AM recollection of happy events, thus identifying brain areas consistently activated across
studies. This extended brain network included frontal and limbic regions involved in remembering
emotionally relevant positive events. The frontal gyrus and the cingulate cortex may be responsible
for cognitive appraisal processes during recollection of happy AMs, while the subthalamic nucleus
and globus pallidus may be involved in pleasure reactions associated with recollection of happy life
events. These findings shed light on the neural network involved in recalling positive AMs in healthy
individuals, opening further avenues for future research in clinical populations with mood disorders.

Keywords: activation likelihood estimation meta-analysis; autobiographical memory; functional
magnetic resonance imaging; autobiographical recall; happy life events

1. Introduction

Autobiographical memory (AM) refers to the ability to remember events and lifetime
periods from one’s past, which is crucial for a sense of identity, self-continuity, and mental
time traveling [1–4]. AM is considered a subsystem of episodic memory, more generally
defined as the conscious recollection of experienced events and meaningful reconstruction
of one’s own past [5]. According to Rubin [6–8], retrieval of AMs results from the interaction
between multiple neural and cognitive systems; specifically, this process includes the
recollection of personal life events (i.e., the ability to retrieve, re-experience, and relive
a past event), self-referential processing, mental imagery, narrative reasoning, language,
and emotion.

AMs are generally characterized by emotional content compared to other types of
episodic or semantic memories [1,9,10]. AMs with positive emotional valence are generally
marked under the broad category of positive AMs. However, the expressions positive AMs
and happy AMs are often used interchangeably in the literature. In the following, we will
refer to the concept of happy AMs. Indeed, the majority of the studies included in the
current meta-analysis instructed participants to recall happy AMs instead of positive AMs.
Noteworthy, happy life events do not constitute a homogenous category: for example,
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a distinction between hedonic and eudaimonic happy events (hedonic events include
life occurrences in which people pursue extrinsically motivated activities to experience
enjoyment and pleasure, either sensory or psychological, whereas eudaimonic happy events
are life occurrences in which people engage in intrinsically meaningful activities that enable
the person to cultivate his or her skills and to develop his or her best potentials [11,12])
has been proposed in recent years by Positive Psychology [13–15]. Happy personal events
occur frequently and occupy a central position in the life stories of individuals [11,12,16,17].
Empirical research on happy AMs may be particularly relevant since remembering these
types of events may induce the re-experience of positive emotions, potentially contributing
to psychological well-being and quality of life.

Functional neuroimaging studies of AM increased over the last decade, allowing
an enlarged understanding of brain processes and neural underpinning of memory for
personal experiences. A distributed network encompassing different subsystems of AMs
(e.g., recollection, self-referential processing, emotional component) has been identified.
This network operates thanks to the contribution of the following neural areas: the medial
temporal lobe and the hippocampus for AMs retrieval [18]; the lateral prefrontal cortex
(lPFC) for memory search and controlled processes [19,20]; the medial prefrontal cortex
(mPFC) for self-referential processes [21–23]; the lateral and medial parietal cortex for
orienting attentional resources to internal representations, contributing to the re-experience
of AMs [24,25], and visual-processing areas including the occipital cortex, cuneus, and
precuneus to evoke vivid sensory details and mental imagery [26,27].

As regards the emotional component of AMs, recollection of emotionally relevant per-
sonal events involves frontotemporal regions and limbic areas such as the amygdala [28–30],
the hippocampus [31], and the inferior frontal gyrus [32]. Concerning the emotional dimen-
sions of AMs, the intensity of the emotion (arousal) affects the degree to which a personal
life event is relived during retrieval and memory vividness [33]. In addition to arousal,
the valence of an emotional event can influence how likely and how accurately AMs are
remembered [34,35]. Accordingly, neuroimaging showed that brain activity during recall
of AMs is modulated not only by arousal but also by the valence of emotion [36,37].

Neuroscientific research on AMs with emotional content has developed various meth-
ods of mood induction, with autobiographical recall being the most effective compared to
other approaches [38]. In autobiographical recall tasks, participants are usually submitted
to a pre-scan interview in which they have to select and write down personal events of
their lives. Afterward, interviews are reviewed by the experimenter and then presented
during the scan session using generic or specific cues to elicit the retrieval (i.e., written
instruction, emotionally related words or images, human faces expressing emotions) [38].
Then, participants are guided by the cues to relieve and re-experience their emotional
events as vividly and intensively as possible [39].

In 2002, a meta-analysis of neuroimaging studies investigating emotions was con-
ducted [40] including 16 (out of 55) studies using autobiographical recall methods to induce
retrieval of personal emotional events (e.g., fear, sadness, happiness, anger, and disgust).
Results showed that the anterior cingulate cortex (ACC) and the insula are the brain regions
most frequently activated during the recall of AMs, regardless of their valence. Of note,
some of these studies highlighted differential brain activations during the recall of AMs
corresponding to positive valence. For example, Lane and colleagues [41] showed greater
activation of the ventromedial PFC while recalling AMs for happy events compared to AMs
for sad events. Accordingly, subsequent studies showed that frontal brain regions (e.g.,
medial PFC) were more active during retrieval of positive AMs, whereas posterior regions
(e.g., right temporal lobe) were more active during retrieval of negative events [36,37].

The interest in understanding the processing of positive emotions such as happiness
and joy and their neural correlates has increased [42–47]. A meta-analysis of imaging
studies on happiness was conducted to identify the neural correlates of three happiness
domains: pleasure, engagement, and meaning [47]. A wide range of tasks was used to
examine these three domains of happiness across the 64 studies included in the meta-
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analysis identifying 33 brain regions [47]. A further step would be the identification of
the brain areas that are specifically involved in the reliving of positive AMs in healthy
individuals. This is crucial for understanding their possible alterations in mood disorders:
for example, depressed individuals exhibit impaired memory for positive material [48] and
recall less vividly positive AMs [49]. In this direction, a work by Suardi and colleagues [50]
reviewed 15 neuroimaging studies (7 fMRI, 8 PET) investigating AMs of happy events in
healthy individuals, all of them employing autobiographical recall methods. The PFC, ACC,
and insula were the most frequently reported areas associated with remembering happy
AMs, suggesting that these may be crucial areas implicated in the recall of positive AMs.
However, due to the descriptive nature of the review, it was not possible to quantitatively
define consistent and significant activation patterns across studies.

Of note, individual imaging studies, if examined separately, have small sample sizes,
thus leading to low statistical power and low reliability [51]. Furthermore, evaluating
consistency is important to avoid false-positive rates in the activation locations reported
by single studies, which in neuroimaging is relatively high compared to other fields [52].
To overcome these limitations, meta-analysis is a valuable tool for summarizing results
and identifying consistently activated brain regions across a set of studies [53]. Therefore,
the present study aimed to identify consistent activations across neuroimaging studies
of AM for happy life events using Activation Likelihood Estimation (ALE) [54,55], which
is one of the most common algorithms used for coordinate-based meta-analysis [53]. To
elucidate the neural underpinning of happy AMs, all the included studies were conducted
in healthy samples.

The present meta-analysis differs from those previously described [40,47]. First, we
investigated the neural correlates of positive AMs rather than happiness as a broader
emotion [47]. Second, the present work includes a significantly larger number of studies on
happy AMs than the previous meta-analysis conducted by Phan and colleagues in 2002 [40].
Finally, this is the first meta-analysis to focus on autobiographical recall as a specific type of
mood induction procedure, which would help to reduce the differences in brain activation
related to the experimental paradigm.

2. Materials and Methods
2.1. Information Sources and Search Strategy

This meta-analysis was conducted according to the international guidelines embraced
by the Cochrane Collaboration and the “PRISMA” statement to ensure transparent and
complete reporting of data selection [56]. A systematic literature search strategy was
conducted using the two electronic databases (Web of Science and PubMed/Medline). The
search included articles published up to 22 January 2023. Different sets of query terms
were adopted:

- “autobiographical memory” OR “autobiographical recall”, AND “positive events”, OR
“happy events”, AND “fMRI” OR “functional magnetic resonance imaging”.

- “autobiographical memory” OR “autobiographical recall”, AND “positive events” OR
“happy events”, AND “PET” OR “positron emission tomography”.

Additional sources included published reviews and meta-analyses on neural cor-
relates of emotions and specifically on autobiographical memory for emotional events
(e.g., [9,40,46,47]). Most of the studies were selected from a previous review paper on the
neural correlates of happiness [50].

2.2. Eligibility Criteria

The retrieved papers were analyzed to ascertain that they met the following inclu-
sion criteria: (1) population of healthy adults (2) using autobiographical recall to asses
AMs referred to specific events (i.e., episodes lasting between some minutes and one day);
(3) including happy AMs and a control condition, such as AM of neutral events or events
eliciting emotions with a negative valence (e.g., fear, disgust, sadness); (4) presenting speci-
fied neuroimaging acquisition parameters: (a) using whole-brain analysis; (b) reporting
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the results in Talairach or Montreal Neurological Institute (MNI) coordinates; (5) reporting
cerebral activation changes, as assessed by blood-oxygen-level dependent (BOLD) -fMRI
or PET.

We excluded studies that employed non-human participants, clinical populations, as
well as those not assessing AM using autobiographical recall techniques or not respecting
the neuroimaging parameters. The following publication types were excluded: meta-
analysis, systematic reviews, case reports or series, and grey literature. Moreover, articles
not written in English were excluded. The authors double-checked the fulfillment of the
eligibility criteria.

2.3. Coordinate-Based Meta-Analysis

ALE was performed using the random effects algorithm of GingerAle (v.3.0.2, http:
//brainmap.org, accessed date: 22 January 2023) [57–59]. Each focus of every experiment
is modeled by the ALE as a Gaussian probability distribution:

p(d) =
1

σ3
√
(2π)3

e−
d2

2σ2

where d indicates the Euclidean distance between the voxels and the considered focus, and
σ indicates the spatial uncertainty. The standard deviation is easily obtained through the
Full-Width Half-Maximum (FWHM) as follows:

σ =
FWHM√

8 ln 2

Subsequently, we determined for every experiment a modeled alteration (MA) map
as the union of the Gaussian probability distribution of each focus of the experiment. The
union of these MA maps provided the final ALE map. The statistical significance of the
activation within the ALE map was calculated by cluster-level inference, as suggested by
Eickhoff et al. [57,60,61]. Given a particular cluster forming threshold, a null distribution
of cluster sizes was obtained by simulating a long series of experiments using the same
characteristic of the real data and then by calculating an ALE map. The obtained score
histogram was used to assign threshold p values.

2.4. Automated Regional Behavioral Analysis

The cluster obtained from the previous ALE meta-analysis was submitted to an auto-
mated regional behavioral analysis [62]. Behavioral analysis software was developed and
tested as a plug-in application for the Multi-image Analysis GUI (Mango, v. 4.1) image
processing system (Lancaster, Martinez; https://mangoviewer.com/api/edu/uthscsa/ric/
mango/package-summary.html, accessed date: 22 January 2023). A primary goal of the
behavioral analysis is to determine specific behaviors for each region under investigation.
The analysis is performed in several steps. For each location in the cluster image obtained
from the ALE analysis, a table of behavior domains and sub-domains within each row of
the list of coordinates is created. Then, for each location in a behavior coordinate list, a
“one” is added and then an image of activation foci by location is created.

To test for the significance of behaviors, we used the null hypothesis that the observed
probability of activation foci was not different from expected, i.e., that po = pe. To determine
variance for effect size, we modeled the two possible outcomes of activations (inside or
outside of the ROI) using the binomial distribution. In this study, po and pe served as
binomial “success” probabilities (probability of activations falling within the ROI) and
the number of trials was the whole-brain activation tally (Nb) for a sub-domain. For the
binomial distribution, the variance of “p” is calculated as p(1 − p)/N. An effect-size z-score
for each behavioral sub-domain was calculated.

http://brainmap.org
http://brainmap.org
https://mangoviewer.com/api/edu/uthscsa/ric/mango/package-summary.html
https://mangoviewer.com/api/edu/uthscsa/ric/mango/package-summary.html
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3. Results
3.1. Study Selection

A total of 365 articles were retrieved from the literature search and other sources.
After removing duplicates (n = 100), we conducted title and abstract screening for the
remaining 287 studies. This resulted in the exclusion of 243 studies because they were
not related to emotional AMs or because they did not use neuroimaging (i.e., fMRI or
PET). The remaining 44 studies were screened at a full-text level. Of these studies, 27
were excluded for reasons including (1) no contrasts for happy AM; (2) no coordinates;
(3) region of interest (ROI) analysis; (4) only deactivation foci for happy AM; (5) no healthy
control sample; (6) review/meta-analysis. A total of 17 studies (12 fMRI, 5 PET) were finally
included in the meta-analysis (see Figure 1).
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Figure 1. Flow diagram.

3.2. Characteristics of the Studies

The 17 studies included were published between 1995 and 2019. For each study,
the following characteristics are specified in Table 1: the sample size; the neuroimaging
technique; the recall induction technique adopted to elicit AMs; the remoteness of the events
to remember; which experimental conditions are contrasted to measure brain activation
(e.g., happiness vs. neutral); and the number of activation foci (See Table 1).

The total sample comprised 340 healthy participants ranging in age from 18 to 74 years.
Although the majority of studies recruited participants of both genders, six studies in-
cluded only female participants [63–69] and one study included only male participants [70],
resulting in an overall higher number of females (n = 241) than males (n = 99) in the
final sample.

In all the studies, participants were required to re-imagine or mentally recall AMs
during the MRI scan. The technique adopted to elicit autobiographical recall differed across
studies. In most of the studies, participants are required to recall and relive personally
experienced emotional events selected prior to the experimental session. The autobiograph-
ical events were cued by written keywords or short sentences in nine studies (see Table 1).
In four studies [65,71–73], events to be recalled were elicited by listening to pre-recorded
audio scripts of autobiographical events. In two studies, the events were cued by pictures
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depicting emotional facial expressions [63,64], whereas in one study [74], emotional pictures
from the International Affective Pictures System (IAPS [75]) served as cues. All the studies
adopted a measure to assess the effectiveness of the recall procedure by asking participants
to evaluate phenomenological features of AMs (e.g., vividness, intensity, sensory details),
although these measures varied across studies. Although neural differences have been
suggested during the search and the elaboration phases of the memory process [76], none
of the studies included a distinction between these two stages of AM retrieval.

Eight out of seventeen studies [30,37,65–67,72,73,77] considered the remoteness of the
event to recall, by asking the participants to evoke events within defined time periods (e.g.,
the last 5 years). By contrast, in the rest of the studies, participants were free to evoke AMs,
without any temporal delimitation.

In eight studies, cerebral activations referred to the contrast between a happiness
condition and a neutral condition consisting of recalling autobiographical events without
emotional content [64,65,68,71–73,78,79], with two studies additionally including the con-
trast between happiness and irritability [72,73]. In four studies, the control conditions were
AMs with negative valence [37,66,67,77]; in one study, AMs related to sadness [63]; and in
two studies, AMs related to disgust [74]. Of note, two studies [30,69] reported activations
for a happiness condition contrasted with a resting condition, and one study [70] contrasted
a happiness condition with a control task (count backward from 100 by subtracting 4). A
total of 282 activation foci were reported for all the studies.

3.3. Clusters of Neural Activity Changes

The brain regions identified in the meta-analysis are presented in Table 2. ALE maps
were computed using GingerALE 3.0.2, at an FWE-corrected threshold of p < 0.05, with
a minimum cluster size of K >150 mm3, and visualized using Mango (Figure 2). Eight
activation clusters were found. One cluster included the left medial frontal gyrus and the
left anterior cingulate (BA 10, 32). Other clusters were identified, including the left posterior
cingulate (BA 23, 31), the left superior frontal gyrus (BA 9), and the anterior cingulate
(BA 32). Another cluster was found in the left hypothalamus and the left medial globus
pallidus. One cluster included the left parahippocampus (BA 35, 36) and parahippocampal
structures, and another cluster was found in the left hippocampus and the lateral globus
pallidus. Finally, the right thalamus, including the subthalamic nucleus, constituted another
cluster of activation.

Healthcare 2024, 12, x FOR PEER REVIEW 9 of 17 
 

 

Table 2. Areas of functional changes in brain activity associated with autobiographical recall of 
happy events. 

Cluster Extrema Value Side x y z Label BA 

1 
0.0217316690 Left 0 58 −2 Medial frontal gyrus 10 
0.0100130019 Left −8 40 7 Anterior cingulate 32 
0.0117010213 Left −2 49 2 Medial frontal gyrus 10 

2  
0.0196832641 Left −4 −52 20 Posterior cingulate 23 
0.0100133905 Left −5 −58 15 Posterior cingulate 23 
0.0145051397 Left −5 −53 25 Posterior cingulate 31 

3  
0.0146129345 Left −8 −6 −6 Hypothalamus  

 
0.0100113600 Left −13 −3 −3 Medial globus pallidus 
0.0133150452 Left  −10 −5 −6 Hypothalamus  

4  
0.0119572980 Left −2 56 24 Superior frontal gyrus 9 
0.0100121833 Left −8 56 24 Superior frontal gyrus 9 
0.0116624471 Left −4 −57 23 Superior frontal gyrus 9 

5  
0.0149053987 Left −30 −28 16 Parahippocampus 36 
0.0100117572 Left −26 −25 −18 Parahippocampus 35 
0.0142512666 Left −30 −26 −16 Parahippocampus 26 

6  
0.0134308878 Left −24 −14 −10 Hippocampus 

 0.0100120860 Left −21 −15 −9 Lateral globus pallidus 
0.0134308878 Left −24 −14 −10 Hippocampus 

7  
0.0129249868 Left −14 20 47 Anterior cingulate 32 
0.0100236097 Left −14 38 2 Anterior cingulate 32 
0.0123331807 Left −14 41 0 Anterior cingulate 32 

8  
0.0127304997 Right 12 −14 0 Thalamus 

 0.0100203901 Right 12 −11 −1 Subthalamic nucleus 
0.0117313978 Right 12 −13 1 Thalamus 

Notes: p-values of the clusters p < 0.05. 

 
Figure 2. (Left panel): ALE maps were computed using GingerALE 3.0.2, at an FWE-corrected 
threshold of p < 0.05, with a minimum cluster size of K > 150 mm3, and visualized using Mango. 
(Right panel): Activations were projected onto a 3D rendering model of the brain. 

  

Figure 2. (Left panel): ALE maps were computed using GingerALE 3.0.2, at an FWE-corrected
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Table 1. Characteristics of the studies and number of activation foci.

Year of
Publication

First Author and
Reference Neuroimaging Original

Coordinates Sample Recall Induction
Technique Remoteness Contrasted

Conditions
Activation

Foci

1995 George [63] PET Talairach n = 11 (F, mean age:
33.3, SD: 12.3)

REC/REL
Two events for

condition cued with
pictures of emotional

faces

not defined happiness > sadness 5

1996 George [64] PET Talairach

n = 20 (10 F, mean
age: 34.5, SD: 12.1;
10 M, mean age:

35.5, SD: 8.8)

REC/REL
Two events for

condition cued with
pictures of emotional

faces

not defined happiness > neutral 8

1997 Lane [65] PET Talairach n = 12 (F, mean age:
23.3, SD: 3.2)

LIST.SCRIPT
Three events for

condition
last 6 months happiness > neutral 4

2000 Damasio [78] PET Talairach

n = 41 (21 F, 20 M
divided into four
cohorts, age: from

23 to 42)

REC/REL
One event for condition not defined happiness > neutral 20

2003 Markowitsch [36] fMRI MNI
n = 13 (7 F, 6 M,

mean age: 30, from
19 to 43)

REC/REL
18 events for condition

cued by keywords

before 12 years
old; from 12 to

18 years; from 18
until now

happiness > rest 10

2003 Piefke [37] fMRI Talairach n = 20 (10 F, 10 M,
mean age: 26, SD: 3)

REC/REL
10 events for condition,

cued by written
sentences

childhood (up to
10 years); recent

past (last 5 years)

happiness >
negative 4

2007 Marci [71] PET MNI
n = 10 (5 F, 5 M,

mean age: 33.9, SD:
11.9)

LIST.SCRIPT
2 events for condition not defined happiness > neutral 4
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Table 1. Cont.

Year of
Publication

First Author and
Reference Neuroimaging Original

Coordinates Sample Recall Induction
Technique Remoteness Contrasted

Conditions
Activation

Foci

2008 Cerqueira [72] fMRI Talairach
n = 11 (5 F, 6 M,
mean age: 32.4,

SD: 7.2)

LIST.SCRIPT
3 events for condition last 12 months

happiness > neutral
happiness >
irritability

10

2010 Cerqueira [73] fMRI Talairach
n = 11 (5 F, 6 M,
mean age: 32.4,

SD: 7.2)

LIST.SCRIPT
3 events for condition last 6 months

happiness > neutral
happiness >
irritability

5

2011 Sitaram [74] fMRI MNI
n = 12

(mean age: 25 years,
range: 22–26)

REC/REL
1 event for condition

cued by emotional
pictures

not defined happiness > disgust 112

2011 Zotev [70] fMRI Talairach n = 14 (M, mean age:
27.5, SD: 11.1)

REC/REL
3 happy events cued by

the word “happy”;
counting task as control

condition

not defined happiness > control 22

2014 Speer [79] fMRI Talairach
n = 19 (10 F, 9 M,
mean age: 26.1,

SD: 7.78)

REC/REL
21 episodes for

condition cued by
keywords

not defined happiness > neutral 27

2014 Gong [66] fMRI MNI n = 12 (F, mean age:
66.3, from 60 to 70)

REC/REL
10 events for condition

cued by written
sentences

before 12 years
old; last 5 years
(except the last

month)

happiness >
negative 3

2014 Ge [67] fMRI MNI

n = 27 (13 younger F,
age from 18 to 22;

14 older F, age from
60 to 74)

REC/REL
5 events for condition

cued by written
sentences

last 5 years happiness >
negative 3
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Table 1. Cont.

Year of
Publication

First Author and
Reference Neuroimaging Original

Coordinates Sample Recall Induction
Technique Remoteness Contrasted

Conditions
Activation

Foci

2017 Lempert [69] fMRI MNI
n = 35

(F; mean age: 20.86,
SD: 2.9)

REC/REL
10 events for condition

cued by written
sentences

not defined happiness > rest 12

2018 Xu [77] fMRI MNI
n = 25 (17 F, 8 M,
mean age: 21.36,

SD: 3.34)

REC/REL 9 events for
condition cued by
written sentences

before 18 years old
happiness > baseline

happiness >
negative

21

2019 Schie [68] fMRI MNI n = 47 (F, mean age:
29.36; SD: 9.61)

REC/REL 4 events for
condition cued by
written sentences

not defined happiness > neutral 12

Notes: SD = standard deviations; n = sample size; F = females; M = males; REC/REL = recalling and reliving past emotional experiences; LIST.SCRIPT = listening autobiographical
scripts; MNI = Montreal Neurological Institute.
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Table 2. Areas of functional changes in brain activity associated with autobiographical recall of
happy events.

Cluster Extrema Value Side x y z Label BA

1
0.0217316690 Left 0 58 −2 Medial frontal gyrus 10
0.0100130019 Left −8 40 7 Anterior cingulate 32
0.0117010213 Left −2 49 2 Medial frontal gyrus 10

2
0.0196832641 Left −4 −52 20 Posterior cingulate 23
0.0100133905 Left −5 −58 15 Posterior cingulate 23
0.0145051397 Left −5 −53 25 Posterior cingulate 31

3
0.0146129345 Left −8 −6 −6 Hypothalamus
0.0100113600 Left −13 −3 −3 Medial globus pallidus
0.0133150452 Left −10 −5 −6 Hypothalamus

4
0.0119572980 Left −2 56 24 Superior frontal gyrus 9
0.0100121833 Left −8 56 24 Superior frontal gyrus 9
0.0116624471 Left −4 −57 23 Superior frontal gyrus 9

5
0.0149053987 Left −30 −28 16 Parahippocampus 36
0.0100117572 Left −26 −25 −18 Parahippocampus 35
0.0142512666 Left −30 −26 −16 Parahippocampus 26

6
0.0134308878 Left −24 −14 −10 Hippocampus
0.0100120860 Left −21 −15 −9 Lateral globus pallidus
0.0134308878 Left −24 −14 −10 Hippocampus

7
0.0129249868 Left −14 20 47 Anterior cingulate 32
0.0100236097 Left −14 38 2 Anterior cingulate 32
0.0123331807 Left −14 41 0 Anterior cingulate 32

8
0.0127304997 Right 12 −14 0 Thalamus
0.0100203901 Right 12 −11 −1 Subthalamic nucleus
0.0117313978 Right 12 −13 1 Thalamus

Notes: p-values of the clusters p < 0.05.

3.4. Characterization of the Clusters

To characterize in terms of behavior of the various clusters found with the ALE
methods, we used a plug-in of the Mango software (v.4.1) [62] that automatically associates
the different clusters with the different behavioral domains using the BrainMap database.
BrainMap categorizes functional imaging experiments using five major behavioral domains
(action, cognition, emotion, interoception, and perception) with 51 sub-domains. Each
experiment in BrainMap is assigned one or more behavioral classifications along with the
set of coordinates for reported activations, and these data provide the basic structure for
forming behavioral probability distributions as 3D images. Region of interest (ROI) analysis
is applied to these spatial probability images to assess behaviors.

The behavioral analysis (BD) was performed with a minimum threshold of activation
of 38 foci (labeled as “row counts” in the output of the behavioral analysis plug-in in the
Multi-image Analysis GUI). Several BD were identified within the domains of cognition
(explicit memory, semantic language, social cognition) and emotion (happiness, fear) (See
Figure 3).
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4. Discussion

The novel aim of this coordinate-based ALE meta-analysis was to quantitatively
analyze the results of neuroimaging studies investigating cerebral activation changes
during autobiographical recall of happy life events. This is the first attempt to consider
autobiographical recall paradigms assessing happy AMs in a single analysis, to give a
more objective perspective of the cerebral network involved when recalling AMs for
happy events.

This review included 17 studies (12 fMRI, 5 PET), with an overall number of subjects
of 340 for a total of 282 activation foci identified, which is considered a sufficient number
to proceed with ALE analysis (as previously stated by Laird in her “Users’ Manual for
BrainMap GingerALE 2.0”).

The outcome of the ALE was characterized by brain regions consistently activated
when recalling AMs for happy events. The activation clusters encompassed the frontal
gyrus and the cingulate cortex, the basal ganglia, the parahippocampal structures, the
hypothalamus, and the thalamus.

Concerning frontal regions, the prefrontal cortex (PFC) is known to be part of the
brain network involved in autobiographical recall processes [18]. Specifically, the medial
PFC network, including the anterior and posterior midline regions, has been linked to
self-referential processes implicated when recalling personal life events [22,23,80]. Here, we
found a consistent activation of the superior and medial frontal gyrus during recall of happy
AMs. Previous studies showed that the activation of brain areas within the medial PFC is
more frequently associated with happy AMs, whereas activation of the lateral PFC is more
frequently associated with sad AMs [30,63,64,81]. In the present meta-analysis, consistent
activation of the medial (but not the lateral PFC) seems to support this lateral/medial
differentiation in the processing of sad/happy AMs.

Additional frontal areas were represented by activation in the left anterior cingulate
cortex (ACC) and the poster cingulate cortex (PCC). The cingulate cortex activity has been
associated with happiness [45,82], although it seems likely that the cingulate cortex plays a
key role in both positive and negative emotions [83]. In addition, the cingulate cortex is
known to be involved in AMs [10,84,85] and the PCC has particularly strong reciprocal
connections with medial temporal lobe memory structures such as the entorhinal and
the parahippocampal cortices [86]. Furthermore, the PCC and the medial PFC together
with other memory-related areas are part of the “brain default network” [87,88] which is
crucial for self-representation and self-consciousness implicated in the recall of AMs. The
ACC, closely interconnected to the medial PFC, is known to regulate both cognitive and
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emotional processing [89–91], and consistent activation of the ACC has been found during
recall of emotional AMs [40].

Concerning the basal ganglia, activation foci were found in the lateral and medial
globus pallidus and the subthalamic nucleus. The role of these structures in the reward cir-
cuit has been recognized in non-human primates [92–94] and more recently in humans [95].
Therefore, the activation of these reward-related areas could be explained by the hedonic
features of happy AMs, reflecting hedonic happiness [42,43,47].

Finally, the activation found in the parahippocampal regions is consistent with the
role of the medial temporal lobe and the hippocampus in AMs retrieval [18], whereas the
activation of the hypothalamus and the thalamus may be related to the recall and reliving
of sensory and bodily signals associated with happy personal memories [72,73].

The majority of clusters were identified in the left hemisphere, aligning with the
consistent left-lateralized activation tendency reported in previous neuroimaging litera-
ture on autobiographical memory [20,84,96]. This inclination is likely attributed to the
verbal modality of autobiographical recall tasks, often involving written keywords or short
sentences, thereby implicating the left hemisphere.

Functional characterization of these activations was given by the automated regional
behavioral analysis (BD) [62], suggesting that a high portion of the activation foci (n = 157)
corresponds to the behavioral domain of emotion, with happiness being the most represen-
tative one. Other BD included cognitive domains, mainly represented by episodic memory
as expected. A second cognitive domain shown is semantic language, possibly indicating an
increase in semantic processing during recall of happy AMs. This may reflect the activation
of the PFC and its role in the processing of semantic and conceptual information [35,97,98].

Taken together, the results of the present meta-analysis enable the identification of
brain areas consistently activated during the recall of happy AMs. Frontal regions, such
as the frontal gyrus and the cingulate cortex, might account for the cognitive processes in-
volved in the subjective appraisal of recalled happy AMs, whereas the subthalamic nucleus
and the globus pallidus may be responsible for the pleasure reactions associated with recall-
ing happy AMs. Some of these areas, such as the basal ganglia, the PFC, and the cingulate
cortex, align with those previously identified for happiness as a broad emotion [47]. In
contrast, other areas, like the amygdala and the insula, did not consistently activate during
the recall of happy AMs. This is in line with evidence indicating that the amygdala and the
insula are more likely to exhibit increased activation during negative affect than positive
affect, despite their responsiveness to both positive and negative affect more than neutral
affect [99]. Additionally, early findings from a meta-analysis indicate consistent activation
of the amygdala for AMs of fear and the insula for AMs of disgust [40].

The present work should be interpreted in light of some limitations. Firstly, only a
small number of studies (9 out of 17) included the contrast between positive and negative
events, and some studies focused on different types of negative emotional AM (e.g., sadness,
irritability). Hence, it was not possible to run a separate analysis for the contrast of
positive vs. negative AMs, because the results could be strongly driven by only a few
experiments [60,100]. However, a direct comparison between negative and positive AMs
would help to investigate and discuss possible overlap and discrepancies in brain activity
during the recall of positive vs. negative AMs. Thus, this should be considered as an
important limitation and results should be interpreted with caution.

Secondly, a factor potentially contributing to differential brain activations is related
to the remoteness of the evoked AM. So far, some studies have shown greater activa-
tion of the medial temporal lobe during retrieval of recent compared to remote episodic
memories [37,101,102], although other studies did not confirm this differential activation
associated with remoteness [29,31,103–107]. In the current meta-analysis, remoteness was
not included as a parameter, given that only eight studies adopted specific temporal in-
formation of the AMs (see Table 1), also showing discrepancies in the remoteness of the
evoked AMs (e.g., recent vs. remote). Specifically, some studies focused on recent memories
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from 6–12 months to 5 years, whereas others included remote AMs from adulthood (e.g.,
from 18 years) or adolescence/childhood (e.g., before 12 years).

Another limitation is that only activation foci of happy AMs were analyzed, while
deactivations were not considered in this study. The decision to exclude deactivations
was influenced by the prevalence of articles primarily featuring activations, leaving an
inadequate number of articles for a comprehensive meta-analysis of deactivations.

Finally, the demographic variables of the current sample such as the higher proportion
of females should be considered when interpreting the results. Previous studies have
demonstrated gender differences in AM, which are also reflected in different neural acti-
vations during AM recall [108–110]. Age is another crucial variable in the context of AM,
as healthy aging tends to reduce the episodic richness of AM retrieval [111]. Thus, the
wide age range (from 18 to 75) across studies in the meta-analysis may potentially mask
age-related differences in the neural correlates of happy AMs that are worth investigating
in specific age groups (for example, younger and older people).

Despite these limitations, the results obtained offer new insights into the neural corre-
lates of positive AMs, identifying for the first time consistent brain activations across the
existing studies using autobiographical recall methods with happy life events. Identifying
the neural correlates of positive AMs in healthy individuals is the first step to extending
the basic understanding of dysfunctional processes in affective disorders [112,113]. Indi-
viduals with depression have shown impairment in autobiographical memory retrieval,
particularly in relation to positive material [48,49,114]. Future studies could investigate
functional alterations during recall of positive AMs as possible biomarkers of individuals
at risk of developing mood disorders. Furthermore, changes induced by pharmacological
or psychological treatments have been described in depression [115]. Similarly, changes in
the processing of positive AMs following pharmacological or psychological therapies for
depression could be investigated to identify biomarkers of clinical response to treatment.

5. Conclusions

The present coordinate-based ALE meta-analysis identified a set of brain regions that
are consistently activated during the recall of happy AMs. This included frontal regions (i.e.,
prefrontal gyrus and cingulate cortex) exerting cognitive control, basal ganglia structures
(i.e., globus pallidus and subthalamic nucleus) related to reward, as well as the memory-
related hippocampus and thalamic structures for sensory integration during the recall of
AMs. Such a highly distributed brain network encompasses areas that mainly involve the
emotion domain and cognitive domains of memory and semantic processing.
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