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Abstract: There is a paucity of predictive models for uncontrolled diabetes mellitus. The present
study applied different machine learning algorithms on multiple patient characteristics to predict
uncontrolled diabetes. Patients with diabetes above the age of 18 from the All of Us Research Program
were included. Random forest, extreme gradient boost, logistic regression, and weighted ensemble
model algorithms were employed. Patients who had a record of uncontrolled diabetes based on the
international classification of diseases code were identified as cases. A set of features including basic
demographic, biomarkers and hematological indices were included in the model. The random forest
model demonstrated high performance in predicting uncontrolled diabetes, yielding an accuracy of
0.80 (95% CI: 0.79–0.81) as compared to the extreme gradient boost 0.74 (95% CI: 0.73–0.75), the logistic
regression 0.64 (95% CI: 0.63–0.65) and the weighted ensemble model 0.77 (95% CI: 0.76–0.79). The
maximum area under the receiver characteristics curve value was 0.77 (random forest model), while
the minimum value was 0.7 (logistic regression model). Potassium levels, body weight, aspartate
aminotransferase, height, and heart rate were important predictors of uncontrolled diabetes. The
random forest model demonstrated a high performance in predicting uncontrolled diabetes. Serum
electrolytes and physical measurements were important features in predicting uncontrolled diabetes.
Machine learning techniques may be used to predict uncontrolled diabetes by incorporating these
clinical characteristics.

Keywords: All of Us Research Program; machine learning; prediction; uncontrolled diabetes;
serum electrolytes

1. Introduction

Diabetes mellitus (DM) is a chronic metabolic disorder characterized by an absolute
or relative insulin deficiency [1]. According to the 2021 center for disease control and
prevention (CDC) report, about 1 in 10 individuals had DM globally, while 11.3% of
the United States (US) population live with DM [2]. Based on the American Diabetes
Association (ADA) report, the total cost of diagnosed diabetes was $327 billion in 2017 [3].

DM causes several complications in different vital organs of the body, including the
heart, brain, kidney, and eye [4]. One or more diabetes-related complications occur when
the blood concentration of glucose is uncontrolled. Uncontrolled diabetes mellitus (UDM)
is clinically defined as random blood glucose levels above 180 (mg/dL), or hemoglobin A1c
(HbA1c) levels greater than 7.0% [5]. It has cascades of symptoms; however, the occurrence
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of micro- and macrovascular complications can easily be used to identify UDM. As of 2018,
nearly 50% of adults with diabetes had UDM in the US [6].

In order to reduce the magnitude of UDM, different pharmacological and non-
pharmacological interventions have been employed [7,8]. The approval of new phar-
macological agents and new modes of insulin delivery technology has also improved
glycemic control [9–11]. Despite these advancements in diabetes management, there is
a significant variation in the degree of glycemic control among patients with different
characteristics [6]. This fluctuation in glucose control imposes a greater risk of several
diabetes-related complications [12,13].

Besides clinical management, early prediction of the glycemic status of diabetes pa-
tients could improve the burden of UDM [14]. In the past, few attempts have been made
to predict UDM using routine glycemic status measures such as fasting plasma glucose,
hemoglobin A1c, and oral glucose tolerance tests. The routine glycemic tests might not be
convenient as they require overnight fasting. In addition, previous approaches have yet to
include larger biological marker data. Particularly, the role of biological biomarkers such as
serum electrolytes and hematological indices in predicting UDM using machine learning
(ML) algorithms remains partially understood, despite their interaction with glycemic
status [15].

ML algorithms are the state-of-the-art techniques implemented to predict various
outcomes in medicine, including the new onset of diabetes, antidiabetic drug safety and
utilization, and diabetes complications [16–19]. Nevertheless, a small number of studies
implemented ML methods to predict glycemic control in diabetes patients using selected
features. For instance, Del Parigi, A. et al. (2019), [20] Lee, S. W. et al. (2019), and
Basu, S. et al. (2012) [14,21] developed various ML models to predict glycemic control.
These studies reported the role of ML techniques using limited clinical features that rely
on routine glucose monitoring parameters such as fasting plasma glucose and HbA1C.
However, there was a lack of consideration of several patient-level inputs such as serum
electrolytes, anthropometric measures, blood indices, lipid profiles, and organ function
tests in their predictive model development.

In addition, physical measurements including weight and height might indicate
the presence of obesity, which usually occurs with hyperglycemia [22]. On the other
hand, blood indices such as erythrocyte counts influence the hemoglobin level, affecting
HbA1C [23]. The correlation between one or more of these features with glycemic status
can provide an alternative method of monitoring UDM, if an appropriate predictive model
is developed using data derived from a representative sample. The present study used
the All of Us (AoU) research program, a representative sample of an ethnically diverse US
population which provides large sample size [24].

The prediction of UDM using new features could be a cost-effective strategy for glucose
monitoring compared to standard glucose measures. In addition, the implementation of
a new predictive model with more patient characteristics would help decrease diabetes-
related complications and improve the quality of life of patients with diabetes through
the screening of at-risk individuals. In light of this, our study employed multiple patient
characteristics to efficiently predict UDM using supervised machine learning. The study
highlighted the significance of physiologic biomarkers and patient characteristics to predict
UDM in the absence of regular glycemic status measurements. It is important to note that
these clinical features are crucial in predicting UDM and identifying patients who require
further management.

By utilizing a predictive model that incorporates various patient characteristics, health-
care providers can identify patients with UDM at an earlier stage, allowing for prompt
intervention and management. Therefore, this paper aims to explore patient characteristics
and biomarkers in predicting UDM by applying different ML algorithms.



Healthcare 2023, 11, 1138 3 of 14

2. Materials and Methods

This section is composed of data sources, population characteristics, data processing,
model selection, model development, feature importance and performance metrics. The
data source section describes the nature of the data and how it was accessed. Population
characteristics detail the demographic and clinical characteristics of the study participants.
The data processing procedure indicates the steps taken, including merging, feature engi-
neering, handling sample imbalance, preventing data leakage, and variable standardization.
Model selection and development refer to the type of ML algorithms that have been em-
ployed in the study and the optimization of ML algorithms (i.e., hyperparameter tuning)
while the performance metric indicates measures such as AROC, accuracy, precision, and
recall, which show the predictive ability of the ML algorithms.

2.1. Source of Data

The current study was conducted using data from the AoU Research Program. The
survey details and data collection method can be found here (https://allofus.nih.gov/ (ac-
cessed on 8 April 2023)) [25]. In brief, the AoU database is a longitudinal database collected
in multiple rounds. The components of the data include health questionnaires, electronic
health records (EHRs), physical measurements, digital health technology, and biospecimens.
Since 2018, the research program has enrolled a diverse group of at least 315,000 persons
in the US aged 18 or older from a network of recruitment sites. More than 80% of the
participants are from groups that have been historically underrepresented in biomedical
research, including 49% from non-white races [24,26]. The data were accessed using the
AoU Research Workbench, a cloud-based platform that enables approved researchers to
access and analyze the data. Participants provided informed consent to participate and
provided authorization to share EHR data with the Data and Research Center of the AoU
research program. The physical measurement and biospecimen collection occur at the
initial enrollment visit, following consent and completion of the survey.

2.2. Population Characteristics

The AoU researcher workbench was used to characterize our study population. Both
type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) patients aged above
18 years who were on glucose-lowering medications were included. Pregnant, children and
patients with an incomplete record of diabetes control status and other comorbidities were
excluded. The AoU Researcher Workbench provides a built-in tool for selecting participants
(Cohort Builder), creating a dataset for analysis (Data Builder), and creating a Workspace
with R and Python notebooks to analyze the data. The total population is composed
of 33, 826 diabetes patients. Of these, about 20% of them had UDM. Around 43.43% of
participants were female, and forty-three percent of individuals were non-Hispanic whites
(Table S1).

2.3. Data Processing and Mining

The data-processing procedure described here was performed using R version 4.0.2
(the R Project for Statistical Computing) R software [27]. The data collected on different
variables were merged using patients’ identifiers, whereas data collected on similar vari-
ables from different subjects were appended. Standardization of continuous variables was
undertaken. Information on glycemic control status was documented as “diabetes with
hyperglycemia” in the AoU research database, based on the international classification of
disease (ICD). Controlled DM was labelled = 0, while UDM was labelled = 1. All relevant
features with a missing value of less than 25% were included.

Different steps of feature engineering were undertaken, including outlier detection,
standardization of continuous variables, imputation to handle missing values and creating
one-hot matrix/encoding. The outlier data points were detected and removed using domain
knowledge and data visualization. One-hot encoding was used to convert categorical
variables into new variables that took on values of 0 and 1 to represent the categorical

https://allofus.nih.gov/
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values. This format allows categorical variables to be used easily by machine learning
algorithms. In addition, the data were imputed to handle missing values provided that the
number of missing values of a given feature was less than 25%.

The class imbalance was handled using random over-sampling examples (ROSE), a
smoothed bootstrap-based technique [28]. Handling imbalanced data involves preventing
the effect of imbalanced values of the outcome variable on model performance. In our study,
the dataset contained 80% of patients with controlled DM and 20% patients with UDM,
which gives an imbalance ratio of 1:4. Classes that make up a large proportion of the dataset
(controlled DM) are called majority classes. Those that make up a smaller proportion (UDM)
are minority classes. In order to handle the imbalance, a random sampling technique was
applied using the random over sampling examples (ROSE) package in R to resample the
training dataset so that nearly equal proportions of UDM and controlled are created. The
current study utilized three main approaches to random sampling. The first approach is
called random under-sampling, which deletes examples from the majority class. The second
approach, random over-sampling, duplicates examples from the minority class. A third
approach was also tested by combining both random over-sampling and under-sampling
techniques. Eventually, the sampling approach that gave the highest model performance
was selected.

In order to prevent data leakage, several procedures were conducted. These include
dropping duplicate observation in the training and testing set and removing features that
were highly correlated with the outcome variables, such as the fasting plasma glucose
(FPG) and hemoglobin A1C (HbA1C). A multicollinearity test was performed between
features using the variance inflation factor (VIF) test, and variables that had a VIF value of
greater than 5 were removed.

The diagram in Figure 1 illustrates the different subsections of the Materials and
Methods sections. The Methods section mainly comprises the following categories: the
source of the data and population, data processing/mining, model selection and rationale,
and model development and optimization steps, as described below (See Figure 1).
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in UDM using AoU Research Program data.

2.4. Model Selection and Rationale

A supervised ML algorithm was applied to predict UDM and to identify important
features. Supervised learning is an ML method in which an algorithm is fed with data that
contain observations and a label. This predictive model was based on extreme gradient
boost (XGBoost), random forest (RF), logistic regression (LR), and a weighted ensemble
model (WEM). The XGBoost and RF models are the most common supervised learning
algorithms used for classification and regression problems by assuming nonlinear rela-
tionships between variables. These ML algorithms have a high prediction accuracy and
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can handle the multicollinearity of features. The XGBoost and RF are ensemble models
based on decision trees [29,30]. A WEM was also established by combining the predictive
probabilities of the three individual models to obtain a robust model with better perfor-
mance from weak learners. The three individual models (RF, XGBoost and LR models)
were represented by (K = 1, 2, and 3). Initially, a weight parameter (Wk) was calculated by
using the area under the receiver operating curve (AROC) values of each model. We can
assume AROCk is the AROC of model k (Equation (1)). An example was provided below
on how Wk was calculated using individual AROC values reported in Section 3.1.

Wk =
AROCk2

∑3
k=1 AROCk2

(1)

For instance, Wk for RF = Wk = (0.77)2

(0.77)2+(0.75)2+(0.70)2 = 0.36

Then, the prediction probabilities were multiplied by the weight of each model.
The result was summed up to give the predictive probability of the ensemble model
(Equation (2)). Each patient was then classified according to weighted probability. Pk
represents the classification probability of each model, and Pw is the predictive probability
of the ensemble model.

Pw = ∑3
k=1 WkPk (2)

2.5. Model Development and Optimization of Parameters

The training and the testing datasets were created by randomly splitting the data
into an 80% versus 20% split ratio. The training dataset (80%) was utilized for training
the model, while 20% of the dataset was left for testing. A cross-validation technique
was used to estimate how well our model generalizes to new, unseen data. In the cross-
validation approach, the training data were partitioned into multiple subsets, and the model
was trained on a portion of the data while evaluating its performance on the remaining
portion. This process was repeated multiple times and the results were averaged to obtain
an estimate of how well the model is likely to perform on new, unseen data. During
cross-validation, the model was assessed for underfitting and overfitting the data.

After model training, model validation was carried out on the testing set (a new exam-
ple dataset that was not used to build the model). Necessary adjustment was carried out to
enhance model’s accuracy/performance during validation phase. The hyperparameters
were tuned to obtain a robust ML model with improved performance [31,32]. Hyperpa-
rameter tuning consists of finding a set of optimal hyperparameter values for a learning
algorithm that maximizes the model’s performance and reduces errors. The tuneRF tool
in the RF Package was used for tuning the RF model. The RF model was tuned by using
common hyperparameters including the number of trees used at the tuning step (ntree), the
number of variables randomly sampled as candidates at each split (mtry), and node size.
The optimization of the model started with the default value of hyperparameters before
searching until the optimal hyperparameter value that gives a smaller out-of-bag (OOB)
error estimate was obtained. The OOB error decreased as the number of trees increased,
which suggested the improved performance of the RF model (Figure S1).

For the XGBoost model, learning curves were used for model tuning, while Mlogloss
of the training and testing set was applied as an evaluation metric. A learning curve is a plot
that shows number of iterations in the x-axis and the mlogloss on the y-axis (Figure S2). The
smaller the mlogloss, the higher the learning or improvement in the model’s performance.
Two learning curves were drawn on the training and testing sets, respectively. The curves
were then used to diagnose under or overfitting of the XGBoost model. Accordingly,
further hyperparameter tuning was carried out until the model became a good fit. This was
achieved by tuning different hyperparameters including but not limited to the learning
rate (eta), number of rounds (nrounds) and maximum tree depth (max.depth).
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2.6. Feature Importance

A total of 54 features were included in the model after dropping all variables with
more than 25% missing values. This includes six demographic features, eight medications,
11 hematologic indices, 18 biomarkers and 11 physical measurements as relevant biomarkers
for the prediction of UDM. The variable importance indicates the contribution of each feature
to predicting the outcome. The variable importance was derived from the best predictive
model among all the examined models. The most important features were identified using
the mean decrease in accuracy score [33]. Mean decrease accuracy is a variable importance
measure that expresses how much accuracy the model loses by excluding each variable. The
more the accuracy drops in the absence of a given variable, the more important the variable is
for accurate classification. The unit is expressed as a percentage (%).

2.7. Performance Metrics

The performance of each model was evaluated using the following performance
metrics: precision, recall, classification accuracy, F1 score, and area under the ROC curve
(AROC). F1 score is an ML evaluation metric that measures model performance. F1 was
calculated using a formula that incorporated precision and recall, F1 =

2∗precion∗recall
precision+recall . The

numerator is product of precision and recall times by two, while the denominator is the
sum of precision and recall. The value of F1 score ranges from zero to a hundred and is
expressed as a percentage. Higher F1 values indicate the high performance of the model.
Precision and recall are the alternative measures of ML performance. Precision measures
the accuracy of positive prediction, whereas recall measures the percentage of data samples
that a machine learning model correctly identifies [34]. Precision and recall were calculated
using the following formula:

Precision =
True Positve

True Positive + False Positive
and Recall =

True Postive
True Positive + False Negative

.

A true positive is an outcome in which the model correctly predicts the positive class,
while true negative is an outcome in which the model correctly predicts the negative class.
A false positive is an outcome in which the model incorrectly predicts the positive class,
and a false negative is an outcome in which the model incorrectly predicts the negative
class [35].

3. Results

The main findings of the study summarized the classification performance of models
in predicting UDM. They also outlined the important features that predict UDM, includ-
ing electrolytes, blood indices and physical measurements, based on the mean decrease
accuracy of the RF model.

3.1. Classification Performance of Models to Predict UDM

Among the ML models, RF has the highest AROC and a prediction accuracy of
0.77 and 0.80 (95% CI: 0.79–0.81), respectively. The WEM model had 0.77 AROC and a
prediction accuracy of 0.77 (0.76–0.79), while the XGBoost model attained a comparable
AROC of 0.75 and a prediction accuracy of 0.74 (0.73–0.75). The LR model had an AROC
of 0.70 with a classification accuracy of 0.64 (0.63–0.65), which is lower than other models
(Table S2, Figure 2A). The performance of the ML models in predicting UDM separately
for females and males was further examined. There was no marked difference in accuracy
for the RF model across both genders. In contrast, the prediction accuracy of the XGBoost
increased in males versus females. The LR model demonstrated poor performance in
both genders (Figure 2B,C). AROC curves were drawn for each model, which provided
additional information on the performance of the ML models (Figures 3, S3 and S4).
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3.2. Feature Importance

According to the mean decrease accuracy score of the RF model, serum electrolytes,
physical measurements, liver enzymes, and vital signs were found to be significant pre-
dictors of UDM; notably, serum potassium concentration, body weight, aspartate amino-
transferase (AST), heart rate, and systolic blood pressure were significant predictors of
UDM when the analyses was performed without classifying the dataset in terms of gender
(Figure 4). It was noted that variability in features’ importance was observed between males
and females to some extent. In female DM patients, height was a more important feature
than body weight in predicting UDM. In addition, blood indices, including erythrocytes
and leukocyte counts, were found to be more significant predictors. In contrast, body
weight was the primary determinant of UDM in males (Figures S5 and S6).
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Abbreviations: AST: aspartate aminotransferase, ALT: alanine transaminase, ALT:
alkaline phosphatase (ALP), DBP: diastolic blood pressure, MCH: mean corpuscular
hemoglobin MCHC: mean corpuscular hemoglobin concentration, MCV: mean corpuscular
volume, SBP: systolic blood pressure.

4. Discussion

The present study applied a data-driven ML approach to predict UDM in a comprehen-
sive dataset from the AoU Research Program. The study also explored important features
that could improve prediction of UDM. It was found that the RF model demonstrated high
accuracy in predicting UDM as compared to the XGBoost, LR, and WEM models. The
overall performance of the predictive ML models ranged from 80 percent (RF model) to
64 percent (LR model).

Few ML models have been employed previously to predict poor glycemic control
in a different patient population. For instance, Basu S et al. (2019) developed RF and
gradient-boosting algorithms, and reported that the RF model was superior in predicting
UDM over other models [14]. This study corroborates the findings of a great deal of the
previous work, in which the RF model demonstrated a higher prediction accuracy. For
example, an ML-based study on T2DM patients admitted to Sichuan Provincial People’s
Hospital reported a classification accuracy of 0.72 to 0.76 using neural networks [36], which
is a relatively lower accuracy than our RF model. This variation could be attributed to the
implementation of different ML models and the inclusion of different features as the main
risk factors of UDM in the previous study [36]. Our prediction finding is contrary to that
of Motaib, I. et al. (2022) who predicted poor glycemic control during Ramadan using the
extra tree classifier (accuracy = 0.87, AUC = 0.87), which is relatively higher in prediction
accuracy as compared with our study findings [37]. This rather contradictory result might
be due to the inclusion of baseline caloric intake as an important factor in their study. In
addition, Tao, X. et al. (2022) predicted glycemic control from a total of 375,723 cases of DM
patients with the random forest model (AROC = 0.97), which exhibits higher classification
efficiency than our models. This result may be explained by the difference in the sample
size, wherein they included a large sample size, and another possible explanation for this
might be the inclusion of the baseline glucose level as a predictor variable [38].

In the current study, various factors have been explored as predictors of UDM. Im-
portantly, potassium was the most influential predictor, followed by weight, AST, height,
and heart rate, when both female and male populations were included in the model. A
possible explanation for these results may be the cellular level involvement of potassium.
Potassium is an electrolyte that participates in the metabolism of glucose through various
pathways. For instance, potassium affects glucose metabolism through its impact on the se-
cretion of physiological insulin [39]. When there is a low potassium level, the ATP-sensitive
potassium (KATP) channel in pancreatic beta-cells cannot stimulate potassium-dependent
insulin release, resulting in higher blood sugar levels [39]. Another possible explanation is
that potassium can also interact with the renin–angiotensin–aldosterone system (RAAS),
which affects glucose tolerance [40]. The activation of the renin–angiotensin–aldosterone
system reduces potassium concentrations in the body, thereby inhibiting insulin release and
increasing glucose intolerance [41]. In accordance with the present results, previous studies
have demonstrated that potassium has an important role in controlling blood glucose
level. For example, the Jackson heart study reported that potassium concentrations were
associated with hyperglycemia due to its influence on aldosterone levels [42].

Furthermore, one of the microvascular complications of UDM is kidney damage,
which causes potassium accumulation. Potassium accumulation might result in a rapid
heart rate [43,44]. This is also reported as a predictor of UDM in our study. The disposition
of potassium in the body also affects sodium transport through Na+-K+-ATPase, [45] which
in turn affects glucose reabsorption in the renal tubule through the sodium–glucose co-
transporter [46]. In summary, these biochemical interactions between potassium and other
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biomarkers indicate that potassium measurement could be pivotal in predicting glycemic
status [47].

In the present study, physical measurements such as weight and height were also the
other important features in the prediction of UDM. These parameters are used to determine
body mass index (BMI), which was found to be correlated with hyperglycemia and has been
used to predict glycemic status [48,49]. Being overweight and having glucose intolerance
are the two main components of metabolic disorders that can coincide [50]. Moreover,
overweight results in fat accumulation in the liver and the production of inflammatory
cytokines that impair insulin signaling and tissue sensitivity to insulin action, which causes
a flaw in glucose metabolism [51,52]. This physiologic relationship between physical
measurements and glucose could help to predict glycemic status using these parameters.

Our study also reported that liver biomarkers, including AST, can predict UDM. AST
is a liver enzyme that participates in gluconeogenesis in the liver and kidney [53]. AST me-
diates glucose synthesis in the liver from amino acids, which promotes hyperglycemia [54].
A study conducted to determine the association between hyperglycemia and liver enzymes
has found that the rate of hyperglycemia increases as the level of AST elevates [55]. Sheng X
et al. (2018) investigated that insulin resistance was higher in individuals with a high
concentration of liver enzymes, which might lead to UDM [56]. A longitudinal study on
the Korean population pointed out that serum levels of liver enzymes were associated with
incident hyperglycemia [57]. Insulin resistance and pancreatic damage were also correlated
with liver aminotransferases [58]. Thus, the inclusion of liver enzymes in ML models could
improve the prediction of UDM.

Furthermore, the current study also revealed that blood indices such as erythrocytes
and leukocytes as significant predictors of UDM, especially in females. The reason for
this is not clear, but it may have something to do with the blood indices. When there is
hyperglycemia, the morphological structure and physiological functions of erythrocytes
are severely affected [59]. This finding broadly supports the work of other studies in this
area linking blood glucose level with hematological indices. For instance, a comparative
observational study reported a statistically significant decline in the erythrocyte count of
diabetes patients [60]. This suggests that blood indices might be correlated with glycemic
status. In addition, erythrocytes can also affect hemoglobin levels. Hemoglobin is a protein
in the erythrocyte that helps transport oxygen in the blood. Its amount increases with
the number of erythrocytes [61]. Hemoglobin binds with blood glucose to form glycohe-
moglobin, one of the standard measures of glycemic status in diabetes patients. Therefore,
the measurement of erythrocyte indices might reflect the level of glycohemoglobin in the
blood, or a patient’s glycemic status [23].

Strengths and Limitations of the Study

In general, the current study predicted UDM with state-of-the-art ML algorithms using
large datasets incorporating data from the underrepresented population. The application
of ML algorithms improves the prediction of UDM over statistical models. The findings
could be generalized for diverse groups of diabetes patients in the US. The study also
investigated different biochemical features that were not reported in previous studies
that can predict UDM in absence of the routine glucose monitoring parameters such as
fasting plasma glucose and hemoglobin A1C. These features will enable the simultaneous
monitoring of electrolytes, metabolic syndrome, and blood disorders along with UDM.
This might help to make use of samples more efficient, decrease test invasiveness, and
decrease laboratory costs. However, this study depends on the AoU data that contain only
adults 18 and older that are currently residing in the U.S. Hence, the research findings
may not be generalized for diabetes patients who reside outside of the US. The present
study also did not capture social determinants, as these variables were incorporated into
the AoU research program only recently. In order to overcome these limitations, prediction
of glycemic control using continuous glucose monitoring data might also help apart from
the AoU dataset. More recent datasets such as the ShanghaiT1DM and Shanghai T2DM are
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design for data-driven machine learning to predict glycemic control in DM patients [62]. In
addition, other studies have also reported the role of reinforcement learning in predicting
blood glucose control; these complement the current study [63]. Further to this, for a more
comprehensive approach in predicting UDM and to potentially improve the management
of diabetes and prevent complications associated with UDM, future studies are needed
to investigate the impact of additional features, such as social determinants, dietary and
lifestyle factors, on the accuracy of our models. Furthermore, a cost-effectiveness analysis
can be performed to determine the practicality of implementing these machine learning
models in clinical settings.

5. Conclusions

In summary, this study assessed the effectiveness of machine learning algorithms in
predicting UDM. The findings showed that random forest (RF)-based models were more
efficient in predicting UDM compared to other machine learning algorithms. Moreover,
the study identified that serum potassium concentrations, blood indices, and physical
measurements were important features in predicting UDM. We noted that variability in
features’ importance was observed between males and females to some extent. In females,
height was a more important feature in predicting UDM. In contrast, body weight was
the primary predictor of UDM in males. Our findings have significant implications for
clinical practice, as these parameters could be incorporated into clinical guidelines at
minimal additional cost in order to monitor glycemic status in cases wherein regular
monitoring techniques are not available. However, to fully integrate these findings into
regular monitoring techniques, further investigation is needed to determine their cost-
effectiveness and the practicality of their implementation in clinical settings. Such research
would help to clarify the potential benefits and challenges of using machine learning
algorithms to monitor glycemic status, and potentially improve the management of UDM
and prevent complications associated with uncontrolled diabetes. Therefore, more detailed
research is warranted to further explore these issues.
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ADA American Diabetes Association
ALP Alkaline phosphatase
ALT Alanine transaminase
AST Aspartate aminotransferase
AROC Area under the receiver operating characteristic curve
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CDC Center for Disease Control and Prevention
DBP Diastolic blood pressure
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UDM Uncontrolled diabetes mellitus
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WEM Weighted ensemble model
XGBoost Extreme gradient boosting
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