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Abstract: Urinary tract infections (UTIs) represent one of the most frequent low genital tract diseases
in the female population. When UTIs occur with a frequency of at least three times per year or two
times in the last six month, we speak of recurrent UTI (rUTI) and up to 70% of women will have
rUTI within 1 year. It was previously thought that antibiotic resistance was principally responsible
for the recurrence of UTIs, but nowadays new diagnostic technologies have shown the role of
microbiota in the pathophysiology of these diseases. Much research has been conducted on the role
of gut microbiome in the development of rUTI, while little is known yet about vaginal and urinary
microbiome and the possible immunological and microscopical mechanisms through which they
trigger symptoms. New discoveries and clinical perspectives are arising, and they all agree that
a personalized, multi-modal approach, treating vaginal and urinary dysbiosis, may reduce rUTIs
more successfully.
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1. Introduction

A total of 1.5 million people suffers from urinary tract infections (UTIs) every year,
making it one of the most prevalent health problems [1]. Women experience UTIs eight
times more often than men [2], and 50–60% of adult women will have at least one UTI in
their lifetime, affecting their quality of life and psychological wellbeing [3,4].

Anatomical characteristics, sexual behaviour, urogenital aging, pelvic organ prolapse,
urethral diverticula, vescico-vaginal fistula, urinary incontinence, menopause, and preg-
nancy all represent possible risk factors for women [5].

In clinical practice it may be useful to distinguish between uncomplicated and compli-
cated UTIs. Complicated UTIs are caused by urological anomalies, including indwelling
catheters, renal insufficiency, neurogenic bladder, pregnancy, previous urological surgery,
and conditions causing an immunocompromised state [6], and these may also progress to
sepsis and other systemic illnesses, which mostly impact the kidneys [6].

Recurrent UTIs (rUTIs) are characterised as complicated and/or uncomplicated UTIs
that happen at least three times yearly or twice over six months [7,8], differently from
persistent infections in which the pathogen is not eradicated but instead persists in some of
the infected people’s cells [9]. Recurrent UTIs are common; after getting one, 24% of women
will get another within 6 months, and up to 70% will get another within a year [10,11].
Six or more episodes of rUTIs occur in at least 35 million women worldwide each year (1%
of all women) [10–12].
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The pathophysiology of rUTIs is not well understood. However, in the 80s, it was
already clear that recurrence of UTIs was closely linked to antibiotic resistance [13–15].
The increased use of antibiotics globally, along with prophylactic therapy, contributed to
the development of multiresistant bacteria, such as extended-spectrum beta-lactamase-
producing bacteria, carbapenemase-resistant organisms, and pan-resistant bacteria [16,17].

Furthermore, the myth that urine is sterile has been dispelled only in recent years by
developments in technology and molecular biology, concomitantly with the discovery of the
role of microbiota of the bladder, vagina, and gut in the pathophysiology of rUTIs [18–20].
While little is known about the vaginal and urinary microbiomes, a great deal of study has
been done on the function of the gut microbiome in the development of rUTIs [21].

The purpose of this review is to highlight potential mechanisms by which the vaginal
and urinary microbiomes, as well as the potential role of the urothelial immunological
microenvironment, contribute to rUTIs onset in women of different ages (Figure 1).
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Figure 1. Abstract figure. The interplay between the gut, vaginal, and urinary microbiome in the
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29 January 2023).

2. Materials and Methods

The most significant medical databases, including PubMed, Cochrane Database of
Systematic Reviews, EMBASE, and Web of Science, were consulted, according to a com-
bination of the following keywords: “recurrent urinary tract infection, recurrent cystitis,
vaginal microbiome, vaginal microbiota, urinary microbiota, urinary microbiome, uro-
biome, dysbiosis, urinary bladder disease”, including pluralization and English spelling
variations and suffixes/prefixes. From 2000 until 11 November 2022, we collected all
publications, including case studies, literature reviews, and prospective or retrospective
trials. Two authors (MD and ALS) independently evaluated the references to incorporate
the literature data into the review. Preferred reporting items for systematic reviews and
meta-analyses (PRISMA) method was applied to conduct a systematic search (Figure 2).

In the first step, the authors considered the title of the paper, then the abstract, and fi-
nally the manuscript. Consequently, the data obtained was collected. Studies were con-
sidered qualified if they met the following criteria: (I) the involvement of the vaginal
microbiota and microbiome in the onset of rUTIs in female population, (II) the role of
the urinary microbiota and microbiome in rUTIs in women, (III) dysbiosis as a cause of
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recurrent cystitis, and (IV) novel therapeutics approaches in the field of study. Instead,
the following were considered exclusion criteria: (I) case reports; (II) conference abstracts,
editorials, and pre-prints manuscripts; (III) multimedia; and (IV) papers written in lan-
guages other than English.
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To ensure validity and prevent any selection, performance, detection, attrition, and re-
porting bias, two researchers (MD and ALS) independently assessed the risk of bias for
each selected study, in accordance with the Cochrane Handbook for Systematic Reviews
of Interventions [22,23]. Conflicts were resolved through discussion between researchers.
Finally, the two researchers examined and extracted data separately.

3. Results

The search method provided 201 papers in total and another 10 studies were included
through the references. In total, 90 publications were screened by title and/or abstract
following the elimination of articles not published in English or published before 2000. Du-
plicate papers, and irrelevant works were excused from the analysis. In the end, 31 research
articles were included and analysed (Figure 1). Table 1 reports the main findings derived
from the literature data about the internship between microbiota, immunology, and rUTIs.

3.1. Vaginal Microbiome and rUTIs

The pathogenesis of rUTIs is significantly influenced by the vaginal microenvironment,
in contrast to widespread assumption, which attested that bacteria causing UTIs typically
originate from the gut altered microbiota, as the only way of infection [24].
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Community state types (CSTs) represents a classification used to describe at least five
major subcategories of cervico-vaginal bacterial species involved in the maintenance of
vaginal balancing between physiological and pathological flora. Each group has a unique
mix of bacteria, each with a different relative characteristic. Four of these are dominated by
one of the following four species: L. crispatus (CST I), L. gasseri (CST II), L. iners (CST III),
or L. jensenii (CST V) [25,26].

Instead, CST IV predominantly contains anaerobic bacteria, such G. vaginalis, Atopo-
bium vaginae, and Megasphaera spp., similar to the vaginal microbiota in bacterial vagi-
nosis [25,26]. Interestingly, a recent meta-analysis reported that Prevotella bivia, G. vaginalis,
Chlamydia trachomatis, and Human Papillomavirus infections are more common in women
with lower levels of Lactobacillus in their CST IV cervico-vaginal microbiota than in women
with higher levels of Lactobacillus [27].

Several Lactobacillus species, such as L. crispatus, L. jensenii, L. gasseri, and L. iners,
constitute most of the vaginal microbiota in women of reproductive age [28–30]. These
bacteria produce lactic acid, helping the maintenance of the vaginal acidic pH [31,32].

By creating bacteriocins and hydrogen peroxide, vaginal lactobacilli perform a pro-
tective function, inhibiting the colonisation of other potential pathogens, particularly
E. coli [28,33–36]. For this reason, lower lactobacilli levels promote the insurgence of bacte-
rial vaginosis or vaginal E. coli colonisation, which increase the risk of UTI insurgence [30,37–39].

The vagina also represents a reservoir for pathogens: The literature data underlines
that women with a history of UTI exhibit more E. coli colonisation in the vaginal introi-
tus (>105 CFU/mL), highlighting the importance of vaginal microenvironment in the
pathogenesis of rUTIs [40].

S. saprophyticus is the most frequent gram-positive bacterial source of community-
acquired UTI. S. saprophyticus virulence in in vitro and rat UTI model is based on the
following components: Secreted surface-associated proteins Aas (hemagglutinin) and Ssp
(lipase), the proteins UafA of cell wall, SdrI, SssF, and UafB, which mediate adherence,
and the ureases [30].

By contrast, S. aureus and S. epidermidis can also cause UTI, especially during catheteri-
zation or pregnancy: Experimental models highlighted that the nickel ABC-transporters
Opp2 and Opp5a are involved in the pathogenesis of S. aureus urinary infection [30,41–44].

Finally, vaginal bacteria, such as Actinobacteria, other Firmicutes, and gram-negative
anaerobic organisms, which are not common uropathogens, may colonise the urinary
system, alter the physiological microbiota, and change the immunological assessment
of vaginal and bladder mucosa. In other words, even if specific vaginal bacteria do not
colonise the bladder or are eliminated by the host prior to the diagnosis of a UTI, brief
contact with these bacteria in the urinary tract can still have a significant impact on UTI
pathogenesis [30]. This phenomenon is called “covert pathogenesis” [30,45]. For instance,
group B streptococcus and G. vaginalis promote the survival of E. coli in the bladder, per-
mitting the development of UTIs [46–48]. Numerous studies have connected Streptococcus
agalactiae (GBS) colonisation to vulvo-vaginitis [49] and urinary tract infections [50], but
none have looked at the connection between vaginal GBS and GBS UTI [30]. GBS colonisa-
tion is typically asymptomatic. By contrast, Gardnerella vaginalis can also cause UTI and is
connected to sepsis, renal disease, and urgency incontinence [30,51], as we better described
later (Section 4.2).

3.2. Urinary Microbiome and rUTIs

Modern urine culture techniques have shown that several bacteria allow the mainte-
nance of urothelium homeostasis [52–54]. The host characteristics, which change across peo-
ple, life, and geographical areas, as well as environmental exposure and behavioural factors,
are the most important factors for maintaining the balance of this microbial ecosystem [55].

The most often identified colonising microorganisms in the urine microbiome are Lac-
tobacillus and Streptococcus, which constitute a barrier against infections, producing factors,
which inhibit the adhesion of pathogens to epithelium, such as lactic acid. Alloscardovia,
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Burkholderia, Jonquetella, Klebsiella, Saccharofermentans, Rhodanobacter, and Veillonella are
less often identified bacteria [56]. Proteobacteria (35.6%), Firmicutes (31.3%), Actinobacteria
(22.4%), Bacteroidetes (6.4%), and others (4.3%) are the key phyla of the human urinary tract,
according to Morand et al. [57]. The authors attested that the urine microbiota ordinarily
contains several uropathogens, but pathogenicity results from an imbalance in their relative
percentages and from the host immunological response [58].

From 435 urine samples, Dubourg et al. identified 450 different bacterial species,
of which 256 had never been discovered before in urine, while 18 were entirely new [58].

Other recent research suggests that many urinary system diseases, including UTIs
and rUTIs, may be influenced by the urine microbiome (or urobiome), which plays a key
role in the maintenance of the homeostasis of urothelial microenvironment [59]. Urinary
microbiota abnormalities precede UTI onset, and the urobiome normalizes following
therapy, as Bossa et al. demonstrated [60].

The knowledge of the urobiome is fundamental in clinical practice because different
clinical manifestations are probably connected to a specific urine microbiota modification,
as attested by Burnett et al. [61]. Additionally, non-infectious urologic conditions, such as
neurogenic bladder dysfunction, interstitial cystitis, and urgency urine incontinence have
been associated to changes in the urinary microbiota spectrum [54].

It is interesting to consider in the knowledge of a UTI’s pathology and in the im-
portance of health urobiome is the evidence that uropathogenic Escherichia coli (UPEC)
has a reservoir also in the bladder epithelium; many investigations in both adults and
children, as well as in bladder biopsies, demonstrated intracellular UPEC in bladder ep-
ithelial cells that release in urine [62–66]. In addition, 82% of rUTIs are brought on by the
same UPEC strain as in the prior infection, even when the proper antibiotic therapy is
administered [24,67–71]. The pathogenesis of UPEC is described in Section 4.2.

4. Discussion and Conclusions
4.1. Risk Factors for rUTIs in Women

Hormonal fluctuations have a significant role in the changes in vaginal and urine
microbiomes composition; oestrogen promotes Lactobacillus development in the bladder
and vagina, increasing their defensive role against pathogens and infections. Consequently,
loss of oestrogen in postmenopausal women causes a reduction in vaginal lactobacilli and
an increase in rUTIs [72,73]. The genitourinary syndrome of menopause is constituted by
vaginal epithelium thinning, a decrease in extracellular matrix, proteoglycans and collagens
synthesis, and vulvovaginal atrophy [74], which facilitate the penetration of bacteria in
urothelium and vaginal epithelium.

For this reason, post-menopausal women are more prone to develop rUTIs, with
a rate of 8–11% [75–78]. Regarding vaginal and urinary microbiome composition after
menopause, some authors demonstrated that post-menopausal women present fewer
distinct bacterial species [79–81], while others supported the development of an increased
diversity of species [82].

UTIs are also a common problem among pregnant women, representing the most com-
mon infection during this period of life, particularly asymptomatic bacteriuria, affecting 2
to 7% of pregnant women [83]. As we all know, pregnancy is characterized by physiologi-
cal changes in immune response, the vaginal microbiome also undergoes major changes.
Indeed, pregnancy reduces the differences in microbiome diversity across women; particu-
larly, pregnancy-related vaginal alterations result in an increased Lactobacillus dominance
and a reduced species diversity [84]. These changes are protective regarding a preterm
birth rate because they boost infection resistance and support the production of anti-
inflammatory cytokines [85]. Furthermore, they regard also racioethnic differences in the
vaginal microbiome, so particularly in women of African ancestry, the configuration of the
vaginal microbiome during pregnancy may have predictive value for premature birth [86].

Other factors that influence vaginal microbiome composition are:
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1. Contraceptive methods: Spermicidal products containing nonoxynol-9 deplete lac-
tobacilli and favor E. coli colonization [87–92]. Instead, oral contraceptives seem to
decrease the rate of bacterial vaginosis [93], but they do not influence the risk of rUTIs;

2. Sexual activity: Vaginal activity either promotes the entry of possible germs into the
urethral meatus from the vagina or facilitates the transfer of potential uropathogens
to the vagina [10,48,94–98];

3. New antimicrobial treatments (oral or topical) for the risk of the development of
antibiotic resistance [16,17].

4.2. NGS as a Better Diagnostic Tool

Nowadays, several studies and research articles have re-written the idea that most
UTI bacteria originate in the gut [99], and recent research has clarified the role that urine
and vaginal bacteria play in the onset and recurrence of these diseases [100,101]. The mi-
crobiomes of the vagina and urinary tract are inextricably related and together participate
in the maintenance of a healthy balance in the genital and urinary tracts [19]. In addi-
tion, from a microbiological perspective, around one-third of the bladder microbiota only
resides in the vagina [102]. Mechanical transfer is one of the main risk factors for UTIs
and rUTIs [10,48,94–98,103] because it enables vaginal bacteria to enter the urinary system,
such as during sexual activity [33,70].

In this new perspective, the myth that urine is sterile was disproved also thanks to the
development of new analytical techniques, such as NGS and metagenomic approaches [18],
which allowed for the detection of a microbiome in the healthy urogenital tract [104–106].
Microbial ecologists created the culture-independent DNA-based identification of mi-
croorganisms with the aim of identifying bacterial species without the need for culture.
Particularly, NGS employs PCR amplification and high-throughput sequencing of essential
16S rRNA genes, using polymorphisms of the 16S rRNA gene amplicon to distinguish
bacterial species, even those that are closely related [19,107]. A urine sample is sequenced
using a multi-step process that starts with the isolation and purification of microbial DNA,
follows with 16S rRNA amplification and sequencing, and ends with bioinformatic anal-
ysis through a variety of software database platforms. As a result, there are still a lot of
restrictions with this technology, particularly in terms of its clinical uses [18].

Yoo et al. demonstrated that the clinical application of urine NGS in cases of acute
uncomplicated cystitis and rUTIs reported a better sensitivity than the application of
conventional urine culture [82], which is consistent with prior research [108–111]. Indeed,
it appears that a typical urine culture misses roughly 90% of non-UPEC pathogens [110],
and anaerobic bacteria or a multi-microbial illness may be to blame for negative findings in
routine urine cultures [107,112,113].

Most importantly, NGS is not greatly impacted by antibiotic usage, because bacteria do
not need to be alive as for a traditional culture method [114]. Furthermore, NGS is highly
sensitive to atypical bacteria, anaerobes, or multimicrobial urinary tract infections [113].
Another crucial element that facilitates prompt clinical decision-making and medication
is represented by the faster NGS technique for the detection of pathogens with respect to
culture; this reduces testing times from several days to just 24 h [114].

4.3. Pathophysiology and Immunology in rUTIs

While analysing the immunological assessment of urinary infections, data in the litera-
ture reported that intracellular bacterial communities (IBCs) and quiescent intracellular
reservoirs (QIRs) are two methods that allow pathogens to survive antibiotic treatment and
to host an immune response in the bladder, developing a chronic colonization [63,66].

Regarding UPEC, adhesive organelles, such as type 1, P, S, and F1C pili, are used to
first infiltrate the host cells in the urothelium. Then, UPEC creates IBCs, which consist
of the development of a biofilm formed of a polysaccharide matrix wrapped in a uro-
plakin coating, enabling UPEC to proliferate and thrive in a secure manner [64,115–119].
As opposed to this, QIRs are made up of a subgroup of bacteria that have remained
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undetected by the host immune system for a considerable amount of time in cells after
receiving antibiotics [120,121]. Dormant bacteria may begin to reproduce and lead to re-
infection because of the urothelium’s turnover. IBCs are transitory, developing within a
few hours in the cytosol as opposed to QIRs, which might spend months quiescent within
the endosomes [122].

Lipopolysaccharide (LPS), a key component of UPEC pathogenicity, affects UPEC
life cycles and promotes reservoir development [123] by activating intracellular signalling
pathways and innate and adaptive immune responses [124]. By raising cytosolic calcium
through a Toll-like receptor (TRL 4-mediated increase), LPS suppresses the synthesis of
cytokines [125]. Additionally, NLRP3 inflammasome activation by pathogen-associated
molecules, such as flagellin and hemolysin as well as LPS can cause urothelial cells to
exfoliate and let UPEC to enter deeply [126,127].

Regarding the relationship between the innate and adaptive immune systems and
rUTIs, this is not completely understood yet [122].

The functions of pentraxin 3 (PTX3) and uroplakin IIIa (UPIIIa) signalling have re-
ceived little attention in the literature. A crucial function of PTX3 is that polymorphisms
or a deficit in it may impair the body’s capacity to control infection, which may promote
infection spread [128]. The endocytic process is instead induced by UPIIIa signalling, which
enters the intracellular space [129].

Instead, particular attention has been paid to the relation between vaginal microen-
vironment and urinary tract inflammatory diseases. The assumption that the vagina is
the main source of bladder colonising pathogens was made since women have UTIs at a
greater rate than males [115,116]. The vaginal canal can operate as a reservoir for E. coli
and other bacteria, becoming a significant player in the pathogenesis of UTI.

E. coli can penetrate vaginal cells and remain in the vagina during UTI, according to
preliminary research in murine UTI models [117]. Regarding this, more research has been
conducted on the relationship between Gardenerella vaginalis and E. coli.

Animal experiments that exposed the urinary system to different common vaginal
bacteria (especially Gardnerella) in the setting of E. coli UTI corroborate the previous reported
theory of “covert pathogenesis” [30,71].

Gardnerella can frequently be found in urine samples from healthy, asymptomatic
women. Three patterns of patients who tested positive for Gardnerella were proposed by
Yoo et al. [71]: (I) the Escherichia-dominant group; (II) the Gardnerella-dominant group;
and (III) the Lactobacillus-dominant group. They emphasised that all Escherichia dominant
groups were linked to rUTI, but Gardnerella- and Lactobacillus-dominant groups might be
linked to rUTI but not necessarily be symptomatic. This supported the idea that blad-
der dysbiosis can cause various symptoms by altering the immune system’s reaction to
bacterial colonisation [71]. Furthermore, it was shown that Gardnerella may be a “covert”
pathogen that causes E. coli activation [69], and UTI can also happen in the Lactobacillus-
dominant group even if a minor amount of Gardnerella is present, if Lactobacillus has a poor
protective effect [71].

Other research confirmed that the development of UPEC from bladder reservoirs is
significantly influenced by Gardnerella. Indeed, it influences urothelial apoptosis and exfo-
liation and other mucosal immune system-related activities as demonstrated in a mouse
model [130,131]. Among these, immediate-early (IE) genes, including the orphan nuclear re-
ceptor Nur77 (also known as Nr4a1), are increased in mice exposed to Gardnerella [131,132];
at the same time, animals lacking Nur77 are not at risk from recurrent UPEC UTI after
Gardnerella exposure.

Numerous cellular functions are controlled by Nur77, including apoptosis in various
tissues [133,134]. Additionally, Nur77 regulates inflammation [135] and has a specific
impact on T-cell responses [136] and Ly6C-monocytes [137]. As a result, the IE response
could play a role in the Gardnerella-related recurrent UPEC UTI [138].
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Instead, KEGG pathways and GO keywords are significantly changed after several
Gardnerella exposures [138]. IL-12, IFN-g, and RANTES levels rise in bladder homogenates
after exposure to Gardnerella [48], and pathways associated to T and B cells are also activated.

Finally, Kirjavainen et al. investigated immune defence anomalies in women with
rUTIs and discovered that peripheral monocytes and myeloid dendritic cells (DCs) pro-
duced elevated level of interleukin-12 and did not induce the T cell activation. In the case
of rUTIs, the T cell polarisation is avoided. In addition, there was a decrease in levels
of vascular endothelial growth factor (VEGF) related with tissue healing and a reduction
in concentrations of monocyte chemotactic protein 1, the main chemoattractant for DC
and monocytes [139].

All these factors may promote the insurgence of urinary infection and chronic coloni-
sation due to the deficiency of immune response and the imbalance of host response to
bacterial injuries. It is likely that the host immune response depends on the phenotypic and
behaviour characteristics (such as smoking, sexual activity, alcohol abuse, and menopausal
status) of a host as previous described.

4.4. New Perspectives of Therapy and Prevention

Recurrent UTIs are strictly associated with urinary tract dysbiosis [18,104]. The impor-
tance of lactobacilli and oestrogens in the prevention of rUTIs was confirmed by Neugent
et al., who described the correlations between Bifidobacterium, Lactobacillus, and urinary oe-
strogens in women with no history of UTIs [140]. According to this theory, some researchers
suggested that administering probiotics may be more beneficial in treating rUTIs [141,142]
as opposed to administering antibiotics or taking antibiotics prophylactically at low doses to
prevent recurrent infections, both of which promote the evolution of pathogenic resistance
by causing bacterial persister cells [143].

A considerable decrease in rUTIs is linked to the use of Lactobacillus vaginal sup-
positories [38,55,144]. Sadahira et al. showed that the administration GAI 98,322 strain
of L. crispatus had a significant effect in reducing the recurrent cystitis in 86% of patients.
However, more importantly, the suppressive effect persisted in 77% of patients for at least a
year after the end of the therapy, with a significant decrease in the mean number of cystitis
episodes both during and after administration [145]. The oral treatment with Lactobacillus
reuteri RC-14 and Lactobacillus rhamnosus GR-1 also improved the population profiles of
vaginal lactobacilli and reduced the colonisation of potentially dangerous bacteria [146].

In order to support the host’s immunological assessment against bacterial invasion
and prevent recurrent infection, functional restoration should be the main focus of therapy,
according to the recent literature data on the urinary tract urobiome and the importance
the local and systemic immune system response in the prevention of UTIs recurrence [147].

As was already mentioned, oestrogen regulates the balance of the urogenital micro-
biome; it promotes lactobacilli growth, whereas oestrogen insufficiency results in a decrease
in vaginal lactobacilli, which raises the risk of rUTIs [72,73]. Therefore, rUTIs may be
decreased by oestrogen replacement treatment [73,94,148–151], and intravaginal oestrogen
may provide great benefit with less risk when compared to oral oestrogen [152].

Recently, research has been conducted on the use of natural sources for therapy and
prevention of rUTIs. For example, Mehta et al. studied the potential antibacterial role of the
oroxindin from Bacopa monnieri against UTIs caused by Klebsiella pneumoniae and Proteuns
mirabilis. B. monnieri is a medicinal plant growing in the world’s wetlands and warmer
regions; the authors demonstrated that K. pneumoniae and P. mirabilis can be effectively
eliminated by B. monnieri, also establishing its safety [153].

5. Conclusions

In conclusion the complex correlation among microbiota, low genital tract, and urinary
system is based on the balance between host characteristics, immunological microenvi-
ronment and pathogens. Further investigation may provide an accurate analysis of the
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urogenital microbiome, especially to promote a tailoring therapy in order to reduce antibi-
otic resistance and increase the physiological mechanism of urothelium response.

Table 1. Main findings from the studies included in the review.

Variables Main Findings

Role of vaginal microbiome
[30,37,44,59,71,72,101,131,138,142]

The vaginal microbiome is involved in rUTIs pathogenesis: if its balance is
maintained, it constitutes a barrier against pathogens. However, every change,

which we know as bacterial vaginosis, is an important risk factor for the
development of urinary tract infections.

This may be a consequence of the decrease in vaginal lactobacilli, which seems to
allow the growth of gram-positive bacteria, (especially Staphylococcus

saprophyticus, Escherichia coli, Enterococcus faecalis, and Streptococcus agalactiae) or
Gardnerella vaginalis.

These vaginal bacteria may be present in the vaginal canal and colonize the
urinary system, avoiding the immune response and allowing the formation of

E.coli reservoirs.

Role of urinary microbiome [61,77,141]

Urinary system microbiota has a key role in preserving urinary health. So,
the pathophysiology of rUTI is influenced by urobiome.

Indeed, urinary microbiome composition differs between healthy and rUTIs
subjects. Specific urine microorganisms are linked to distinct clinical features in

women with rUTI.

Risk factors of rUTIs and dysbiosis [10,76–79]

Risk factors for the development of symptoms include host variables, host
behaviours, and bacterial features. Among these, menopause influences the

urine microbiota composition following aging and the decrease in oestreogens
protection. First of all, it brings altered Lactobacillus composition, increasing the

risk of rUTIs.

Possible immunological pathways
[48,66,122,130,139]

Several microscopic pathways have been identified, including the intracellular
bacterial community, QIR, LPS, multimicrobial infection, and urothelial mucosal
remodelling. These mechanisms allow uropathogens to persist in the bladder

and survive antibiotic therapy and host immune response. Furthermore,
immunological defences show some abnormalities in UTI-prone women, such as

increased levels of IL-12, absence of T-cell response, less VEGF, lower level of
monocyte chemotactic protein 1, the upregulation of immediate-early (IE) genes,

such Nur77.

New perspectiver of diagnosis [82]

NGS is more sensitive than a conventional urine culture in the detection of
uropathogens, highlighting an increased microbiome diversity in the recurrent
cystitis group. Additional NGS tests can facilitate rapid decision-making and

therapeutic advancement.

New perspectives of theraphy
[8,32,38,55,140,144,145,152]

Following the understanding of the importance of lactobacilli and oestrogen in
the pathophysiology of rUTIs, several studies demonstrated their benefits

as therapies.

The intravaginal administration of lactobacillus and/or oestrogens is associated
with a significant reduction in rUTIs, especially if they are integrated with

nonantibiotic therapeutical options as well as modification of behaviour, specific
diet, integration with probiotics, and d-mannos, use of local oestrogens therapy,
and systemic or local immunostimulants. The administration of one or more of

these approaches provides the beneficial treatment to reduce rUTI risk.
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