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Abstract: Mammography is considered the gold standard for breast cancer screening. Multiple risk
factors that affect breast cancer development have been identified; however, there is an ongoing
debate regarding the significance of these factors. Machine learning (ML) models and Shapley
Additive Explanation (SHAP) methodology can rank risk factors and provide explanatory model
results. This study used ML algorithms with SHAP to analyze the risk factors between two different
age groups and evaluate the impact of each factor in predicting positive mammography. The ML
model was built using data from the risk factor questionnaires of women participating in a breast
cancer screening program from 2017 to 2021. Three ML models, least absolute shrinkage and selection
operator (lasso) logistic regression, extreme gradient boosting (XGBoost), and random forest (RF),
were applied. RF generated the best performance. The SHAP values were then applied to the RF
model for further analysis. The model identified age at menarche, education level, parity, breast
self-examination, and BMI as the top five significant risk factors affecting mammography outcomes.
The differences between age groups ranked by reproductive lifespan and BMI were higher in the
younger and older age groups, respectively. The use of SHAP frameworks allows us to understand
the relationships between risk factors and generate individualized risk factor rankings. This study
provides avenues for further research and individualized medicine.

Keywords: mammography; breast cancer; explainable machine learning; SHAP value

1. Introduction

Breast cancer is currently the most diagnosed non-skin cancer in women and ranks 5th
among cancer-related deaths worldwide according to GLOBOCAN 2020 data [1]. With an
estimated more than 2 million cases each year, the incidence of breast cancer has increased
rapidly in recent decades owing to enhanced cancer detection and registration, in addition
to the ever-evolving risk factor profile of the population. Globally, Asia had the highest
disease burden in 2020, accounting for 45.4% of all new breast cancer cases [2]. In Taiwan,
the age-standardized breast cancer incidence rate increased from 60.35 to 128.20 per 100,000
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from 1997 to 2016 [3,4]. In response to the increasing disease burden, Taiwan introduced
a nationwide biennial mammography screening program in 2004 for women aged 50–69.
In 2009, the program was further expanded to encompass women aged 45–69 years and,
in 2010, to include women aged 40–44 years who were deemed high risk [5]. Other
recent international guidelines encompass a similar age range, with European guidelines
recommending annual screening from 45–69 years for asymptomatic women with average
risk and American Cancer Society guidelines strongly recommending annual screening for
women aged 45–54 years [6–8].

Mammography is currently the gold standard for breast screening, with research
showing that mammography may be able to detect breast cancer as early as four years prior
to cancer being clinically evident [9]. Ongoing advancements in mammography technology
aim to provide earlier detection of breast pathology, better visualization of the disease
extent, and an accurate assessment of treatment response. Similarly, advances in breast
cancer therapy have led to a significant reduction in mortality and increased survivability;
however, early diagnosis remains the most crucial factor in contributing toward good
prognostic outcomes [10].

Multiple risk factors can influence an individual’s predisposition to breast cancer,
given the heterogeneous nature of the disease. There are significant risk factors for breast
cancer, divided into modifiable factors such as alcohol intake, smoking, parity, obesity,
and hormonal replacement therapy, and non-modifiable factors such as age, sex, family
history, menstruation history, and genetic predisposition [11]. With the development of
the Gail model in 1989, previous attempts have been made to stratify the relative risk of
developing breast cancer in the general population based on the presence of risk factors,
which calculates an individual’s combined risk of developing invasive breast cancer [12].
This model accounts for age, ethnicity, menstrual history, parity, family history, and past
medical history to provide five-year and lifetime risks of invasive breast cancer. However,
it recognizes that the accuracy for ethnic subgroups needs to be further validated. The
model also fails to consider many modifiable risk factors that significantly influence an
individual’s estrogen and androgen exposure [13].

Our previous study [14] concluded that age was the most impactful factor in predicting
positive mammography findings. To further scrutinize the effects of other risk factors on
mammography outcomes, this study stratified participants into two groups: women aged
45–49 and 50–54. This range effectively covers the ages with the highest breast cancer
incidence rates in Asia [4,15] and allow us to observe any differences that may arise when
comparing younger and older age groups.

It is difficult to rank the relative significance of each risk factor using conventional
research methods. In response, recent technological advancements in machine learning
have allowed its incorporation into clinical decision making to facilitate medical image
interpretation, outcome prediction, and treatment selection. Machine learning (ML) is
a subfield of artificial intelligence that uses statistical models to analyze large datasets
and interpret the complex interactions between multiple variables and patient outcomes
through its automated ability to learn and enhance its analysis from experiences [16].
However, the increased complexity of ML models has created a ‘black box’ phenomenon,
whereby the final interpretations through ML methods are incomprehensible and difficult
to explain [17]. The enigmatic nature and lack of transparency of ML limit its promising
prospects and act as undeniable obstacles to its integration into medical decision making.
The need for a comprehensive approach to facilitate the interpretation of ML models
has led to the introduction of the Shapley Additive Explanation (SHAP) methodology,
which enables the identification and prioritization of the impact of each feature in any
ML model [18,19]. This framework provides explainable insights into the ML ‘black box,’
allowing for the rationalization and interpretation of the ML-derived outcomes [20].

This study used three ML models, namely, least absolute shrinkage and selection
operator logistic regression (lasso) [21,22], extreme gradient boosting (XGBoost) [23], and
random forest (RF) [24], in conjunction with SHAP to analyze and stratify the breast cancer
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risk factors between two different age groups and evaluate the impact of each factor in
predicting positive mammography outcomes.

2. Methods
2.1. Study Design and Protocol

For this retrospective single-center study, relevant data were extracted from risk
factor questionnaires completed by women who participated in the national breast cancer
screening program between 2017 and 2021 at Shin-Kong Wu Ho-Su Memorial Hospital,
Taipei. The risk factor questionnaires were standardized and issued by the Ministry of
Health and Welfare in Taiwan.

Extensive measures were taken to ensure data quality. This study examined the risk
factors for women aged 45–54 years. Participants not in this age group were excluded. Other
exclusion criteria included participants with a previous history of breast cancer, as well as
questionnaires with missing, inconsistent, or illogical data (Figure 1). The participants were
divided into two subgroups for analysis: 45–49 years and 50–54 years. The study protocol
and procedures were reviewed and approved by the Research Ethics Review Committee
of Shin-Kong Wu Ho-Su Memorial Hospital, which waived the requirement for informed
consent from the participants before routine examinations (No. 20220906R).
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Figure 1. Data preprocessing.

2.2. Variable Definitions and Descriptive Statistics

The mammography result (Y) was separated into binary outcomes, positive and
negative, with reference to Breast Imaging Reporting and Data Systems (BI-RADS) classi-
fication [25]. Positive mammography findings were defined as films that were probably
benign (BI-RADS 3), suspicious (BI-RADS 4), highly suggestive of malignancy (BI-RADS 5),
biopsy-proven (BI-RADS 6), or incomplete imaging (BI-RADS 0). Negative mammogra-
phy findings were defined as films showing negative or benign findings (BI-RADS 1 and
BI-RADS 2, respectively).

A total of 16 separate risk factors were identified as potential predictors of mammogra-
phy outcomes, all of which were stratified into categories for analysis. Table 1 presents the
demographic characteristics of the participants (5 factors in total), whereas Table 2 presents
the clinical characteristics of the participants (11 factors in total). Accounting for demo-
graphic limitations and data collection purposes, reproductive lifespan was determined
from the onset of menarche until menopause in postmenopausal women or until the date
of mammography for those who were premenopausal.
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Table 1. Demographic characteristics of participants.

Characteristics AgeSub (45–49) AgeSub (50–54)

Mean (SD)

Age at menarche 13.47 (1.54) 13.77 (1.56)

N (%)

BMI category

0: BMI < 18.5 271 (5%) 171 (3%)

1: 18.5 ≤ BMI < 24 3496 (61%) 3380 (61%)

2: 24 ≤ BMI < 27 1181 (21%) 1235 (22%)

3: 27 ≤ BMI < 30 452 (8%) 520 (9%)

4: 30 ≤ BMI < 35 253 (4%) 234 (4%)

5: BMI ≥ 35 56 (1%) 45 (1%)

Education level

0: Primary school 95 (2%) 251 (4%)

1: Lower secondary school 330 (6%) 581 (10%)

2: Upper secondary school 1861 (33%) 2224 (40%)

3: University 2787 (49%) 2121 (38%)

4: Postgraduate 636 (11%) 408 (7%)

Reproductive lifespan

0: ≤24 63 (1%) 88 (2%)

1: 25–29 302 (5%) 200 (4%)

2: 30–34 3697 (65%) 951 (17%)

3: 35–39 1647 (29%) 3647 (65%)

4: ≥40 - 699 (13%)

Number of relatives with
confirmed breast cancer

0: 0 5181 (91%) 4965 (89%)

1: 1 487 (9%) 579 (10%)

2: ≥2 41 (1%) 41 (1%)

Table 2. Clinical characteristics of participants.

Characteristics AgeSub (45–49) AgeSub (50–54)

N (%)

History of major diseases

0: No 4864 (85%) 4603 (82%)

1: Benign 714 (13%) 809 (14%)

2: Cancer (other than breast) 131 (2%) 173 (3%)

Breast self-examination

0: Breast self-exam negative 3896 (68%) 4124 (74%)

1: Never breast self-exam 1394 (24%) 1080 (19%)

2: Mass or pain or tenderness 419 (7%) 381 (7%)
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Table 2. Cont.

Characteristics AgeSub (45–49) AgeSub (50–54)

Mammography within 2 years

0: No 2289 (40%) 2436 (44%)

1: Yes 3420 (60%) 3149 (56%)

History of breast surgery

0: No 5258 (92%) 5029 (90%)

1: Yes 451 (8%) 556 (10%)

Age of first childbirth

0: <21 362 (6%) 345 (6%)

1: 21–34 3759 (66%) 4047 (42%)

2: ≥35 432 (8%) 291 (5%)

3: No childbirth 1156 (20%) 902 (16%)

Parity

0: 0 time 1156 (20%) 902 (16%)

1: 1 time 1262 (22%) 958 (17%)

2: 2 times 2563 (45%) 2665 (48%)

3: 3 times 641 (11%) 939 (17%)

4: ≥4 times 87 (2%) 121 (2%)

Breastfeeding

0: Nulliparous 1156 (20%) 902 (16%)

1: No 1861 (33%) 2660 (48%)

2: Yes 2692 (47%) 2023 (36%)

Age of starting hormone
replacement therapy

0: No 5529 (97%) 5221 (93%)

1: ≥60 - -

2: 50–59 - 196 (4%)

3: 40–49 143 (3%) 139 (2%)

4: 30–39 26 (<1%) 22 (<1%)

5: <30 11 (<1%) 7 (<1%)

Duration of hormone replacement
therapy use

0: No 5529 (97%) 5221 (93%)

1: <5 153 (3%) 299 (5%)

2: ≥5 27 (<1%) 65 (1%)

Age of starting oral contraceptives

0: No 5488 (96%) 5331 (95%)

1: >25 157 (3%) 155 (3%)

2: ≤25 64 (1%) 99 (2%)
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Table 2. Cont.

Characteristics AgeSub (45–49) AgeSub (50–54)

Duration of oral contraceptive use
(years)

0: No 5488 (96%) 5331 (95%)

1: ≤5 166 (3%) 187 (3%)

2: >5 55 (1%) 67 (1%)

Y: Mammogram findings

0: Negative 4515 (79%) 4720 (85%)

1: Positive 1194 (21%) 865 (15%)

2.3. Machine Learning Methods

To demonstrate and utilize a plug-in such as SHAP to explain the outcome of an
ML model, an ML model that has reasonable performance for the data used in this study
should be built first. Thus, three commonly used ML models were used in this study: lasso,
XGBoost, and RF. Lasso is a logistic regression (LGR) that adds L1 regularization (least
absolute shrinkage and selection operator). LGR is an extension of linear regression (LR)
that can handle binary classification problems by converting the outcomes from LR to a
value space between zero and one using a logit function (the natural logarithm of an odds
ratio) [21]. L1 regularization is a common technique used in regression methods to achieve
more accurate predictions using shrinkage. Shrinkage involves moving data values toward
a central point, such as the mean. Through shrinkage, the variables that contributed the least
to the outcome were dropped [22]. XGBoost is a popular and effective ML method based on
the gradient-boosting framework and is combined with other techniques to make it more
effective. The main concept of XGBoost is to combine several weak models into a strong
model, this is achieved through a straightforward process that involves iteratively adding
new models to XGBoost and adjusting the weights of the samples based on the errors made
by the previous model until the most optimized performance is reached. In other words,
XGBoost self-optimizes when constructing [23]. RF is a popular ensemble-based decision
tree (DT) ML method. During modeling, RF first builds multiple uncorrelated forests of
DTs from an ensemble using a bagging approach, where each DT is built with randomly
selected features and samples from the input data. Then, RF takes the approach of majority
voting to output the final prediction [24].

2.4. Shapley Additive Explanations (SHAP)

The explainability of an ML method may be limited owing to its mechanism; thus,
methods designed to improve explainability have been created and explored recently. De-
veloped by Lundberg and Lee, SHAP was designed to explain the predicted outcomes of an
ML model [18]. SHAP extends and utilizes the concept of Shapley values from cooperative
game theory and more clinical studies have begun to explore its usage recently [26–28].
The basic concept of SHAP is to assign a contribution value to each feature of a predicted
outcome. The concept that SHAP uses to calculate contribution values is straightforward.
It is calculated by comparing the prediction made with the feature present to the predic-
tion made without the feature present, and the difference between these two predictions
represents the contribution of that feature. The contribution of each feature to a predicted
outcome may vary (it can affect the outcome positively or negatively) [18]. In addition,
SHAP considers all possible combinations of features when calculating the contribution
of each feature to the prediction. Overall, in this study, the information provided by the
SHAP method could help gain better insight into how each feature in an ML model affects
the predicted outcome.
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2.5. Proposed Scheme

The aim of this study was to explore important features that may affect subjects with
the potential for positive breast cancer in different age subgroups. Figure 2 illustrates
the proposed analysis scheme. In the proposed scheme, three ML models are built with
data from different age subgroups, and outcomes from the best ML model in terms of
performance are explained using the SHAP method.
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In the proposed scheme, data from the mammogram findings are first collected, and
data preprocessing is conducted to exclude subjects that do not satisfy the protocols of
the study. After the data were cleaned, they were further divided into two age subgroups,
namely, between 45 and 49 years (AgeSub (45–49)) and between 50 and 54 years (AgeSub
(50–54)). The three ML models (RF, XGBoost, lasso) were then utilized for modeling both
subgroups of data. For each ML model, during the construction process, the data were
divided into portions for training (80%) and testing (20%). Because ML methods have
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hyperparameters that must be tuned, the training portion was further split into portions
for training and validation. This study takes the fivefold cross-validation (5f-CV) approach
when tuning the hyperparameters. The concept of 5f-CV is straightforward: the training
data are randomly split into five folds, and each fold is utilized for validation once.

After finding the best hyperparameters for each ML model, the testing data were
used for performance evaluation to find the best-performing one for each age subgroup.
The metrics evaluated were sensitivity, specificity, and area under the receiver operating
characteristic curve (AUC). Next, the SHAP method was used to explain the predicted
outcomes from the best ML models for each age subgroup. Using SHAP, the overall feature
importance rankings of each age subgroup and explanations for individual cases were
extracted. Finally, discussions were formed based on the extracted information.

The experiment was implemented in Python (version 3.8.8) [29] and Jupyter Notebook
(version 6.3.0) [30]. Lasso and RF were constructed using the Scikit-learn package API
(version 0.24.2) [31,32]; XGBoost was constructed with the XGBoost package (version
1.3.3) [23]; cross-validation and hyper-parameter tuning were conducted with the Scikit-
learn API [31,32].

3. Results
3.1. Machine Learning Model Result

Following the scheme mentioned previously, the ML modeling results for the different
age subgroups are presented in Table 3. In Table 3, the ML results of AgeSub (45–49) can be
seen. The AUC of RF (AUC = 61.62) was more reasonable than those of lasso and XGBoost.
Additionally, RF performed more reasonably in terms of sensitivity (54.98) and specificity
(64.42) than lasso and XGBoost. Using a concept similar to that when viewing AgeSub
(45–49), AgeSub (50–54) can also been seen in the table. As shown in the table, in AgeSub
(50–54), RF performed better in terms of AUC (61.78) and sensitivity (66.67) than lasso and
XGBoost. In summary, according to the experimental results from this study, RF performs
reasonably well in both age subgroups, and a table for comparing the RF performance in
each age subgroup is presented in Table 4.

Table 3. Modeling results of AgeSub (45–49) and AgeSub (50–54).

Method Sensitivity Specificity AUC

AgeSub (45–49)

Lasso 52.30 63.13 59.02

XGBoost 51.37 61.56 56.66

RF 54.98 64.42 61.62

AgeSub (50–54)

Lasso 54.71 60.17 58.21

XGBoost 56.31 57.55 57.39

RF 66.67 54.40 61.78

Table 4. Best RF result of each age subgroup.

AgeSub Sensitivity Specificity AUC

45–49 54.98 64.42 61.62

50–54 66.67 54.40 61.78

As shown in Table 4, the AUC of the RF in both age subgroups was similar; however,
the RF performed differently in terms of sensitivity and specificity. The sensitivity of RF in
AgeSub (50–54) was higher than that in AgeSub (45–49), which indicates that RF captures
positive cases more effectively in individuals between 50 and 54 years of age, whereas
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RF captures negative cases well between 45 and 49 years of age. Next, the important
features and predicted outcomes of RF in each age subgroup were explained using the
SHAP method.

3.2. Average Impact on RF Model Output Magnitude

As mentioned in the previous section, each case may be affected by features with
positive or negative SHAP values. These SHAP values indicate the impact of the features
on each output (the predicted outcome from the model). To understand the overall impact
of each feature on the outputs, the average impact value (AIV) can be utilized. Calculating
AIV is straightforward: first, the SHAP values of each feature are transformed to absolute
SHAP values; then, the AIV of each feature is the mean of its absolute SHAP values. Finally,
the importance of the features can be ranked according to their corresponding AIV, of
which the top ranking feature is that with the highest AIV. Figures 3 and 4 present the
AIV on the RF with AgeSub (45–49) and AgeSub (50–54), where the y-axis represents the
features sorted according to the importance rankings from top to bottom. As shown in the
figures, the RF with different age subgroups had features that were ranked differently. For
example, in AgeSub (45–49), the top three ranking features were age at menarche, breast
self-examination, and education level, whereas age at menarche, parity, and BMI category
were the top three ranking features in AgeSub (50–54).
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Figure 5 shows the overall average impact of each feature on the outcomes. Three
legends can be found in the figure, namely, AgeSub (45–49) (marked with the color cyan);
AgeSub (50–54) (marked with the color orange); and Average (marked with the color red
and diagonal black lines). Additionally, the legend average was calculated by averaging
the AIVs of the features in AgeSub (45–49) and AgeSub (50–54). The y-axis presents the
features sorted according to Average, and the one with the highest average AIV is the
top-ranking feature. Overall, based on the information shown in Figure 5, age at menarche,
education level, parity, breast self-examination, and BMI were the top five features.
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3.3. Demonstration of Explaining Individual Cases with SHAP Value

In addition to ranking the importance of the features, the SHAP method can ex-
plain how each feature impacts individual outcomes in the RF model. Figure 6a,b show
the demonstrations of SHAP explaining a positive case (Figure 6a) and a negative case
(Figure 6b) in Ag3222eSub (45–49), while Figure 6c (positive case) and Figure 6d (negative
case) are demonstrations of explaining individual cases in AgeSub (50–54). To explain and
demonstrate some key elements in the figure, Figure 6a,b should be the primary focus.
First, in Figure 6a, at the top-right corner, f (x) = 0.356 is the predicted outcome from the
ML model for the positive case, which has a likelihood value between 0 and 1. Because
the data in this study have a class imbalance issue, the threshold for determining whether
the outcome should be positive or not has been adjusted, for which f (x) ≥ 0.213 is de-
termined as positive in AgeSub (45–49). Second, in Figure 6a, the x-axis represents the
SHAP values, and the y-axis represents the features and their corresponding values for an
individual case. Third, in the middle section of Figure 6a, the red bar indicates a positive
impact on the outcome, whereas the blue bar indicates a negative impact. Fourth, at the
bottom of Figure 6a, E[ f (x)] = 0.198 is the expected value (EV). The EV, also known as
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the background data in the SHAP method, is the actual percentage of positive cases from
the training data used when building the ML model. The EV represents a naïve predicted
outcome and can be considered a starting point. By adding the SHAP values of each feature
and EV, the sum is equal to the outcome. In other words, using EV as the starting point
and f (x) as the endpoint, the SHAP values can indicate how each feature contributes to
the outcome relatively. Thus, for the case shown in Figure 6a, a breast self-examination of
2 (mass, pain, or tenderness) and an education level of 4 (postgraduate) are the features
contributing the most to a positive outcome.

For the negative case in AgeSub (45–49) in Figure 6b, the elements remain the same
as in Figure 6a, with the only differences being the EV and the threshold for determining
whether the outcome is negative. Because Figure 6b shows a negative case in AgeSub
(45–49), the EV equals the actual percentage of the negative cases in the training data.
Moreover, the threshold for negative cases is 1 − 0.213 = 0.787, for which f (x) ≥ 0.787 is
determined as a negative case. The concept mentioned in this section remains the same as
that in Figure 6c,d. For the positive case shown in Figure 6c, the threshold for determination
was 0.147, whereas the threshold for the negative case shown in Figure 6d was 0.853. In
summary, the SHAP can provide helpful information for gaining more insight into the
contribution of each feature to individual outcomes.
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4. Discussion

The model successfully demonstrated age at menarche, education level, parity, breast
self-examination, and BMI as the top five significant risk factors affecting mammography
outcomes. Breast self-examination, education level and reproductive lifespan were ranked
higher in the younger group, whereas parity and BMI were favored in the older group. The
RF model demonstrated the greatest efficacy, with the highest AUC in the analysis of both
age subgroups (Tables 3 and 4). The SHAP value framework was applied to the RF models
to provide insight into the decision-making process by revealing the magnitude of each
risk factor on the formulation of the final prediction.

The results indicated that age at menarche had the greatest impact on mammography
outcomes in both subgroups. Early age at menarche is a well-established risk factor for
breast cancer, with earlier ages conferring a higher risk [11]. This has been extensively
documented in the existing literature, attributing this greater risk to the mitotic effect of
excess hormone exposure on the differentiation and proliferation of breast tissue [33]. It
has been reported that women at an early age at menarche continue to have higher levels of
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estrogen for several years after puberty, thus increasing their cumulative lifetime estrogen
exposure [34]. Research carried out by Ganz et al. proposed that estrogen contributes
to breast cancer risk by influencing cell turnover and increasing breast epigenetic age,
concluding that earlier age at menarche and higher BMI were associated with higher breast
epigenetic age in healthy breast tissue, thus drawing parallels to the increased risk of breast
cancer [35]. The reliability of this association was further evidenced by a meta-analysis
of 117 epidemiological studies that concluded that the younger the age of menarche, the
higher the relative risk of breast cancer [33].

The second most important risk factor identified by the model was education level.
This is supported by numerous studies, including a meta-analysis of 18 cohort studies with
over 10 million women that associated higher levels of education with an increased risk
of breast cancer [36]. Many studies have also equated education level with socioeconomic
status and found similarly that higher socioeconomic status confers a greater risk of breast
cancer [37–39]. It is postulated that this correlation is largely due to the differences in
known risk factors for breast cancer between educational levels, such as alcohol consump-
tion, hormone replacement therapy, and parity, as well as participation or lack thereof in
mammography screening [40].

Parity was identified as the third most important factor in determining mammography
outcomes. Previous studies have concluded similarly, with nulliparous women carrying
higher risks of breast cancer [41]. Similarly, another prospective study demonstrated that
women with four or more pregnancies lasting longer than six months were associated with
a lower relative risk of breast cancer of 0.68 [42]. These differences can be attributed to hor-
monal changes during pregnancy that reduce breast tissue carcinogenesis, as demonstrated
in human and animal studies [43]. Many studies have indicated that breastfeeding lowers
the risk of breast cancer by reducing estrogen and progesterone [44,45]. Breastfeeding as a
predictor should be considered in tandem with parity, given the absence of breastfeeding
in nulliparous women.

Our model implicates breast self-examination as the fourth most important risk
factor for predicting mammography outcome. Evidence for the benefits of breast self-
examination remains controversial. The American Cancer Society no longer recommends
self-examination as a screening method for women in the US, whereas the NHS Breast
Screening Programme continues to advocate for self-examination for women in the UK.
Population studies have shown increased rates of detection for breast cancer in cohorts
advised to perform self-examination [46,47]. However, there exists conflicting research that
discredits self-examination as an effective screening tool, with intervention groups showing
increased rates of unnecessary biopsies and no overall reduction in mortality [48,49]. Our
results suggest that breast self-examination is the fourth most important risk factor for
predicting mammography outcomes. This provides evidence in support of breast self-
examination as a screening tool, given that positive mammography outcomes were defined
as results that required further follow-up or intervention.

BMI was the fifth most influential factor identified when averaged across both age
groups, which is supported by abundant literature demonstrating obesity as one of the
leading modifiable risk factors in the development of breast cancer [50,51]. The mechanistic
relationship in which obesity promotes breast cancer can be explained via the estrogenic
and inflammatory nature of adipose tissue, subsequently jeopardizing the development
of normal breast tissue [52,53]. Although several large studies and meta-analyses have
shown a positive association between BMI and breast cancer risk in postmenopausal
women [54,55], the link between BMI and breast cancer risk in premenopausal women
remains unclear [56–59]. This phenomenon was supported by our results, which ranked
the BMI category higher in the older age group. Given that the mean age of menopause in
Taiwan was reported as 50.2 years old in 2020 [60], conclusions from the older age group
can be extrapolated and applied to the postmenopausal population.

Reproductive lifespan was identified as a significant factor in the younger age group.
This variable describes the years between age at menarche and age at menopause, during
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which the ovaries produce hormones that have a direct effect on breast tissue develop-
ment [11]. A prospective study conducted by Monninkhof et al., including 10,591 women,
demonstrated positive associations between earlier menopause and, thus, a shorter re-
productive lifespan, and lower subsequent breast cancer risk [61]. This is supported by a
recent meta-analysis of over 40,000 women who showed an increased breast cancer risk
every year during menopause [33]. The application of SHAP values demonstrates the
absolute impact of reproductive lifespan on mammography outcome; the discrepancy in
the ranking of reproductive lifespan between the two age groups allows us to conclude that
the protective effects of a shorter reproductive lifespan outweigh the deleterious effects of a
longer reproductive lifespan when pertaining to breast cancer risk.

The model-agnostic nature of the SHAP methodology provides many classic ML ap-
proaches with much needed interpretability and insight into the ‘black box’ phenomenon.
SHAP can explain predictions by computing the contributions of individual variables, ac-
counting for local accuracy, missingness, and consistency, to formulate absolute magnitude
and directionality of impact in the prediction of the desired outcome. Whilst conclusions
from ML models may be extrapolated to wider populations, individual cases often have
their own rankings of predictive variables. The directionality of the effect of risk factors on
predicting the outcome may also differ for each case, as shown in Figure 6a–d. However,
the promising aspects of SHAP do come with limitations. Feature dependency negatively
impacts the ability of SHAP to make predictions through permutating feature values as
it operates under the assumption that the variables are independent. This can lead to
unrealistic predictions and confusion in model interpretability through inappropriate cor-
relations between proxy variables and the desired outcome [20]. Limitations also exist
in the development of the ML model, as our model was trained on questionnaire data
from a single center. While measures were taken to validate the data quality, all data
were self-reported, thus affecting the model’s predictive sensitivity and specificity. ML
data balancing techniques were applied to maximize the accuracy parameters; however,
these still resulted in lower sensitivity and specificity when compared to other ML models
developed and trained on medical imagery [27,28].

To further enhance the applicability and accuracy parameters of our model, a larger
dataset across multiple centers is necessary to enhance the data quality. While this study
focuses on age groups with the highest incidence of breast cancer, future analysis encom-
passing older age groups would yield significant conclusions, especially pertaining to
the post-menopausal population. The retrospective nature of this study makes it prone
to selection bias. The prospective validation of the model, possibly in conjunction with
mammographic image recognition neural network models, would be meaningful and result
in significant clinical implications.

5. Conclusions

Through the analysis of 16 risk factors for breast cancer via RF and SHAP value method-
ology, this study identified age at menarche, education level, parity, breast self-examination,
and BMI category as the five most important factors in predicting mammography outcomes,
all of which are supported by the existing literature. Stratifying participants into younger
and older age groups allowed for the differences in the magnitude of impact of each risk
factor accounting for age to be evaluated. The use of the SHAP value provides transparency
and interpretability to ML models, which will hopefully aid clinicians in making medical
decisions and increase the acceptability of ML integration into healthcare to alleviate the
disease burden. This new methodology will also allow clinicians to identify previously un-
detected interactions between prognostic variables for each individual case, providing new
avenues for research and making progress toward the future of individualized medicine.
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