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Abstract: Effective personnel scheduling is crucial for organizations to match workload demands.
However, staff scheduling is sometimes affected by unexpected events, such as the COVID-19
pandemic, that disrupt regular operations. Limiting the number of on-site staff in the workplace
together with regular testing is an effective strategy to minimize the spread of infectious diseases
like COVID-19 because they spread mostly through close contact with people. Therefore, choosing
the best scheduling and testing plan that satisfies the goals of the organization and prevents the
virus’s spread is essential during disease outbreaks. In this paper, we formulate these challenges in
the framework of two Mixed Integer Non-linear Programming (MINLP) models. The first model
aims to derive optimal staff occupancy and testing strategies to minimize the risk of infection among
employees, while the second is aimed only at optimal staff occupancy under a random testing strategy.
To solve the problems expressed in the models, we propose a canonical genetic algorithm as well as
two commercial solvers. Using both real and synthetic contact networks of employees, our results
show that following the recommended occupancy and testing strategy reduces the risk of infection
25–60% under different scenarios. The minimum risk of infection can be achieved when the employees
follow a planned testing strategy. Further, vaccination status and interaction rate of employees are
important factors in developing scheduling strategies that minimize the risk of infection.

Keywords: personnel scheduling; presence strategy; testing strategy; pandemic; COVID-19

1. Introduction

Personnel scheduling decisions are crucial in many organizations since labor cost
constitutes one of the major expenses in operations management. Thus, any improvement
in staffing and scheduling decisions would result in overall organizational benefits [1].
Staffing and scheduling decisions can be subject to unexpected events that should be
managed proactively to ensure that performance measures are met. A recent global-scale
phenomenon that considerably impacts scheduling decisions is the COVID-19 pandemic [2].
During a pandemic, it is necessary to consider a hybrid work strategy to limit the number of
employees present in the workplace to ensure employee safety. Another efficient strategy to
mitigate the impact of a pandemic is implementing testing, which organizations may offer
to their employees. Due to the limitations in the testing capacity and sensitivity, efficient
applications of tests are necessary to prevent virus outbreaks in the workplace. Therefore,
it is crucial to derive efficient staff scheduling and testing strategies to guarantee safety in
the workplace while achieving the organization’s goals [3].

The personnel scheduling problem in pandemic situations is an emerging topic that has
not been extensively addressed. The question of defining a scheduling plan that accounts for
testing strategies to reduce the risk of infection while ensuring low levels of understaffing
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remains unanswered. Therefore, optimal scheduling, together with an optimal testing
strategy, significantly contributes to keeping the workspace safe. In this paper, we aim to
fill this gap by developing two Mixed Integer Non-linear Programming (MINLP) models
considering a probabilistic graph-based approach to determine the optimal workplace
occupancy that minimizes the risk of infection. The graph-based approach assumes that
employees are in close contact with each other, which contributes to the virus’s spread. The
main objective is to minimize the expected risk of infection while constraining workplace
occupancy to comply with COVID-19 regulations.

Our models deal with two different realistic scenarios. The first model considers a
situation where employees frequently underestimate the adherence to testing protocols. It
provides both optimal personnel scheduling at the workplace and their testing strategies.
On the other hand, the second model assumes a random testing strategy for the employees
and derives only the optimal presence scheduling. We propose two approaches to solve the
non-linear models. The first approach applies commercial optimization solvers; APOPT
for the first model and Gurobi for the second model. To this end, we linearize an equation
(the equation for computing and updating the probability of infection) in the models. The
second approach is a canonical genetic algorithm that utilizes penalization to satisfy the
constraints of the models. We consider both real contact network data of employees and
randomly generated sparse and dense graphs while assessing the models’ performance
under several scenarios. The results show significant impacts of both presence rate and
testing schedule in minimizing the risk of infection.

This paper is organized into five sections. After reviewing related and recent studies
in the following of this section, the problems of finding optimal presence and testing
strategies are formulated in two different models in Section 3. Section 4 presents a heuristic
algorithm for solving the models compared with the use of commercial non-linear solvers.
Numerical results for different scenarios are presented in Section 5. Finally, a conclusion is
drawn in Section 6.

2. Related Work

Personnel scheduling is one of the critical decisions in organizations; however, it is
impacted by both expected events like demand or capacity uncertainty and by unexpected
events like the COVID-19 pandemic. While the first kind of events usually can be handled
by considering labor flexibility strategies (e.g., multiskilled staff, flexible contracts, collabo-
rative teams) to minimize the mismatch between supply and demand [4], the second kind
is difficult to handle. These events certainly affect the performance of some organizations
(e.g., service sector, retail, healthcare, manufacturing), which must continue with regular
operations despite the global health crisis.

Extensive literature on personnel scheduling problems exists [1,5–7]. According to the
classification defined in [7], we can categorize this study as disruption management, in
which the aim is to derive robust schedules by reducing the impact of the effects caused by
a health emergency, such as a pandemic.

The personnel scheduling problem in a pandemic situation is an emerging topic
that largely started with the COVID-19 pandemic [2,8,9]. In contrast to existing studies
on disruption management [10–14] that focus mainly on developing strategies to cope
with staffing operational disruptions (e.g., demand variations, airline crew delays, nurse
absenteeism), this problem concerns employees’ health and safety, requiring additional
considerations, such as the control of the virus spread among the staff while satisfying
staffing levels. The existing studies in the literature are focused on developing scheduling
policies to prevent the spread of the virus in organizations and closed spaces. For residential
care facilities, ref. [15] developed a task scheduling model to minimize the number of
employees assigned to residents to control the spread of the virus. To solve the model, the
authors proposed a population-based heuristic algorithm that guarantees solution quality
against benchmark solution approaches. Ref. [16], studied the problem of scheduling
physicians during the COVID-19 pandemic in a hospital in Turkey. The authors proposed a
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Mixed Integer Programming (MIP) model to solve a shift scheduling problem to guarantee
the safety of the physicians while keeping a balanced workload in the hospital.

During the COVID-19 pandemic, demand for hospital care often exceeded supply. Gao
et al. [17] studied a Medical Staff Rebalancing (MSR) problem to allocate medical staff to
different areas, considering the demand as the number of infected patients in the allocation
regions. To address the MSR problem, the authors proposed two robust optimization
models that account for uncertainty in data availability while ensuring allocation fairness
during emergencies. Similarly, ref. [18] proposed a scheduling model to minimize the
workload unbalance of the nurses in charge of COVID-19 patients. To solve this problem,
they developed a Hybrid Salp Swarm Algorithm and Genetic Algorithm (HSSAGA) and
showed their algorithm outperformed the state-of-the-art solution approaches.

For a pharmaceutical distribution warehouse in Italy, ref. [19] developed a Mixed
Integer Linear Programming (MILP) model to solve a shift scheduling problem. The aim
was to minimize the deviation in allocated contractual hours of employees during the
COVID-19 pandemic to keep operations ongoing while guaranteeing the safety of the
employees. Guerriero and Guido [20] proposed a flexible staff scheduling approach for a
University administrative department during the pandemic. By allowing a hybrid work
system, they developed a days-off optimization model considering employee preferences
and availability. Alwadood et al. [21] considered the personnel scheduling problem for
a hotel housekeeping department used as a quarantine center for foreign travelers. This
study proposed a weekly schedule for the staff using a Binary Integer Programming model
that minimizes the workforce on duty to decrease the risk of infection.

3. Modeling a Graph-Based Personnel Scheduling Problem during Pandemic Situations

Personnel scheduling during a pandemic requires special handling to ensure employee
safety while continuing regular operations. Since the virus that spreads COVID-19, the
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is transmitted through
individual contacts [22], the World Health Organization [23] suggested several measures to
control the spread of the virus, including social distancing, testing, and vaccination.

This section proposes two MINLP models to solve the personnel scheduling problem
during disease outbreaks, particularly the COVID-19 pandemic. We aim to derive a
presence strategy to find the optimal schedule of employees (i.e., working remotely or at
the workplace) and a testing strategy to determine the testing days of the employees. We
consider an organization with n employees who are in contact with each other and have to
be allocated in a discrete-time horizon, d = 1, 2, . . . , D (i.e., a week, D = 5) such that the risk
of infection in the workplace is minimized. The proposed models compute the probability
of infection for each employee under two different cases. The first model assumes that the
employees comply with the testing protocols following the suggested testing days. The
second model does not impose strict regulations on testing, so the employees perform tests
arbitrarily during the evaluated time horizon. The notation and assumptions considered in
the proposed models are listed below.

Assumptions:

• The tests are performed in the morning before employees come to the workplace, and
if the result is positive, they stay at home.

• We initialize the probability of infections to background risk, i.e., PI0
i = br, for

i = 1, 2, . . . , n. Indeed, we assume for the starting day of the scheduling interval (i.e.,
Monday), the employees’ risk is the same as the background risk in the organiza-
tion’s neighborhood.

• We assume working from home is free of risk for the employees, i.e., if the employees
ei do not come to the workplace on the day i, PId

i = PId−1
i . However, this assumption

can be easily relaxed by applying the risk probability to the related computations.
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3.1. Computing the Probability of Infection in a Graph-Based Approach

In this subsection, we propose a graph-based approach to compute the probability of
infection in the workplace. Let PId

i be the probability of infection for ei at the end of the
working day d, for i = 1, 2, . . . , n and d = 1, 2, . . . , D. The objective function is to minimize
the expected risk of infection inside the facilities, which is directly related to minimizing
the probability of infection of employees. Thus,

Minimize Z =
1

D× n

D

∑
d=1

n

∑
i=1

PId
i . (1)

To compute the probability PId
i , we present a two-step procedure. In the first step, we

calculate an intermediate probability (PI
′d
i ) based on a recursive formula that incorporates

the presence and testing strategies for the employees. As mentioned in the assumptions,
the initial probability of infection PIi

0 is set to br, which means a risk of infection based
on the number of incidences reported in the organization’s neighborhood. In the second
step, we calculate the final probability by considering the graph of connectivity among
the employees.

Step 1: If an employee with a probability of infection p performs a test and the result
is negative, the infection probability will reduce to p× FN, where FN is the probability of
false negativity for the tests. Now, let the binary variable td

i indicate ei is tested on day d
before coming to the workplace (i.e., td

i = 1) or not (i.e., td
i = 0). So, the updating recursive

formula can be written as

PI
′d
i = PId−1

i × (1− td
i ) + PId−1

i × td
i × FN. (2)

Equation (2) works well when the employees follow the testing strategy. If they do
not follow this strategy, we can apply a random testing strategy, that is, assuming a testing
probability pr(test) for each employee. For example, if the employees take two tests in five
days, the Probability of testing per day is pr(test) = 2

5 . If ei performs a test at day d with
probability pr(test), then we can use the following equation for applying the effect of tests
and computing PI

′d
i .

PI
′d
i = (1− pr(test))× PId−1

i + pr(test)× PId−1
i × FN. (3)

Therefore, regarding the fact that the employees follow a recommended testing strat-
egy, Equation (2), or a random test strategy, Equation (3), we apply the effect of performing
the tests and update the probability of infection for all employees. Then, we update the
probabilities of infection for the employees based on their contacts.

Step 2: If ei comes to the workplace on day d (i.e. xd
i = 1), and with the probability of

pij contacts with ej (suppose xd
j = 1 as well), then the probability of infection for him/her

can be updated as:

PId
i←j = 1− [(1− PI

′d
i )× (1− pij × βi × PI

′d
j )], (4)

where βi is the probability of infection for ei in the case that ej is infected. For the sake
of simplicity, we only assume two possible values for βi, whether the employee is vacci-
nated or not. PId

i←j denotes the effect of contact with ej. Thus, by applying all possible
contacts ei may have during day d, the infection probability at the end of the day can be
computed as follows:

PId
i = 1− [(1− PI

′d
i )×

n

∏
j=1&j 6=i

(1− pij × βi × xd
j × PI

′d
j )]. (5)
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For the sake of simplicity, let us denote the two-step procedure by a function based on
the related parameters if the employees follow the recommended testing strategy:

PId = Update(PId−1, xd, td), (6)

and, if they follow a random testing strategy:

PId = Update(PId−1, xd, pr(test)), (7)

where PId−1 = {PId−1
1 , PId−1

2 , . . . , PId−1
n } is the infection probability for the employees,

and xd = {xd−1
1 , xd−1

2 , . . . , xd−1
n } and td = {td−1

1 , td−1
2 , . . . , td−1

n } are the presence indicator
and testing indicators for all the employees in the day d, respectively.

3.2. Personnel Scheduling and Testing Strategy Models

In this section, we define two MINLP models considering the probability-of-infection
equations defined in Section 3.1. Model 1 assumes that the employees follow a recom-
mended testing strategy, and Model 2 is based on the fact that employees do not follow
the testing protocols. Thus, they test themselves randomly with a probability of pr(test)
for each day. We also consider a set of constraints. We keep the model simple and easy
to understand. In practice, different organizations may have their specific limits and con-
straints, which can be added to the model. Here, we consider two families of upper and
lower bound constraints: the first family of constraints is related to satisfying the on-site
tasks in the organization. They are defined as:

n

∑
i∈Ck

xd
i ≥ bk, f or k = 1, 2, . . . , m, (8)

where Ck is the k-th subset of employees such that at least bk number of them have to
present at the workplace on day d. As an example, assume the task of registration and
deregistration of citizens in the municipality. In the usual situation, it may need, for
example, five employees present at office in order to carry out the related tasks. However,
in the pandemic, the municipality may reduce the minimum necessary employees to two
employees per day. The second family of constraints refers to capacity limitations in
the workplace. In fact, during the COVID-19 pandemic, there were regulations on the
maximum number of employees who could be simultaneously (in a day) present in the
workplace. As an example, assume there is an office that usually has five employees on
staff where, due to the pandemic and the maintenance of safe social distance, only three of
them can be working simultaneously. So, we can model them as follows:

n

∑
i∈C′k

xd
i ≤ b′k, f or k = 1, 2, . . . , m′, (9)

Note that in real-world applications, scheduling can be conducted for short intervals,
such as a week, i.e., D = 5 working days. This is essential due to a higher rate of change in
the incidence level, which plays a basic role in initializing background risk PI0. As a result,
in order to keep the model straightforward, we do not include the time-related constraints
that may apply to lengthy scheduling intervals.

Model 1 would result in a lower risk of infection compared to Model 2, but it requires
the employees to follow the recommended testing strategy. In contrast, Model 2 depicts
a more flexible testing scheme, in which the employees apply the offered tests randomly
during the scheduling period. The models are defined as follows:
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Model 1: Personnel Scheduling with Testing Strategy

Minimize Z =
1

D× n

D

∑
d=1

n

∑
i=1

PId
i ,

Subject to :

PI0 = {β1br, β2br, . . . , βnbr}
PId = Update(PId−1, xd, td), f or d = 1, 2, . . . , D,

n

∑
i∈Ck

xd
i ≥ bk, f or k = 1, 2, . . . , m,

n

∑
i∈C′k

xd
i ≤ b′k, f or k = 1, 2, . . . , m′,

D

∑
d=1

td
i ≤ TCi, f or i = 1, 2, . . . , n,

xd
i , td

i ∈ {0, 1}, f or i = 1, 2, . . . , n, and d = 1, 2, . . . , D

(10)

TCi refers to the test capacity for ei; the maximum number of available test kits for ei in
a period of D days. This capacity may be the same for all employees or distributed among
the employees according to the number of connections each employee has. Model 1 has
two decision variables, presence scheduling, xd

i , and testing schedule, td
i , for i = 1, 2, . . . , n

and d = 1, 2, . . . , D. So, the model will (optimally) derive which employees to allocate in
the workplace and when, and on which days to perform the tests. If in an organization, the
employees do not follow the suggested testing strategy, and they use the tests arbitrarily
during the scheduling period, Model 1 will not fit with that organization. In this case, the
following model, which assumes the tests can be used by the employees with a probability,
is a better match for that organization.

Model 2: Personnel Scheduling without Testing Strategy

Minimize Z =
1

D× n

D

∑
d=1

n

∑
i=1

PId
i ,

Subject to :

PI0 = {β1br, β2br, . . . , βnbr}
PId = Update(PId−1, xd, pr(test)), f or d = 1, 2, . . . , D,

n

∑
i∈Ck

xd
i ≥ bk, f or k = 1, 2, . . . , m,

n

∑
i∈C′k

xd
i ≤ b′k, f or k = 1, 2, . . . , m′,

xd
i ∈ {0, 1}, f or i = 1, 2, . . . , n, and d = 1, 2, . . . , D

(11)

Both Model 1 and Model 2 are MINLP and, like the general scheduling problem [24]
with hard constraints, are NP-hard. Furthermore, considering the upper bound and
lower bound constraints of the problem, finding even a feasible solution that satisfies the
constraints is an intractable problem. The main difficulty of the models is updating the
risk of infection for the employees after daily contacts, Equation (5). It is an exponential
equation and impossible for most algorithms to cope with. Therefore, in the following, we
present an efficient simplification to handle this issue.

It is worthwhile to mention, both models require the contact network among the
employees. That means the (average) contact rate between any pair of employees should
be known. Further, the models assume a risk of infection for the employee when they work
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from home, which may differ in practice. Indeed, the infection risk varies from employee
to employee, depending on their connection with family members and friends. Finally, the
models do not consider the absence of employees, which may result from sick leaves. This
works well when the rate of sick leaves does not affect workflows, and if it is not the case,
the constraints on the minimum number of on-site employees should be satisfied with a
confident threshold. Relaxation The term ∏n

j=1&j 6=i(1− pij× βi× xd
j × PI

′d
j ) in Equation (5)

is the only exponential equation of the proposed models. As explained, this term is used
for updating the infection risk of an employee after his/her daily contacts. In practice,
the value of this term is so small (based on the data and experiments, that it is on the
order of 10−5. So, to relax the models and remove this exponential term, we use the linear
Taylor expansion of the formula, (1− x)n ≈ 1− nx. Thus, the simplified approximation of
Equation (5) can be written as below:

PId
i = 1− [(1− PI

′d
i )× (1−

n

∑
j=1&j 6=i

(pij × βi × xd
j × PI

′d
j ))], (12)

To evaluate the accuracy of this simplification, we compared the above equation with
Equation (5) using the parameters reported in the example presented in Section 5.1. The
comparison showed that the equations result in almost the same values, with a precision
on the order of 10−9 on average. Thus, it is a suitable linear approximation in practice.

4. Solution Approach

To solve the proposed Model 1 and Model 2, we developed different solution ap-
proaches. For each model, we apply a nonlinear commercial solver; GEKKO and APOPT
(v1.0) [25] solver for the first model, and Gurobi 5.6.3 optimization solver [26] for the second
model. To apply these solvers, we replace the Equation (5) with linearization explained in
Equation (12). In addition to applying these solvers, we propose a Genetic Algorithm (GA)
and tailored it for both Model 1 and Model 2. In the following, we briefly explain the GA
and its operators.

Genetic algorithms (GAs) are random search algorithms which work based on heuris-
tic exploration and exploitation operations [27]. The GA starts with a random set of solutions
(chromosomes), called the population. Then, it evolves the population generation by genera-
tion, using some exploration and exploitation operators. To this end, the selection operator
chooses some high-fitness solutions as the parent chromosomes and puts them in the mating
pool. Then, the Crossover operator takes a pair of such parents and produces (usually) two
new chromosomes, i.e., the children. Indeed, it combines one part (some genes) from the
first parent with the other part of the second parent and vice versa. The mutation operator
mimics the natural mutation and changes some genes of a child solution at random to
explore a new search space and prevent the (premature) convergence of the population.
Both of the operators play the role of exploration. Finally, at the end of each iteration,
from the combined parent and children populations, a set of high-fitness chromosomes are
picked for the next generations.

There are several kinds of crossover, mutation and selection operators [27,28]. We
present a canonical GA with standard tournament selection operators, single-point crossover,
and swap-mutation operators. Since the decision variables are binary, we directly use them
to represent a chromosome. Also, to satisfy the constraints of the models, we penalize the
infeasible chromosomes by adding a penalty value, that is, the number of violations of the
constraints that occurs. Finally, we define the fitness function as the sum of the objective
function, the expected risk of infection defined in Equation (1), and the penalty value. Note
that the objective function is always a value between zero and one. So, this definition of the
fitness function emphasizes the priority of finding feasible solutions in the search space,
followed by improving the solutions in terms of the risk value. Therefore, the GA can also
be applied to finding a feasible solution, such as the first solution with a penalty value of
zero found in the population. We utilize the proposed GA in two folds, finding a random
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feasible solution that satisfies all the constraints, and a (feasible) suboptimal solution that
minimizes the expected risk of infection among the employees. We use such random
solutions in comparing and showing the impact of the presence and testing strategies.

We applied GA to solve the proposed Model 1 and Model 2. Its complexity depends
on the size of its population and the number of generations, and there is a trade-off between
the complexity and the optimality of the obtained solutions. On the other hand, it is
straightforward to apply the GA on either Equation (5) or its relaxed linear equation,
Equation (12). For n employees and a period of D days, any chromosome can be evaluated
in O(n× D×M) time, where M is the size of all constraints in the problem. Therefore, the
time complexity of a GA with population size p in g iterations is O(p× g× n× D×M)
time. Thus, all the parameters have a linear impact on the algorithm’s complexity. Finally,
GA is a random search, meaning multiple runs of it on the same instance of a problem may
result in different solutions.

In contrast to the GA, the time complexity of solvers Gurobi and APOPT in GEKKO
depends on the number of employees and the size of constraints, which have an exponential
impact on the complexity of such solvers in the worst case. Therefore, these solvers use
different approaches to avoid the long-running time, such as solving the problem in the
dual space and applying predetermined optimality gaps, pre-solving, and branch and
bound techniques. We applied APOPT to Model 1 and Gurobi to Model 2 with the linear
Equation (12). Although the running time of these solvers depends on the whole of the
parameters in the models, they are faster than the GA when a logical optimality gap size like
10−5 is used. However, the objective value of solutions obtained by the GA is better than
those obtained by the solvers. In Section 5.4, we evaluate the performance of the different
solution approaches in terms of running time and solution optimality by comparing the
APOPT solver and GA for Model 1 and the Gurobi solver and GA for Model 2.

5. Numerical Results

In this section, we evaluate the proposed models and algorithms on several test
problems. The aim is to find the optimal presence and testing strategies that result in the
minimum expected risk of infection among the employees. We compare the models and
the algorithms separately. Further, we analyze the impact and sensitivity of the models
and parameters. The experiments are composed of four parts. In the first part, we assume
a small-size organization and show the optimal presence and testing strategies. In the
second part, we consider real data on employee contact networks in organizations and
random connectivity graphs. In the third part, the results for random connectivity graphs
are represented, and finally, the fourth part compares the effectiveness of the algorithms.
Since in the first three parts, the aim is to compare the models and impact of the introduced
parameters, we run the presented genetic algorithms 30 times and report the average
objective’s values. We consider the following values for the model’s parameters.

• We consider a time horizon of a week, e.g., five working days, D = 5 for running the ex-
periments.

• We define the probability of disease transmission as β = 0.1. We choose this value
as a probable pessimistic case from a possible range of values reported in previous
studies [29–32] regarding the first variants of COVID-19 (Alpha, Delta, and Omicron,
which is more transmissible than the previous ones).

• We calculate the background risk based on seven-day incidences of COVID-19 infec-
tions in Saxony, Germany, in the period of June–August 2022. We consider 300 inci-
dences on average for this period and set the daily background risk to br = 1

7 ×
300

100,000 .
• The initial risk of infection, PI0, e.g., the risk of infection on Mondays, is determined

by applying the background risk and two-day weekend. That is, PI0 = 1− (1− br)2.
• We apply the impact of vaccine (fully vaccinated, that is, at least two doses of a

COVID-19 vaccine have been received) on the initial risk of infections and transmission
probability during the employee’s interaction. Based on the related recent research
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(e.g., see [33–36]), on average, we set the transmission rate of vaccinated employees to
(1− 0.85)β, which implies 85% immunity for them.

5.1. Base Case Study

In this subsection, we present the base case study in which we consider a small-size
organization with 20 employees. The organization is divided into two cross-functional
sections: the first section includes 12 employees, i.e., e1, e2, . . . , e12, and the second one
includes e13, e14, . . . , e20. The connectivity graph that represents the employee’s contact
network is shown in Figure 1. We consider the following allocation rules on the presence of
the employees:

(i) Each employee has to be present at the workplace at least two days a week,
(ii) The whole workplace occupancy should remain between Min Occupation = 50% and

Max Occupancy = 75% of all the employees. That means at least 10 and at most
15 employees can be present at the workplace daily.

(iii) At least 30% of employees in each section should be present at the workplace. That
means, at least four employees from the first section and three from the second section
should be present daily at the workplace.

Figure 1. Base case study contact network: An organization with 20 employees in two cross-functional
sections. All the employees except number 15 are fully vaccinated. The edge’s label shows the
probability of the occurrence of contact between a pair of employees.

In addition, we assume that the probability of false negativity of the tests is FN = 0.2,
and two tests are available per employee per week. That means, in the second model,
the probability of testing per (working) day is pr(test) = 2

5 = 0.4, and in the first model,
TC = 2. Tables 1 and 2 show the results obtained for Models 10 and 11. As can be extracted
from the results, the presence strategy aims to satisfy the occupancy constraints by selecting
employees who have a weak connection rate with each other for onsite work. Further,
the strategy satisfies the minimum 50% occupancy with exactly 10 employees every day,
except with a strategy of 11 employees on Thursdays in the second model. Also, in the
results obtained for the second model, the testing strategy suggests employees apply the
tests (two tests are available per employee) on the first days of the week. This is because
we initialize the risk of infection on Mondays with a higher value after two days of the
weekend. So, the strategy tries to reduce this value by suggesting tests before the employees
are in contact with each other.
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Table 1. Presence strategy obtained for the example illustrated in Figure 1. The number 1 indicates
that the employee is present at the workplace, and 0 means working from home. The results are
shown for five working days for 20 employees. In this scenario, each employee performs a test with a
probability of 0.4 per day. This presence strategy results in the expected risk of infection 4.61× 10−5.

Employee Monday Tuesday Wednesday Thursday Friday

1 1 0 1 1 0
2 1 0 1 1 0
3 0 1 0 0 1
4 1 0 0 0 1
5 0 1 0 0 1
6 0 1 0 0 1
7 0 1 1 1 0
8 1 0 0 1 1
9 1 0 1 1 0
10 0 1 1 1 0
11 1 0 1 1 0
12 0 1 0 0 1
13 1 0 0 0 1
14 0 1 1 1 0
15 0 0 1 1 0
16 1 1 1 0 0
17 1 0 1 1 0
18 0 1 0 0 1
19 0 1 0 0 1
20 1 0 0 0 1

Table 2. Presence and testing strategies obtained for the example illustrated in Figure 1. The left
binary digit is a presence indicator, present at the workplace (1), or works from home (0). The right
binary digit shows he/she performs a test (1) or not (0). Note that it is possible an employee stays
at home but does a test. This presence and testing strategy results in the expected risk of infection
1.99× 10−5.

Employee Monday Tuesday Wednesday Thursday Friday

1 0 ; 1 1 ; 0 1 ; 0 1 ; 1 0 ; 0
2 0 ; 1 1 ; 0 1 ; 0 1 ; 1 0 ; 0
3 0 ; 1 1 ; 0 1 ; 0 1 ; 1 0 ; 0
4 1 ; 1 0 ; 1 0 ; 0 1 ; 0 1 ; 0
5 1 ; 0 0 ; 1 0 ; 1 0 ; 0 1 ; 0
6 1 ; 0 1 ; 1 0 ; 0 0 ; 0 0 ; 1
7 1 ; 0 0 ; 1 0 ; 1 1 ; 0 1 ; 0
8 1 ; 1 0 ; 1 0 ; 0 0 ; 0 1 ; 0
9 0 ; 1 1 ; 0 0 ; 1 1 ; 0 1 ; 0
10 0 ; 1 1 ; 0 0 ; 1 0 ; 0 1 ; 0
11 0 ; 1 1 ; 0 0 ; 1 1 ; 0 1 ; 0
12 1 ; 1 0 ; 1 1 ; 0 1 ; 0 0 ; 0
13 0 ; 1 1 ; 0 1 ; 1 0 ; 0 0 ; 0
14 1 ; 0 0 ; 1 0 ; 1 1 ; 0 1 ; 0
15 0 ; 0 0 ; 1 1 ; 1 1 ; 0 0 ; 0
16 0 ; 1 1 ; 0 1 ; 1 1 ; 0 1 ; 0
17 1 ; 1 0 ; 1 1 ; 0 0 ; 0 0 ; 0
18 1 ; 0 0 ; 1 1 ; 1 0 ; 0 0 ; 0
19 1 ; 0 0 ; 0 0 ; 1 0 ; 1 1 ; 0
20 0 ; 1 1 ; 1 1 ; 0 0 ; 0 0 ; 0

The expected risk of infection for the suggested strategies is 4.61× 10−5 for the first
model and 1.99× 10−5 for the second model. That means if the employees follow the
suggested testing strategy, they can reduce the risk to 43% of the risk when they follow a
random testing strategy.
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It may also be interesting to see what happens if the employees perform one test or
three tests per week. To answer this question, we run the models for TC = 1 and 3, and
pr(test) = 0.2 and 0.6. We skip reporting the strategies and only focus on the objective
value. The risk of infection for TC = 1, and TC = 3, are 2.44× 10−5 and 1.85× 10−5,
respectively, and the risk of infection for the second model where the employees follow a
random testing strategy with probabilities pr(test) = 0.2 and pr(test) = 0.6 are 6.05× 10−5

and 3.85× 10−5, respectively. Having some high-level information and the price of each
test, a manager can optimally decide how many tests are better to offer to the employees
based on the testing strategy and the model that may fit the organization.

5.2. Results on Real Data

We consider publicly available face-to-face interaction data collected by the SocioPat-
terns collaboration [37]. This dataset contains the interactions among 92 employees
recorded in 20-s intervals in an office building in France from the 24 June to the 3 July
2013 [38]. See Figure 2. Since the probability of contact for the employees is not explicitly
reported in the available data, we pre-process the data to adapt the dataset to our proposed
models. For employee i and employee j, we first aggregated the contacts between them over
the above-mentioned period and calculated the average number of contacts per day (cij).
Next, for each employee i, we divided the total number of contacts made by that employee
per day by the number of colleagues he/she has and calculated the normalized average
vertex degree (di) per day. Here, we defined employee i and employee j as colleagues if
they have at least one contact over this period. Finally, we calculated the probability of
contacts between i and j as follows:

pij =

 1, i f
cij
di
≥ 1 or

cij
dj
≥ 1

max{ cij
di

,
cij
dj
} i f

cij
di

< 1 and
cij
dj

< 1.

Figure 2. Graph representation of employees contact network with 92 employees.

We assume 95% of employees are fully vaccinated, and the probability of false neg-
ativity for the tests is FN = 0.2 on average. Note that, false negativity does not have a
specific rate, and research related to it has shown a wide range of values [39,40]. Under
such conditions, we run the models for different scenarios, as follows:

(1) Each employee has to be present at the workplace at least (i) two days in a week, and
(ii) three days in a week,

(2) The feasible minimum and maximum occupancy are set to (i) [30%, 70%] and
(ii) [40%, 80%],
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(3) The number of available tests per employee per week is TC = 1, 2, 3 for the first model
and correspondingly pr(test) = 0.2, 0.4, 0.6 for the second model.

Therefore, we will have 2× 2× 3 = 12 different scenarios. We run both the models
under these scenarios and report the results in Table 3. We scale the risk’s values by 105.
Columns M1 and M2 show the expected risk of infection for the first and the second model,
respectively. Also, to compare the impact of the models, we compute random feasible
solutions (the solutions that satisfy all the constraints of the problem) for the presence and
testing of the employees. The column R in the table shows the expected risk of infection for
such solutions. This value is the average risk of infection for 30 different random solutions.
As expected, the risk of infection improves from the random strategy to the strategy in the
second model, and also from the second model to the first model. On average, following
the suggested presence strategy can reduce the risk of infection 26% compared to the
random strategy. Moreover, if the employees follow both the suggested presence and
testing strategies, the risk of infection can be reduced to 60% of the random strategy, and
45% of the risk compared to the suggested strategy in the second model.

Table 3. Results obtained for the real data under 12 different scenarios. The reported risk values are
scaled in 105. For each scenario, three strategies are computed: (i) a feasible random strategy, denoted
by column R. This solution satisfies all the constraints and is random in terms of both presence and
testing strategies. (ii) The solution for the second model, denoted by M2, is for the case that the
employees follow the suggested presence strategy with a random testing strategy. (iii) The solution
for the first model, denoted by M1, for the case that the employees follow suggested strategies for
both presence and testing.

Occupancy TC
Min Presence: 2 Days Min Presence: 3 Days

R M2 M1 R M2 M1

1 5.81 4.31 2.38 9.51 7.97 4.40
[30%, 70%] 2 4.47 3.02 1.47 7.54 6.00 2.99

3 3.31 1.96 1.10 5.77 4.11 2.27

1 6.68 4.90 2.81 9.92 7.88 4.66
[40%, 80%] 2 5.12 3.51 1.93 7.60 5.97 2.90

3 4.04 2.57 1.53 6.20 4.01 2.32

Thus, efficiently using the tests together with the presence strategy can significantly
reduce the expected average risk among the employees. Also, when the tests are used
randomly by the employees, in columns R and M2, increasing the test capacity, TC, has
an almost linear impact on the risk of infection. Moreover, if the employees follow the
suggested testing strategy, M1, the infection risk considerably reduces when TC increases
from one to two compared to when it increases from two to three. So, the managers can
offer an optimal number of free tests per week to the employees. This can be optimally
chosen regarding the price of test kits and the acceptable level of risk of infection. Note that
the background risk can be used as a reference point to determine such a level, and the min-
imum and the maximum occupation are determined by considering workplace capacities
and COVID-19 regulations, work fellows, and the type of services the employees provide.

We assumed two different cases where the employees have to be present at least two
days a week and where they have to be present at least three days a week. As expected, the
risk of infection for the first case is less than in the second case. This constraint forces all
employees to be present at the workplace, even those who are at higher risk of infection
(e.g., the unvaccinated employees and employees with a higher degree of connection). The
other family of constraints, which we applied to these real data, is two general constraints
addressing the whole number of on-site employees per day. We considered two scenarios
[30%, 70%] and [40%, 80%], and the results are reported separately. Despite the first family
of constraints, this type of constraint allows flexibility in choosing low-risk employees to
satisfy the minimum necessary number of on-site employees per day. The optimal solution
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(the solution which minimizes the risk of infection) usually belongs to the boundary of these
constraints. Therefore, the strategy obtained for [30%, 70%] is better than for [40%, 80%].

5.3. Results on Random Graphs

In this part, we evaluate the models on randomly generated connectivity graphs. To
this end, we first choose a set of nodes (each node represents an employee), and then, for any
pair of nodes i and j, we assume a weight in pij ∈ [0, 1] as the probability of contact between
them. We generated three small (with n = 40 nodes), medium (with n = 100 nodes) and
large (with n = 250 nodes) size graphs with two sparse and dense connections. In the
sparse graphs, we set pij to 1 with probability 0.05, to 0.5 with probability 0.1, and to 0
with probability 0.85. In the dense graphs, pij = 1 with probability of 0.1, pij = 0.5 with
probability of 0.2, and pij = 0 with probability of 0.7. We also assume three possible cases
TC = 1, 2 and 3 for the number of available tests per employee per week, as well as two
scenarios FN = 0.1 and 0.3 as the probability of false negativity for each test. So, in general,
there are 3× 3× 2 = 18 scenarios for the size of graphs and the test’s parameters. We
considered the constraints that each employee should present at the workplace at least
three days a week and the daily occupancy in the workplace is allowed to be between
50% and 75%. Tables 4 and 5 show the risk of infection obtained for 18 sparse graphs and
18 dense graphs, respectively. The reported risk values are scaled in 105 and they are the
average of 30 independent runs.

Table 4. Results obtained for sparse random graphs. The reported risk values are scaled in 105, and
R, M2, M1 and TC are the same as explained in the previous results. Here, n is the number of nodes
and FN is the probability of false negativity for each test.

n FN
TC = 1 TC = 2 TC = 3

R M2 M1 R M2 M1 R M2 M1

40 0.3 9.69 7.36 4.31 7.22 6.02 3.17 5.85 4.62 2.71
40 0.1 8.19 6.98 2.85 6.49 5.22 1.91 5.19 3.59 1.6

100 0.3 10.91 9.13 5.89 8.85 7.36 4.43 7.21 5.58 3.6
100 0.1 10.08 8.59 4.4 8.08 6.35 2.78 6.27 4.2 2.25

250 0.3 13.25 11.53 8.54 10.49 8.89 6.22 8.5 6.56 4.53
250 0.1 12.59 10.62 6.8 9.27 7.68 4.13 7.05 4.96 2.81

Table 5. Results obtained for dense random graphs. The reported risk values are scaled in 105, and
R, M2, M1 and TC are the same as explained in the previous results. Here, n is the number of nodes
and FN is the probability of false negativity for each test.

n FN
TC = 1 TC = 2 TC = 3

R M2 M1 R M2 M1 R M2 M1

40 0.3 13.42 11.50 6.38 11.52 9.27 4.68 9.28 6.99 3.89
40 0.1 12.77 10.86 4.19 9.76 7.97 2.74 8.28 5.26 2.10

100 0.3 16.39 11.78 7.30 11.53 9.27 5.41 9.41 6.93 4.33
100 0.1 14.65 11.00 5.47 10.08 7.96 3.49 7.81 5.24 2.44

250 0.3 24.17 20.28 14.24 18.67 14.93 9.54 13.77 10.6 6.78
250 0.1 23.08 18.55 11.02 17.16 12.07 5.38 11.14 8.31 5.35

The results in each table show the impact of the number of tests and their sensitivity,
as well as following a random or suggested presence testing strategy by the employees. For
example, in sparse and small-size graphs (n = 40), when the employees use only one test
per week (TC = 1) and present at the workplace by a random strategy and apply the tests
randomly on a day of the week (column R) if the tests have a false negativity rate FN = 0.3,
the results show an expected average risk of infection of 9.69× 10−5, while for the case
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FN = 0.1, it results in 8.19× 10−5. These risk values can be reduced to 7.36× 10−5 and
6.98× 10−5 when the employees follow the suggested presence strategy with a random test
strategy (column M2). Finally, following both suggested presence and testing strategies
(column M1) results in 4.31× 10−5 and 2.85× 10−5, respectively. The table shows the
results for two (TC = 2) and three (TC = 3) tests per week. For example, two tests with
accepting suggested presence and testing strategies result in a risk of infection 3.17× 10−5

and 1.91 × 10−5 for FN = 0.3 and FN = 0.1, respectively. That means 56% and 70%
improvements (risk reduction) comparing the case when they do not follow the strategies.
Thus, by comparing such results and the model which is more fit for the organization,
an optimal case can be chosen. The same results are reported for the dense graphs, and
the managers may be interested in observing the impact of the rate of contact among the
employees on the expected risk of infection. In our experiments, the probability of contact
between any pair of employees in the dense graphs is two times more than in the sparse
graphs. However, the average risk of infection in columns R, M2 and M1 increased by
factors 1.54, 1.49 and 1.41, respectively. This kind of information can be efficiently used in
establishing contact regulations in the workplace space. In fact, in addition to the presence
strategy and testing strategy, the rate of contact is an influential factor to control the risk
of infection.

5.4. Comparison of Solution Algorithms

As explained, we presented a GA and applied it to both models. Further, we solve
the problem defined in the first model, Model 10, using GEKKO and APOPT solver, and
the problem defined in the second model, Model 11, using Gurobi solver. In this part, we
compare these algorithms in terms of running time and efficiency in finding the optimal
solution. Note that, since the problem is an NP-hard problem, none of the algorithms can
guarantee to find the optimal solution in polynomial time. Thus, we compare the obtained
solutions with the algorithms.

The models and algorithms were implemented in Python 3.7 on a standard PC (Intel
(R) Core(TM) i7 and 32G RAM). For a graph with a specific number of nodes, we run the
algorithms for 30 different sets of edges and weights and report the average running time (in
seconds) of the algorithms as well as the best, mean, and worst of the objective value in the
obtained solutions. We consider graphs with the number of nodes n = 10, 20, 40, 100 with
different sparse and dense topologies and run the algorithms for a scheduling period D = 5.
We run the GA with population size = 100 + 2× n, maximum generation = 200 + 2× n,
and mutation probability 1

n . Table 6 shows the result for GA and GEKKO with APOPT
solver for Model 1, and Table 7 shows the result for GA and Gurobi for Model 2.

Table 6. Comparison results between APOPT solver and GA. The results are the average of 30 runs.
The running times are in seconds, and the objective values are scaled in a factor of 105.

n
Running Time APOPT Solver Genetic Algorithm

APOPT GA Min Mean Max Min Mean Max

10 1.95 18.86 2.15 2.70 3.31 2.15 2.69 3.30
20 8.97 60.93 2.19 2.48 2.66 2.23 2.46 2.75
40 28.66 394 2.31 2.59 2.52 2.36 2.51 2.87
100 924 2291 2.53 2.82 3.87 2.53 2.72 3.18

From Table 6, it is clear the APOPT solver reaches the solutions significantly quicker
than GA. However, there is always a trade-off between the running time of GA and the
efficiency of the obtained solutions. APOPT surpasses GA in terms of running time. On the
other hand, the GA slightly outperforms APOPT in terms of optimality. In general, both
approaches can be used for Model 1. From Table 7, it is obvious Gurobi solver is much
faster than GA. On the other hand, the GA outperforms Gurobi in terms of optimality. We
ran Gurobi for very large graphs, e.g., with 1000 nodes, and observed that it is still efficient
and can compute the solution in less than 10 s. In general, since the running time of GA
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is acceptable for real-size instances of the problem, it seems that both approaches can be
applied to Model 2.

Table 7. Comparison results between Gurobi solver and GA. The results are the average of 30 runs.
The running times are in seconds, and the objective values are scaled in a factor of 105.

n
Running Time Gurobi Solver Genetic Algorithm

Gurobi GA Min Mean Max Min Mean Max

10 3.06 14.92 5.04 5.83 6.28 5.04 5.76 5.92
20 12.98 52.35 5.08 6.16 6.54 5.08 5.68 6.44
40 0.55 322 5.28 5.62 6.94 5.17 5.52 6.82
100 0.34 1882 5.47 7.37 8.16 5.42 6.74 7.95

6. Conclusions and Future Work

During the COVID-19 pandemic, the most efficient strategy to prevent the spread
of the virus was (and is) the implementation of teleworking and regular testing of the
employees. However, to date, there is not a clear understanding of how to define efficient
personnel scheduling plans while considering testing capacities so as to guarantee the
safety of the employees that should keep working despite a pandemic.

This paper tackled such a situation by developing two MINLP models for deriving ef-
ficient scheduling plans during a pandemic, taking into account teleworking strategies and
testing capacities. The main objective is to minimize the expected average risk of infection
among the employees, considering work flow constraints and occupancy limitations in the
workplace to comply with the COVID-19 regulations. The first model focuses on scheduling
the presence of employees in the workplaces as well as scheduling their tests. However,
since, in practice, the employee may not follow a testing schedule, we presented a second
model, which aims to optimize the presence scheduling under a random testing strategy.
We compared the models under various scenarios and discovered that by implementing
these strategies, an organization can reduce the risk of infection by 25% to 60%. Further,
we performed a sensitivity analysis by tuning several influential parameters and showed
several scenarios that can significantly help managers in establishing regulations in the
workplace. For instance, they can see the impact of connection weights, when it changes
from dense graphs to sparse graphs, or when different occupation constraints are consid-
ered. In general, based on the simulation results and the comparison between the models,
it is highly recommended for employees to adhere to the optimal scheduling extracted
from the models and to also follow the suggested testing strategy. By implementing both
of these measures, the highest level of occupational safety can be achieved, resulting in
an average risk of infection that is reduced to half compared to when employees follow a
random testing strategy.

The models we proposed assume that the number of available tests for all the employ-
ees is the same, while the tests should be distributed according to the degree of connection
for the employees and the number of days on which they should be present at the work-
place. The models can be easily extended to cover this case. However, by modeling a
variable test availability, the search space of the problem may increase, which may require
more efficient solution approaches such as branch and bound and hybrid methods.
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