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Abstract: Machine learning models are used to create and enhance various disease prediction
frameworks. Ensemble learning is a machine learning technique that combines multiple classifiers
to improve performance by making more accurate predictions than a single classifier. Although
numerous studies have employed ensemble approaches for disease prediction, there is a lack of
thorough assessment of commonly used ensemble approaches against highly researched diseases.
Consequently, this study aims to identify significant trends in the performance accuracies of ensemble
techniques (i.e., bagging, boosting, stacking, and voting) against five hugely researched diseases
(i.e., diabetes, skin disease, kidney disease, liver disease, and heart conditions). Using a well-defined
search strategy, we first identified 45 articles from the current literature that applied two or more of the
four ensemble approaches to any of these five diseases and were published in 2016–2023. Although
stacking has been used the fewest number of times (23) compared with bagging (41) and boosting
(37), it showed the most accurate performance the most times (19 out of 23). The voting approach is
the second-best ensemble approach, as revealed in this review. Stacking always revealed the most
accurate performance in the reviewed articles for skin disease and diabetes. Bagging demonstrated
the best performance for kidney disease (five out of six times) and boosting for liver and diabetes
(four out of six times). The results show that stacking has demonstrated greater accuracy in disease
prediction than the other three candidate algorithms. Our study also demonstrates variability in the
perceived performance of different ensemble approaches against frequently used disease datasets.
The findings of this work will assist researchers in better understanding current trends and hotspots
in disease prediction models that employ ensemble learning, as well as in determining a more suitable
ensemble model for predictive disease analytics. This article also discusses variability in the perceived
performance of different ensemble approaches against frequently used disease datasets.

Keywords: machine learning; bagging; boosting; stacking; voting; disease prediction

1. Introduction

Ensemble learning is a machine learning approach that attempts to improve predictive
performance by mixing predictions from many models. Employing ensemble models aims
to reduce prediction generalisation error [1]. The ensemble technique decreases model
prediction error when the base models are diverse and independent. The technique turns to
the collective output of individuals to develop a forecast. Despite numerous base models,
the ensemble model operates and performs as a single model [2]. Most real data mining
solutions employ ensemble modelling methodologies. Ensemble approaches combine
different machine learning algorithms to create more accurate predictions than those made
by a single classifier [3]. The ensemble model’s main purpose is to combine numerous weak
learners to form a powerful learner, boosting the model’s accuracy [4]. The main sources of
the mismatch between real and predicted values when estimating the target variable using
any machine-learning approach are noise, variation, and bias [5].
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Disease diagnosis refers to the process of determining which disease best reflects a
person’s symptoms. The most challenging issue is diagnosis because certain symptoms and
indications are vague, and disease identification is vital in treating any sickness [6]. Machine
learning is a field that can help anticipate disease diagnosis based on prior training data [7].
Many scientists have created various machine learning algorithms to effectively identify a
wide range of conditions. Machine learning algorithms can create a model that predicts
diseases and their treatments [7]. Because of the vast amount of data available, disease
prediction has become a significant research subject. Using these databases, researchers
create disease prediction models for decision-making systems, allowing for better disease
prediction and treatment at an early stage. Early diagnosis and timely treatment are the
most effective ways to lower disease-related mortality rates [8]. As a result, most medical
scientists are drawn to emerging machine learning-based predictive model technologies for
disease prediction.

Diabetes, skin cancer, kidney disease, liver disease, and heart conditions are common
diseases that can significantly impact patients’ health. This research explores the literature
for disease prediction models based on these diseases. We initially identified several
types of disease prediction models by reviewing the current literature based on the five
disease categories considered using a search strategy. The scope of this study is to find
essential trends among ensemble approaches used on various base model learners, their
accuracy, and the diseases being studied in the literature. Given the increasing relevance
and efficiency of the ensemble approach for predictive disease modelling, the field of
study appears to be expanding. We found limited research that thoroughly evaluates
published studies applying ensemble learning for disease prediction. As a result, this study
aims to uncover critical trends across various ensemble techniques (i.e., bagging, boosting,
stacking, and voting), their performance accuracies, and the diseases being researched.
Furthermore, the benefits and drawbacks of various ensemble techniques are summarised.
The outcomes of this study will help researchers better understand current trends and
hotspots in disease prediction models that use ensemble learning and help them establish
research priorities accordingly.

Following is a summary of the remaining sections of the article: the ensemble methods
(bagging, boosting, stacking, and voting ensemble approaches) are briefly outlined in the
Section 2. The Section 3 of the document contains information on the scientific material
that was analysed from 2016 to 2023. A summary of the articles that used at least two of the
four classical ensemble approaches for one of the five major chronic diseases considered in
this study, and their performance accuracy, benefits, and drawbacks are then outlined in
the Section 4. We also provided a comparison of the usage frequency and top performances
of the ensemble classes based on diseases taken into consideration in this section. Then, we
discuss the findings of this study, followed by the Section 6.

2. Ensemble Learning

Ensemble learning is a machine learning approach that combines predictions from
multiple models to increase predictive performance [7]. Ensemble techniques integrate
various machine learning algorithms to make more accurate predictions than a single
classifier. The use of ensemble models is intended to reduce the generalisation error.
This technique reduces model prediction error when the base models are diverse and
independent. As outlined in Figure 1, The approach relies on the collective output of
individuals for generating forecasting. Although several base models exist, the ensemble
model works and behaves as a single model [7].
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Figure 1. Ensemble learning in which data can be trained on different base classifiers, and the output
is combined to obtain the final prediction.

The main sources of the mismatch between actual and predicted values are noise, vari-
ation, and bias when estimating the target variable using any machine learning approach.
As a result, ensemble techniques combine several machine learning algorithms to create
more accurate predictions than those made by a single classifier [1]. The ensemble model
combines multiple models to reduce the model error and maintain the model’s general-
isation. Bagging, boosting, stacking, and voting are the four major classes of ensemble
learning algorithms, and it is critical to understand each one and incorporate them into
every predictive modelling endeavour [9].

2.1. Bagging

Bagging is aggregating the predictions of many decision trees that have been fit to
different samples of the same dataset. Ensemble bagging is created by assembling a series
of classifiers that repeatedly run a given algorithm on distinct versions of the training
dataset [10]. Bagging, also known as bootstrapping [7], is the process of resampling data
from the training set with the same cardinality as the starting set to reduce the classifier’s
variance and overfitting [11]. Compared to a single model, the final model should be less
overfitted. A model with a high variance indicates that the outcome is sensitive to the
practice data provided [12]. As a result, even with more training data, the model may still
perform poorly and may not even lower the variance of our model. The overall framework
for bagging is presented in Figure 2.
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Figure 2. Steps followed in the bagging approach. Bags of data are formed from the input dataset,
and models are used on all the bags. The output is combined from all the models.

Bootstrapping is like random replacement sampling that can provide a better under-
standing of a data set’s bias and variation [12]. A small portion of the dataset is sampled
randomly as part of the bootstrap procedure. Random Forest and Random Subspace are
upgraded versions of decision trees that use the bagging approach to improve the pre-
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dictions of the decision tree’s base classifier [13]. For generating multiple split trees, this
technique uses a subset of training samples as well as a subset of characteristics. Multiple
decision trees are created to fit each training subset. The dataset’s distribution of attributes
and samples is normally performed at random.

Another bagging technique is the extra trees, in which many decision trees combine
forecasts. It mixes a vast number of decision trees, like the random forest. On the other
hand, the other trees employ the entire sample while selecting splits at random. Although
assembling may increase computational complexity, bagging can be parallelisable. This
can significantly reduce training time, subject to the availability of hardware for running
parallel models [5]. Because deep learning models take a long time to train, optimising
several deep models on various training bags is not an option.

2.2. Boosting

Boosting algorithms use weighted averages to transform poor learners into strong
ones. During boosting, the original dataset is partitioned into several subgroups. The
subset is used to train the classifier, which results in a sequence of models with modest
performance [7]. The elements that were incorrectly categorised by the prior model are
used to build new subsets. The ensembling procedure then improves its performance by
integrating the weak models using a cost function. It explained that, unlike bagging, each
model functions independently before aggregating the inputs, with no model selection at
the end. Boosting is a method of consecutively placing multiple weak pupils in a flexible
manner. Intuitively, the new model focuses on the discoveries that have been shown to be
the most difficult to match up until now, resulting in a good learner with less bias at the end
of the process [10]. Boosting can be used to solve regression and identification problems,
such as bagging. Figure 3 illustrates the framework of the boosting approach.

Healthcare 2023, 11, x FOR PEER REVIEW 4 of 20 
 

 

technique uses a subset of training samples as well as a subset of characteristics. Multiple 

decision trees are created to fit each training subset. The dataset’s distribution of attributes 

and samples is normally performed at random. 

Another bagging technique is the extra trees, in which many decision trees combine 

forecasts. It mixes a vast number of decision trees, like the random forest. On the other 

hand, the other trees employ the entire sample while selecting splits at random. Although 

assembling may increase computational complexity, bagging can be parallelisable. This 

can significantly reduce training time, subject to the availability of hardware for running 

parallel models [5]. Because deep learning models take a long time to train, optimising 

several deep models on various training bags is not an option. 

2.2. Boosting 

Boosting algorithms use weighted averages to transform poor learners into strong 

ones. During boosting, the original dataset is partitioned into several subgroups. The sub-

set is used to train the classifier, which results in a sequence of models with modest per-

formance [7]. The elements that were incorrectly categorised by the prior model are used 

to build new subsets. The ensembling procedure then improves its performance by inte-

grating the weak models using a cost function. It explained that, unlike bagging, each 

model functions independently before aggregating the inputs, with no model selection at 

the end. Boosting is a method of consecutively placing multiple weak pupils in a flexible 

manner. Intuitively, the new model focuses on the discoveries that have been shown to be 

the most difficult to match up until now, resulting in a good learner with less bias at the 

end of the process [10]. Boosting can be used to solve regression and identification prob-

lems, such as bagging. Figure 3 illustrates the framework of the boosting approach. 

Figure 3. The framework used in the boosting approach. Different models are consid-

ered, and each model tries to compensate for the weakness of its predecessor by reduc-

ing the error. 

When compared to a single weak learner, strategies such as majority voting in clas-

sification problems or a linear combination of weak learners in regression problems result 

in superior prediction [14]. The boosting approach trains a weak learner, computes its 

predictions, selects training samples that were mistakenly categorised, and then trains a 

subsequent weak learner with an updated training set that includes the incorrectly classi-

fied instances from the previous training session [15]. Boosting algorithms such as Ada-

Boost and Gradient Boosting have been applied in various sectors [16]. AdaBoost employs 

a greedy strategy to minimise a convex surrogate function upper limit by misclassification 

Training 

dataset 

Combine 

Output 

Final 

Output 

Weighted 

Data 2 

Weighted 

Data N 

Model 1 Model 2 Model 3 Model N 

Error 
Error 

Error 

Weighted

Data 1 

Figure 3. The framework used in the boosting approach. Different models are considered, and each
model tries to compensate for the weakness of its predecessor by reducing the error.

When compared to a single weak learner, strategies such as majority voting in classi-
fication problems or a linear combination of weak learners in regression problems result
in superior prediction [14]. The boosting approach trains a weak learner, computes its
predictions, selects training samples that were mistakenly categorised, and then trains a
subsequent weak learner with an updated training set that includes the incorrectly classified
instances from the previous training session [15]. Boosting algorithms such as AdaBoost
and Gradient Boosting have been applied in various sectors [16]. AdaBoost employs a
greedy strategy to minimise a convex surrogate function upper limit by misclassification
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loss by augmenting the existing model with the suitably weighted predictor at each it-
eration [10]. AdaBoost optimises the exponential loss function, whereas Gradient Boost
extends this approach to any differential loss function.

2.3. Stacking

Stacking is an assembly method in which one or more base-level classifiers are stacked
with a metalearner classifier. The original data is used as input to numerous distinct models
in stacking [5]. The metaclassifier is then utilised to estimate the input as well as the output
of each model, as well as the weights [7]. The best-performing models are chosen, while
the rest are rejected. Stacking employs a metaclassifier to merge multiple base classifiers
trained using different learning methods on a single dataset. The model predictions are
mixed with the inputs from each successive layer to generate a new set of predictions [17].
Ensemble stacking is also known as mixing because all data is mixed to produce a forecast
or categorisation. Multilinear response (MLR) and probability distribution (PD) stacking
are the most advanced techniques. Groupings of numerous base-level classifiers (with
weakly connected predictions) are widely known to work well. Nahar et al. [3] propose
a stacking technique that employs correspondence analysis to find correlations between
base-level classifier predictions. Figure 4 depicts the framework for the stacking approach.
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The dataset is randomly divided into n equal sections in this procedure. One set is
utilised for testing and the rest for training in the nth-fold cross-validation [8]. We derive
the predictions of various learning models using these training testing pair subsets, which
are then used as metadata to build the metamodel [18]. The metamodel produces the final
forecast, commonly known as the winner-takes-all technique [5]. Stacking is an integrated
approach that uses the metalearning model to integrate the output of base models. If the
final decision element is a linear model, the stacking is also known as “model blending”
or just “blending” [8]. Stacking involves fitting multiple different types of models to the
same data and then using a different model to determine how to combine the results most
efficiently [3].

2.4. Voting

The Voting Classifier ensemble approach is a strategy that aggregates predictions
from numerous independent models (base estimators) to make a final prediction [19]. It
uses the “wisdom of the crowd” notion to create more accurate predictions by taking into
account the aggregate judgement of numerous models rather than depending on a single
model. In the Voting Classifier, there are two types of voting: hard voting, in which each
model makes a prediction, and soft voting, in which each model forecasts the probability
or confidence ratings for each class or label. The final prediction is made by summing the
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expected probabilities across all models and choosing the class with the highest average
probability [20]. Weighted voting allows multiple models to have different influences on
the final forecast, which can be assigned manually or learned automatically based on the
performance of the individual models. Because of this diversity, different models can affect
the final prediction differently [19].

By combining the strengths of several models, the Voting Classifier increases overall
performance and robustness, especially when distinct models have diverse properties and
generate independent predictions. The Voting Classifier can overcome biases or limits
in a single model and produce more accurate and trustworthy predictions by using the
collective decision-making of numerous models. Overall, Voting Classifier is a versatile
ensemble strategy that can be applied to a variety of machine learning applications by
using the capabilities of different models to make more accurate predictions [7]. The
Voting Classifier is a versatile ensemble approach in machine learning that provides a
number of benefits. By integrating various models with diverse strengths and weaknesses,
it enhances accuracy, robustness, and model diversity while minimising bias and variance
in predictions.

The Voting Classifier’s ensemble nature improves model stability by decreasing over-
fitting and increasing model variety [21]. It offers various voting procedures like as hard
voting, soft voting, and weighted voting, allowing for customisation based on the tasks
and characteristics of specific models. Furthermore, the Voting Classifier can improve
interpretability by analysing the contributions of many models, assisting in understanding
the underlying patterns and decision-making process [22]. Overall, the Voting Classifier is
an effective tool for enhancing predictive performance in various machine learning tasks.

3. Methods

This study examined the scientific literature for five major chronic diseases and the
algorithms used for their predictive analytics. This study examined research articles from
IEEE, ScienceDirect, PubMed, Springer, and Scopus from 2016 to 2023. The research studies
reviewed here were based on five important disease prediction categories: heart, skin,
liver, kidney, and diabetes, all of which are known to cause a variety of ailments. These
are the major chronic diseases (MCDs) around the world. Governments worldwide are
concerned about the disease burden caused by MCDs. Almost 1 in 2 Australians (47%)
had one or more MCDs in 2017–2018, and nearly 9 in 10 (89%) of deaths in Australia in
2018 were associated with them [23]. The World Health Organization (WHO) considers
MCDs an “invisible epidemic” that continues to be widely ignored and hinders many
countries’ economic development [24]. For these reasons, we considered these diseases.
Furthermore, significant research was conducted to identify publications that used two or
more of the four classical ensemble approaches (bagging, boosting, stacking, and voting)
for disease prediction.

Springer is the world’s largest online repository of scientific, technological, and medical
periodicals. Elsevier’s Scopus is an online bibliometric database. It was picked for its high
level of accuracy and consistency. PubMed supports the open discovery and retrieval of
biomedical and life sciences publications to enhance individual and global health. More
than 35 million links and summaries from biomedical publications are available in the
PubMed database [25]. Nearly four million verified journal and conference articles are
available in the IEEE Xplore digital collection to help you feed creativity, build on earlier
research, and inspire new ideas. We followed a thorough literature search approach to
discover all relevant publications in this study. On 30 May 2023, we used the following
search phrases for this search.

• “Disease prediction” and “ensemble method”
• “Disease prediction” and “ensemble machine learning”
• “Disease diagnosis” and “ensemble machine learning”
• “Disease diagnosis” and “ensemble learning”
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The terms “disease prediction” and “disease diagnosis” were used with the “ensemble
method” and “ensemble machine learning” in the sources, yielding a total of 1046 articles
that included these keywords in the titles, abstracts, or author-selected keywords used
in their articles. After deleting duplicates and considering English-written articles, we
had 766 publications. We selected only those that used at least two of the four ensemble
approaches of bagging, boosting, stacking, or voting for their predictive analysis and
published in 2016–2023. This further screening reduced the number of selected articles from
766 to 45. Although there were publications on other diseases, only five disease categories
were chosen for this study. Hence, the research articles picked were for these five disorders:
heart, skin, liver, kidney, and diabetes. Figure 5 depicts the data-gathering technique and
the number of articles chosen for various diseases.
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4. Results

This study reviewed several articles from the current literature that predicted different
major diseases. Ensemble techniques help improve the prediction accuracy of weak classi-
fiers and perform better in predicting heart disease risk [4]. However, majority voting gener-
ates the most significant improvement in accuracy [4,7]. Another study by Ashri et al. [20]
forecasted the risk of heart disease with an accuracy of 98.18%, whereas majority voting
produced the best outcomes regarding increased prediction accuracy (98.38%) [27]. They
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used several classifiers to improve the performance, but ensemble approaches predicted
the risk of heart disease more accurately than individual classifiers. Another study by
Karadeniz et al. [28] developed and tested innovative ensemble approaches for predicting
cardiac disease. They derived a classifier from random analysis of distance sequences and
then used it as the base estimation of a bagging strategy to improve performance.

Chronic kidney disease (CKD) is a condition that destroys both kidneys, preventing
them from completing their tasks [29]. Unfiltered wastes or poisons in the blood can cause
high blood pressure, diabetes, and other disorders, finally paralysing the entire system
and culminating in death [13]. A study by Basar and Akan [11] for CKD prediction used
two ensemble approaches on four base learners to increase the underlying models’ clas-
sification performance. They are k-nearest neighbours, Naive Bayes and Decision Tree.
This study found the empirical results of 100% prediction accuracy using the ensemble
random subspace approach on the CKD dataset obtained from the UCI machine learning
repository [13,30]. In their study, Eroğlu and Palabaş [30] also received a prediction accu-
racy of 99.15% for CKD, making the model more suitable and appropriate for accurately
detecting CKD.

Verma et al. [16] presented a new technique that employs six different data mining
classification approaches and then developed an ensemble approach that uses bagging,
AdaBoost, and Gradient Boosting classifiers to forecast skin disease [16]. They then used
four different ensemble approaches (bagging, boosting, stacking, and voting) for diverse
base learners to improve the performance for skin diseases, resulting in an accuracy of
99.67% [31]. Pal and Roy [18] used different base learners for implementing ensemble
approaches and found that the stacking model gave an accuracy of 100%. The base learners
they used are Naïve Bayes (NB), k-nearest neighbours (KNN), support vector machine
(SVM), artificial neural network (ANN), and random forest (RF).

The liver is the largest internal organ in the human body, weighing an average of
1.6 kg (3.5 pounds) [3]. Liver disease can be inherited (genetically) or caused by various
circumstances, such as viruses and alcohol usage [32]. Singh et al. [33] applied machine
learning techniques, including logistic regression (LR), extreme gradient boosting (XG-
Boost), decision tree (DT), CatBoost, AdaBoost, and Light gradient boosting machine
(LGBM) on selected features from the dataset for predicting liver disease. They found an
accuracy of 88.55%, 86.75%, and 84.34% for RF, XGBoost, and LGBM, respectively.

Diabetes harms several bodily organs, leading to issues including eye issues, chronic renal
disease, nerve damage, heart issues, and foot issues. Abdollahi and Nouri-Moghaddam [34]
forecasted diabetes using a stacked generalisation technique that achieved an accuracy of
98.8% in diagnosing diseases. The Pima Indians Diabetes dataset was used in a diabetes
study led by Kumari et al. [6]. They found great accuracy, precision, recall, and F1 score
values of 79.04%, 73.48%, 71.45%, and 80.6%, respectively. Their suggested best classifica-
tion model used an ensemble of four machine learning algorithms (RF, LR, and NB). These
studies increase prediction accuracy by integrating higher-level and lower-level models.
The stacking technique with metalearner sequential minimal optimisation (SMO) is the
most accurate classifier, as revealed in a diabetes study by Singh and Singh [17], which
achieved 79% accuracy and 78.8% precision.

Tables 1–5 summarise all reviewed articles considered in this study. The tables de-
tail the names of the diseases, associated references and the ensemble machine-learning
algorithms used for disease prediction. This study comprised 45 publications, and the
optimal approach for each disease type is mentioned in the tables below. The primary focus
will be comparing ensemble strategies, such as bagging, boosting, stacking, and voting
and selecting the best clinically applicable framework to increase prediction accuracy of
complex disease conditions.
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Table 1. Summary of reviewed techniques in Heart Disease.

Ref. Base Learner
Models Ensemble Model Data Type Preprocessing

Technique
Positive/Negative

Cases Dataset Attributes/Instances Accuracy Best Model

[35] KNN, LR, SVM, RF,
CART, LDA Gradient Boost, RF Clinical 139/164 UCI Cleveland

Heart Disease 14/303 Bagging (RF) = 83%,
Boosting (Gradient) = 81% Boosting

[4] LR RF, AdaBoost,
Voting, Stacking Random oversampling 644/3594 Kaggle Chronic

Heart Disease 16/4238
Bagging (RF) = 96%,

AdaBoost = 64%,
Voting = 76%, Stacking = 99%

Stacking

[36] SVM AdaBoost, Stacking, RF Clinical Feature selection 139/164 UCI Cleveland
Heart Disease 14/303

Bagging (RF) = 88.0%,
Boosting (AdaBoost) = 88.0%,

Stacking = 92.2%
Stacking

[37] SVM Stacking, RF Clinical Feature selection,
Optimisation 139/164 UCI Cleveland

Heart Disease 14/303 Stacking = 91.2%,
Bagging (RF) = 82.9% Stacking

[19] XGB, LR, RF, KNN Majority Voting,
XGBoost, RF Clinical Feature selection 139/164 UCI Cleveland

Heart Disease 14/303
Voting = 94%,

Bagging (RF) = 92%,
Boosting (XGBoost) = 87%

Voting

[38] LR, SVM RF, XGBoost Clinical Feature Selection, 1447/7012 Cardiovascular
disease 131/8459 Bagging (RF) = 83.6%,

Boosting (XGBoost) = 83.8% Boosting

[39] XGB, DT, KNN Stacking, RF, XGB, DT Eliminating outliers,
Scaling

Kaggle
Cardiovascular 13/7000

Stacking = 86.4%,
Bagging (RF) = 88.6%,

Boosting (XGBoost) = 88.1%,
Bagging (DT) = 86.3%

Bagging

[40]
DT, AdaBoost, LR,

SGD, RF, SVM, GBM,
ETC, G-NB

DT, AdaBoost, RF, GBM Clinical Oversampling UCI Heart Failure 13/299

Bagging (DT) = 87.7%,
Boosting (AdaBoost) = 88.5%,

Bagging (RF) = 91.8%,
Boosting (GBM) = 88.5%

Bagging

[20] LR, SVM, KNN,
DT, RF Majority Voting, RF, DT Clinical

Handled missing
values, imputation,

normalisation
139/164 UCI Cleveland

Heart Disease 14/303
Voting = 98.18%,

Bagging (DT) = 93.1%,
Bagging (RF) = 94.4%

Voting

[41] NB, KNN, RT,
SVM, BN AdaBoost, LogitBoost, RF Clinical UCI SPECT heart

disease 22
Bagging (RF) = 90%,

Boosting (AdaBoost) = 85%,
Boosting (LogitBoost) = 93%

Boosting

[7] NB, RF, MLP, BN,
C4.5, PART

Bagging, Boosting,
and Stacking, Clinical Handled missing

values 139/164 UCI Cleveland
Heart Disease 14/303

Bagging = 79.87%,
Boosting = 75.9%

Stacking = 80.21%,
Voting = 85.48%

Voting

[42] KNN, SVM, NB, LR,
QDA, C4.5, NN

Bagging, AdaBoost,
and Stacking Clinical 139/164 UCI Cleveland

Heart Disease 14/303
Bagging = 77.9%,

Boosting (AdaBoost) = 64.3%,
Stacking = 82.5%

Stacking

[5] LR, KNN, SVM, DT,
NB, MLP

Bagging, Boosting,
and Stacking Equal

Kaggle
Cardiovascular

Disease
12/-

Bagging = 74.42%,
Boosting = 73.4%, S

tacking = 75.1%
Stacking
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Table 1. Cont.

Ref. Base Learner
Models Ensemble Model Data Type Preprocessing

Technique
Positive/Negative

Cases Dataset Attributes/Instances Accuracy Best Model

[43] RF, ET, XGBoost, GB AdaBoost, GBM,
Stacking Eliminated outliers IEEE Data Port 11/1190

Boosting (GBM) = 84.2%,
Boosting (AdaBoost) = 83.4%,

Stacking = 92.3%
Stacking

[44] MLP, SCRL, SVM Bagging, Boosting,
and Stacking Clinical 139/164 UCI Cleveland

Heart Disease 14/303
Bagging = 80.5%,
Boosting = 81.1%,
Stacking = 84.1%

Stacking

[28] DT, CNN, NB, ANN,
SVM, CAFL Bagging, Boosting Data distribution Eric 7/210

Bagging = 73.2%,
Boosting (AdaBoost) = 65.1%,

Stacking = 79.4%
Stacking

Table 2. Summary of reviewed techniques in Chronic Kidney Disease.

Ref. Base Learner
Models Ensemble Model Data Type Preprocessing

Technique
Positive/Negative

Cases Dataset Attributes/Instances Accuracy Best Model

[45] NB, LR, MLP, SVM,
DS, RT

AdaBoost, Bagging,
Voting, Stacking Clinical

Handled missing
values, feature
selection, and

sample filtering

Razi Hospital 42/936

Bagging = 99.1%,
Boosting (AdaBoost) = 99.1%,

Voting = 96.6%,
Stacking = 97.1%

Boosting
Bagging

[46] NB, LR, ANN,
CART, SVM Gradient Boosting, RF Clinical

Feature selection,
handling missing

values, and imputation
250/150 UCI Chronic

Kidney 25/400 Bagging (RF) = 96.5%,
Boosting (Gradient Boosting) = 90.4% Bagging

[2] -
AdaBoost, RF, ETC
bagging, Gradient

boosting
Clinical Feature engineering 250/150 UCI Chronic

Kidney 25/400

Bagging (Extra trees) = 98%,
Bagging = 96%,

Bagging (RF) = 95%,
Boosting (AdaBoost) = 99%,
Boosting (Gradient) = 97%

Boosting

[47] LR, KNN, SVC Gradient Boosting, RF Clinical Handled missing
values 250/150 UCI Chronic

Kidney 25/400 Bagging (RF) = 99%,
Boosting (Gradient) = 98.7% Bagging

[13] - AdaBoost, Bagging and
Random Subspaces Clinical Feature extraction 250/150 UCI Chronic

Kidney 25/400
AdaBoost = 99.25%,

Bagging = 98.5%,
Bagging (Random Subspace) = 99.5%

Bagging

[11] NB, SMO, J48, RF Bagging, AdaBoost
Feature selection

and handling
missing values

250/150 UCI Chronic
Kidney 25/400

Bagging = 98%,
Bagging (RF) = 100%,

Boosting (AdaBoost) = 99%
Bagging
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Table 3. Summary of reviewed techniques in Skin Cancer. The positive/negative cases come in a range since this dataset contains data for six different skin cancer
conditions.

Ref. Base Learner
Algorithm Ensemble Approach Data Type Preprocessing

Technique
Positive/Negative

Cases Dataset Attributes/Instances Accuracy Best One

[18] NB, RF KNN, SVM,
and MLP

Bagging, Boosting,
and Stacking Clinical Handled missing

values [20–112]/[254–346] UCI Dermatology 34/366
Bagging = 96%,
Boosting = 97%,
Stacking = 100%

Stacking

[8] DT, LR Bagging, AdaBoost,
and Stacking Clinical Feature selection [20–112]/[254–346] UCI Dermatology 34/366

Bagging = 92.8%,
Boosting (AdaBoost) = 92.8%,

Stacking = 92.8%

Bagging
Boosting
Stacking

[48] LR, CHAID DT Bagging, Boosting Clinical

Handled missing
values, data

distribution, and
balancing,

[20–112]/[254–346] UCI Dermatology 34/366 Bagging = 100%,
Boosting = 100%

Bagging
Boosting

[31] NB, KNN, DT, SVM,
RF, MLP

Bagging, Boosting,
and Stacking Clinical

Hybrid Feature
selection, information

gain, and PCA
[20–112]/[254–346] UCI Dermatology 12/366

Bagging = 95.94%,
Boosting = 97.70%,
Stacking = 99.67%

Stacking

[16] PAC, LDA, RNC,
BNB, NB, ETC

Bagging, AdaBoost,
Gradient Boosting Clinical Feature Selection [20–112]/[254–346] UCI Dermatology 34/366

Bagging = 97.35%,
AdaBoost = 98.21%,

Gradient Boosting = 99.46%
Boosting

Table 4. Summary of reviewed techniques in Liver Disease.

Ref. Base Learner
Models Ensemble Model Data Type Preprocessing

Technique
Positive/Negative

Cases Dataset Attributes/Instances Accuracy Best Model

[3]
BeggRep, BeggJ48,

AdaBoost,
LogitBoost, RF

Bagging, Boosting Clinical 416/167 UCI Indian Liver Patient 10/583
Boosting(AdaBoost) = 70.2%,

Boosting(LogitBoost) = 70.53%,
Bagging (RF) = 69.2%

Boosting

[49] NB, SVM, KNN, LR,
DT, MLP Stacking, DT Clinical Feature Selection PCA 416/167 UCI Indian Liver Patient 10/583 Bagging (DT) = 69.40%

Stacking = 71.18% Stacking

[50] KNN RF, Gradient Boosting,
AdaBoost, Stacking Clinical 416/167 UCI Indian Liver Patient 10/583

Bagging (RF) = 96.5%,
Boosting(Gradient) = 91%,
Boosting(AdaBoost) = 94%,

Stacking = 97%

Stacking

[33]
DT, NB, KNN, LR,
SVM, AdaBoost,

CatBoost
XGBoost, Light GBM, RF Clinical Handled missing

values 416/167 UCI Indian Liver Patient 10/583
Bagging (RF) = 88.5%

Boosting(XGBoost) = 86.7%
Boosting (LightGBM) = 84.3%

Bagging

[32]
SVM, KNN, NN, LR,

CART, ANN,
PCA, LDA

Bagging, Stacking Clinical
Handled missing

values, feature
selection, PCA

453/426 Iris And Physiological 22/879 Bagging (RF) = 85%,
Stacking = 98% Stacking
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Table 4. Cont.

Ref. Base Learner
Models Ensemble Model Data Type Preprocessing

Technique
Positive/Negative

Cases Dataset Attributes/Instances Accuracy Best Model

[9] KNN, SVM, RF,
LR, CNN

RF, XGBoost,
Gradient Boost

Handled missing
values, scaling, and

feature selection
Image 11/10,000

Bagging (RF) = 83%
Boosting (XGBoost) = 82%
Boosting (Gradient) = 85%

Boosting

[51] LR, DT, RF
KNN, MLP

AdaBoost,
XGBoost, Stacking Clinical

Data Imputation, label
encoding, resampling,
eliminating duplicate

values and outliers

416/167 UCI Indian Liver Patient 10/583
Boosting (AdaBoost) = 83%
Boosting (XGBoost) = 86%

Stacking = 85%
Boosting

[10] DT, KNN, SVM, NB Bagging, Boosting, RF Clinical Discretisation,
resampling, PCA 416/167 UCI Indian Liver Patient 10/583

Bagging (RF) = 88.6%,
Bagging = 89%,
Boosting = 89%

Bagging
Boosting

Table 5. Summary of reviewed techniques in diabetes.

Ref. Base Learner
Models Ensemble Model Data Type Preprocessing

Technique
Positive/Negative

Cases Dataset Attributes/Instances Accuracy Best Model

[52] MLP, SVM, DT, LR RF, Stacking

Outlier detection and
elimination, SMOTE

Tomek for
imbalanced data

73/330 Type 2 Diabetes 19/403 Bagging (RF) = 92.5%
Stacking = 96.7% Stacking

[6] RF, LR, NB
Soft voting classifier,
AdaBoost, Bagging,

XGBoost,
Clinical

Min–max
normalisation, label
encoding, handled

missing values

268/500 Pima Indians Diabetes 9/768

Bagging = 74.8%,
Boosting(AdaBoost) = 75.3%,
Boosting (XGBoost) = 75.7%,

Voting = 79.0%

Voting

[53] SVM, KNN, DT Bagging, Stacking Clinical SMOTE, k-fold cross
validation KFUH Diabetes 10/897 Bagging = 94.1%,

Stacking = 94.4% Stacking

[54] KNN, LR, MLP AdaBoost, Stacking
Feature selection,

handling
missing values

60/330 Vanderbilt University’s
Biostatistics program 18/390 Boosting (AdaBoost) = 91.3%,

Stacking = 93.2% Stacking

[55] XGB, CGB, SVM,
RF, LR XGBoost, RF, CatBoost

Missing values
eliminated, class

imbalance handling,
feature selection

33,332/73,656 NHANES 18/124,821
Boosting(XGBoost) = 70.8%,

Bagging(RF) = 78.4%,
Boosting(CatBoost) = 82.1%

Boosting

[38] LR, SVM RF, XGBoost Clinical feature Selection 5532/15,599 Cardiovascular disease 123/21,131 Bagging (RF) = 85.5%,
Boosting (XGBoost) = 86.2% Boosting
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Table 5. Cont.

Ref. Base Learner
Models Ensemble Model Data Type Preprocessing

Technique
Positive/Negative

Cases Dataset Attributes/Instances Accuracy Best Model

[17] SVM Majority voting, stacking Clinical Cross-validation 268/500 Pima Indians Diabetes 9/768 Stacking = 79%, Voting = 65.10% Stacking

[22] ANN, SVM,
KNN, NB

Bagging, RF,
Majority Voting Clinical 268/500 Pima Indians Diabetes 9/768

Bagging(RF) = 90.97%,
Bagging = 89.69%,
Voting = 98.60%,

Voting

[34] KNN, RF, DT, SVM,
MLP, GB RF, AdaBoost, Stacking Clinical Feature selection with

genetic algorithm 268/500 Pima Indians Diabetes 9/768
Bagging (RF) = 93%,

Boosting (GBC) = 95%,
Stacking = 98.8%

Stacking

[10] DT, KNN, SVM Bagging, Boosting, RF Clinical Discretisation,
resampling, PCA 268/500 Pima Indians Diabetes 9/768

Bagging (RF) = 89.7%,
Bagging = 89.5%,
Boosting = 90.1%

Boosting
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4.1. Advantages and Limitations

Table 6 below details the benefits and drawbacks of this study’s four main classes of
ensemble approaches.

Table 6. Advantages and limitations of the four ensemble classes considered in this study.

Ensemble Approach Advantages Limitations

Bagging

- One benefit of bagging is that it enables
several weak learners to work together
to outperform a single strong student.

- The variance in performance measures
is greatly reduced by bagging while
keeping the bias almost the same [3].

- Since sampling is performed by
bootstrapping, the training data
become more diversified, making this
approach effective [10].

- If the training set is particularly large,
training the model on a smaller data set
can still improve model accuracy while
saving computation time.

- The fundamental drawback of bagging
is that it increases model accuracy at
the expense of interpretability [8]. For
example, if a single tree were used as
the base model, the diagram would be
more appealing and easier to
understand, but when bagging is
employed, this interpretability is lost.

- Another drawback is that we cannot
determine which features are being
chosen during sampling, which
increases the likelihood that crucial
data may be lost if some characteristics
are never used [10].

Boosting

- As an ensemble model, boosting has a
simple-to-read and
easy-to-comprehend algorithm, making
it simple to interpret its predictions [5].

- Boosting is a robust technique that
efficiently reduces overfitting [3].

- Boosting has the drawback of being
sensitive to outliers because every
classifier is required to correct the
mistakes made by the predecessors. As
a result, the technique is overly reliant
on outliers [3].

- It is challenging to streamline the
process because every estimator rests
its accuracy on prior predictions.

Stacking

- The advantage of stacking is that it can
use a variety of effective models to
accomplish classification or regression
tasks and produce predictions that
perform better than any one model in
the ensemble.

- Stacking increases the precision of
model prediction.

- Huge datasets will require more
computation time since each classifier
must individually process the entire
dataset during training, which
increases computational time [5].

Voting

- Voting takes advantage of distinct
classifiers’ strengths while
compensating for their flaws, resulting
in increased performance [56].

- The voting can handle various data
types, including categorical, numerical,
and text data, allowing for a more
in-depth examination [57].

- It can also provide insights into
decision-making by analysing voting
patterns [21].

- More complex, sensitive to correlated
classifiers, lack of interpretability, and
the potential for overfitting [19].

- The individual classifiers may not
significantly improve accuracy if they
are closely connected.

- Classifier diversity is critical for
improved performance.

- It may overfit training data if they are
not correctly regularised [7].

4.2. Frequency and Accuracy Comparison

Table 7 compares usage frequency and best performance for bagging, boosting, stack-
ing and voting algorithms used in the reviewed articles, as outlined in Tables 1–5. Although
boosting has been frequently employed (37 of 45), the frequency of the most accurate in
percentage is only 40.5%. Stacking, on the other hand, was used in 23 of the 45 studies,
but the accuracy rate is 82.6%. Random forest and random subspace are the upgraded
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version of bagging, so in this comparison analysis, these approaches have been included
in the bagging section. Bagging has produced the poorest outcomes, with the highest
accuracy of only 26.8% with a usage frequency of 41 out of 45. Voting has also shown a
good frequency of the best performance accuracy of 71.4%, but it appeared in seven out of
45 reviewed articles.

Table 7. Comparison of usage frequency and best performance of ensemble classes considered in
this study.

Ensemble Approach
Number of Published

Articles Used
This Algorithm

Number of Times This
Algorithm Showed the Best

Performance (%)

Bagging 41 11 (26.8%)

Boosting 37 15 (40.5%)

Stacking 23 19 (82.6%)

Voting 7 5 (71.4%)

Table 8 compares the precision of bagging, boosting, stacking, and voting for the
various MCDs considered in this research. Regarding heart disease, bagging showed the
best accuracy in only 13.4% of cases. While stacking has a lower study count, it revealed the
best performance at the highest times (80%). The papers considered for this article show
that no kidney disease study has used stacking and voting algorithms, whereas, between
bagging and boosting, bagging showed 83.4% times accuracy. For skin cancer and diabetes,
the stacking algorithm revealed the best performance when it was used for prediction
(100%). Voting has been used in only heart and diabetes studies with an accuracy of 75%
and 66.7%, respectively. Additionally, overall stacking, used in only approximately half of
the trials (23 times), revealed the best performance in percentage value (82.6%). Voting was
used in seven studies only but has given a total best accuracy of 71.4% of cases.

Table 8. Comparison of usage frequency and best performance of ensemble classes against the five
major chronic diseases considered in this study.

Disease Name
Total

Reviewed
Article

Bagging Boosting Stacking Voting

Usage
Frequency

Best
Performance

Usage
Frequency

Best
Performance

Usage
Frequency

Best
Performance

Usage
Frequency

Best
Performance

Heart disease 16 15 2 (13.4%) 14 3 (21.4%) 10 8 (80%) 4 3 (75%)

Kidney disease 6 6 5 (83.4%) 6 2 (33.4%) 1 0 (0%) 0 0 (0%)

Skin Cancer 5 5 2 (40%) 5 3 (60%) 3 3 (100%) 0 0 (0%)

Liver disease 8 7 2 (28.5%) 6 4 (66.7%) 4 3 (75%) 0 0 (0%)

Diabetes disease 10 8 0 (0%) 6 3 (50%) 5 5 (100%) 3 2 (66.7%)

Total 45 41 11 (26.8%) 37 15 (40.5%) 23 19 (82.6%) 7 5 (71.4%)

Stacking is a popular and efficient strategy for heart disease, skin cancer, liver disease,
and diabetes prediction. It can capture and combine varied predictions from base models,
uncovering hidden patterns and complicated connections between risk factors and symp-
toms [10]. It also captures nonlinear relationships, taking advantage of the flexibility of
various modelling techniques to capture nonlinear patterns more successfully than other en-
semble methods, such as bagging or boosting [34]. Stacking can combine predictions from
several base models trained on distinct subsets or representations of the data, exploiting the
strengths of each model while limiting the impact of data heterogeneity. It can address class
imbalance issues in imbalanced datasets by optimising performance on minority classes
and incorporating models with various uncertainty handling strategies, such as imputation
approaches or robust estimation methods [4,8,37]. Regardless of these advantages, like
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other machine learning methods, the performance of the stacking approach can be affected
by various factors, including dataset attributes, clinical features, and modelling choices.

Ensemble approaches that balance performance and interpretability differently include
bagging, boosting, stacking, and voting. Bagging combines many models, producing great
accuracy but no comprehensive understanding of feature relationships. Boosting enhances
the model by giving samples that were incorrectly classified as more weight, but it might
make the model more complex and challenging to understand [32]. Stacking is more
difficult to understand and uses a metalearner to combine many models. Forecasts are
gathered through voting using the majority or weighted voting method, balancing accuracy,
and interpretability [21,45]. The selection is based on the application’s requirements,
considering accuracy, interpretability, and issue domain complexity.

4.3. Ensemble Performance against Datasets

Our reviewed 45 articles used 23 distinct datasets from various open-access sources,
including Kaggle and UCI, as evident in Tables 1–5. The five most used datasets are
UCI Cleveland Heart Disease [58], UCI Chronic Kidney [59], UCI Dermatology [60], UCI
Indian Liver Patient [61], and Pima Indians Diabetes [62]. All four ensemble approaches
considered in this study have been applied to these datasets. However, not each of these
four ensemble approaches has been found as the best-performing against each dataset,
as revealed in Figure 6. The voting approach was found as the best performing only for
two datasets (Pima Indians Diabetes and UCI Cleveland Heart Disease). It does not show
the highest accuracy for the other three datasets. Stacking has been found to offer the
best accuracy in four datasets, except for the UCI Chronic Kidney. Only the boosting
approach delivered the best accuracy for all five datasets. Bagging has been found as the
best performing for three datasets.
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5. Discussion

Through machine learning, numerous methods for the early identification of diseases
are being produced and enhanced. The ensemble method in machine learning increases
disease forecast accuracy by reducing bias and variation. As a result, it is the best way
to identify diseases. Although there are other ensemble approach variations, we have
considered bagging, boosting, stacking, and voting for disease prediction. Heart disease
prediction has received more research attention than skin cancer, liver, diabetes, and kidney
diseases, according to our study of the five chronic diseases. Our review also shows that the
accuracy of the basic classifier can be improved by applying an ensemble method to other
machine learning algorithms. Disease prediction models may assist doctors in identifying
high-risk individuals, improving individual health outcomes and care cost-effectiveness.
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Several strategies were used in the preprocessing stage to prepare the data for anal-
ysis. These techniques included test–train splitting, random oversampling to address
the class imbalance, feature selection, k-fold validation, missing value handling, outlier
elimination, scaling, data imputation, label encoding, resampling methods like SMOTE,
feature engineering, feature extraction, discretisation, and PCA (Principal Component
Analysis). Optimisation strategies and hybrid feature selection methods were also used in
some approaches. Researchers use these strategies singly or in combination, depending
on the specific data and analysis requirements. These preprocessing procedures were
designed to ensure data quality, resolve missing values, deal with class imbalance, reduce
dimensionality, and prepare the dataset for later analysis and modelling activities.

The stacking method is the best choice for selecting an ensemble approach that can
produce more accurate results because it has demonstrated better forecast accuracy in the
reviewed studies. This literature review showed that stacking had the highest performance
accuracy, with 82.6% of the cases when researchers used this approach. The stacking
approach predicted liver and diabetes diseases with 100% success, as revealed in this
review study. Researchers used bagging (41 out of 45) and boosting (37 out of 45) more
frequently than stacking (23 out of 45) and voting (7 out of 45), but stacking and voting
showed better performance than the other two. In only 26.8% of the cases when it was
used, bagging showed the best performance. For the boosting approach, it was only
40.5%. According to this literature review, the most popular strategy is stacking, which has
produced more reliable outcomes than bagging and boosting despite being used in fewer
studies. Voting is the second most popular strategy, producing better results than bagging
and boosting but used less frequently compared with them.

Data leakage could lead to overly optimistic performance estimates, which could be a
concern in ensemble techniques for disease identification. To address this issue, researchers
used techniques such as suitable cross-validation [63], train–validation–test split [64], fea-
ture engineering precautions, and model stacking precautions [65]. A three-way data split
divides the dataset into training, validation, and test sets, and cross-validation techniques
such as k-fold ensure an accurate separation of training and testing data. Commonly used
feature engineering procedures are scaling, imputation and feature selection which are
performed during the cross-validation cycle to prevent leakage. Because of model stacking
safety precautions, metalearners are educated on predictions that were not used during
training. These methods aided in lowering the risk of data leakage to ensure the legitimacy
and dependability of results.

Like other studies, we have some limitations in this research. First, we limited our
literature search to 2016–2023 for five major chronic diseases. This study, therefore, may
not include some crucial articles published before 2016 or considered conditions other
than these five. Second, we considered only four classic ensemble approaches (bagging,
boosting, stacking, and voting) for disease prediction. By definition, an ensemble approach
combines two or more weak classifiers to generate a stronger classifier to obtain a better
predictive performance than each of its constituent classifiers. Although many different
ensemble approaches are in the current literature, including the ones based on time series
data [66–68], this study emphasised the four classic techniques. A future study could
fill this gap. Third, when searching current literature, this study considered Australia’s
five prevalent chronic diseases. This prevalence could differ across different countries,
potentially leading to a selection bias. Therefore, broader coverage of chronic diseases
would make this study’s findings applicable across more countries. Fourth, there may be
articles in the literature that met our selection criteria but remained unnoticed by our search
criteria, potentially leading to another selection bias. The abovementioned limitations also
create potential research opportunities that researchers in the future could address.

6. Conclusions

Various early disease prediction strategies are being developed and improved using
machine learning and artificial intelligence. In machine learning, the ensemble approach is
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the best for disease prediction because it reduces bias and variance, improving the model’s
disease prediction accuracy. Bagging, boosting, stacking, and voting are the four main
ensemble approaches that are frequently used for disease prediction. According to this liter-
ature review, using an ensemble approach on other machine learning algorithms improves
the accuracy of the base classifier. This paper provides a complete evaluation of the litera-
ture on disease prediction models utilising various ensemble classes and an overview of the
ensemble technique. The descriptions of the literature-based publications provide essential
information regarding how these algorithms fared in various combinations. We extracted
the 45 papers reviewed in this study using the search approach specified in Section 3. This
research can help scholars decide whether ensemble approaches are suited for their project.
This research can also assist them in determining the most accurate ensemble strategy for
disease prediction. We found that stacking has been used in half the studies considered for
comparison with bagging and boosting, but it has shown 82.6% best performance accuracy.
On the other hand, bagging has been used in most of the studies but showed the least
prominent results of just 26.8%, followed by boosting, which has shown the best results
40.5% of the time.
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