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Abstract: Regarding the problem of epidemic outbreak prevention and control, infectious disease
dynamics models cannot support urban managers in reducing urban-scale healthcare costs through
community-scale control measures, as they usually have difficulty meeting the requirements for
simulation at different scales. In this paper, we propose combining contact networks at different
spatial scales to study the COVID-19 outbreak in Shanghai from March to July 2022, calculate the
initial Rt through the number of cases at the beginning of the outbreak, and evaluate the effectiveness
of dynamic non-pharmaceutical interventions (NPIs) adopted at different time periods in Shanghai
using our proposed approach. In particular, our proposed contact network is a three-layer multi-
scale network that is used to distinguish social interactions occurring in areas of different sizes, as
well as to distinguish between intensive and non-intensive population contacts. This susceptible–
exposure–infection–quarantine–recovery (SEIQR) epidemic model constructed based on a multi-scale
network can more effectively assess the feasibility of small-scale control measures, such as assessing
community quarantine measures and mobility restrictions at different moments and phases of an
epidemic. Our experimental results show that this model can meet the simulation needs at different
scales, and our further discussion and analysis show that the spread of the epidemic in Shanghai
from March to July 2022 can be successfully controlled by implementing a strict long-term dynamic
NPI strategy.

Keywords: SEIQR model; community network; COVID-19; non-pharmaceutical intervention; trans-
mission dynamics

1. Introduction

In March 2022, an outbreak of COVID-19 caused by the Omicron variant of SARS-
CoV-2 was reported in Shanghai, China. To contain the more contagious Omicron variant,
Shanghai implemented a rigorous set of non-pharmaceutical interventions (NPIs) that
include requirements to maintain social distancing, wear masks, track close contacts, isolate
infected individuals, etc. [1,2]. A street grid was implemented from mid-March onwards,
dividing the streets into high-risk and non-high-risk areas based on the number of infected
individuals, and a comprehensive nucleic acid test screening was conducted. To more
effectively control the spread of the epidemic, a city closure was initiated on 1 April 2022,
and the epidemic reached an inflection point on 13 April, when the epidemic was eventually
brought under control. Although the implementation of NPIs can successfully reduce the
spread of COVID-19 [3], it also inevitably results in severe productivity losses and a
substantial increase in social costs [4].

Many studies have been conducted using machine learning models (e.g., long short-
term memory (LSTM) [5], neural networks [6]), or mathematical models (e.g., SIR [7],
SEIR [8], and SEIQR [9]) to simulate COVID-19 transmission in various locations.

Machine learning models have been successfully applied in various domains. How-
ever, they are prone to overfitting in the presence of insufficient training data and valuable
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features. Machine learning models are also not suitable for heavy missing data scenar-
ios [10], which are only eligible for short-term forecasting trends [11,12].

The SIR and SEIR mathematical models are the most common methods used in COVID-
19 simulations [13]. The models divide the population into different compartments, and the
movement of the population from one compartment to another is predicted by differential
equations. The approach is flexible as the number of compartments can be varied. So far,
there have been many studies that have improved the SEIR model, such as considering
hospitalized individuals in the SEIHR model [14] and considering deaths in the SEIRD
model [15], considering quarantine in the SEIQR model [9,16,17]. There have also been
studies that incorporated various factors in the model, such as vulnerable populations [18],
different severity symptoms [19], seasonal [20,21] and temperature [22] effects.

Mathematical models can simulate numerous variables that affect transmission to
evaluate the severity of a pandemic and the effectiveness of interventions. However, such
mathematical models are mostly deterministic and cannot respond to changes in different
control strategies [23]. Therefore, some studies have evaluated the impact on COVID-19, the
health care system, and society under various vaccination and NPI strategies by combining
contact network modeling [24,25] for different age groups. However, these models do not
reflect the variation in control strategies at different spatial scales. For example, when
implementing quarantine measures, it is not possible to only quarantine people of a specific
age group.

To address these issues, we propose a network model that allows us to easily assess
the optimal population restriction strategy during the initial phase of an outbreak. This
allows us to understand the impact of the strategy on the final size of the outbreak. The
main contributions of this paper are as follows:

1. We propose an SEIQR model that combines a multi-scale network, dividing the
community network into three layers of different sizes, that can be used to distin-
guish social interactions occurring in administrative areas of different sizes and NPI
strategies at different times.

2. We divided the contacts formed in the community network into global transmission
and local transmission, and used this method to distinguish between intensive and
non-intensive crowd contacts.

3. We simulated and analyzed the data from March to July 2022 in Shanghai and simu-
lated each district in Shanghai separately. The results showed that the method can be
used for both large- and small-scale simulations.

The rest of the paper is organized as follows: Section 2 provides an overview of
the SEIQR model and community network; Section 3 analyzes the experimental results;
Section 4 discusses the experimental results; finally, the paper is summarized in Section 5.

2. Methods
2.1. Data Collection

Three kinds of data were used in this research. First, the number of districts and popu-
lation data were collected for Shanghai from the National Bureau of Statistics of China [26].
Second, we collected data on reported COVID-19 human cases from 1 March to 1 July,
including cumulative cases, new daily cases, recovered cases, and deaths from the Shanghai
Municipal Health Commission [27]. Third, we tracked the policies implemented, such as
contact tracing and quarantine, quarantine of areas concerned, and the implementation
time schedule and scope of PCR testing [28]. These data are publicly available.

2.2. SEIQR Model

The typical SEIQR model classifies each individual into five categories: susceptible
(S), exposed (E), infected (I), quarantined (Q), and recovered (R). It was considered that
NPIs in Shanghai quarantine infect individuals and close contacts of infected individuals.
A close contact is defined as a person who has not taken effective protection and has close
contact (within 1 m) with confirmed and suspected patients 2 days before symptom onset
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in suspected and confirmed patients or 2 days before samples of asymptomatic infection
are taken [29]. We used an improved version of the method with reference to [30]. The
new model divides quarantined patients into two states: “exposed quarantined” (QE)
and “infected quarantined” (QI). These two states represent quarantine of asymptomatic
close contacts and quarantine of infected individuals, respectively. In a closed system
that does not consider entries or exits, the sum of these intervals N = S(t) + E(t) +
I(t) + QE(t) + QI(t) + R(t) remains constant in time. These kinetic models consist of the
following equations:

dS
dt

=
−βSI

N
− βqSQI

N
dE
dt

=
βSI
N

+
βqSQI

N
− σE− θEE

dI
dt

= σE− γI − θI I

dQE
dt

= θEE− σQQE

dQI
dt

= θI I + σQQE − γQQI

dR
dt

= γI + γQQI

(1)

The fraction
SI
N

represents the probability of arbitrary contact between susceptible

and infected individuals, and the fraction
SQI
N

corresponds to the probability of contact
between susceptible and isolated infected individuals. The main parameters of the model
can be seen in Table 1 below. The parameter q was used to indicate the probability that the
isolated individual interacts with others. We set this parameter using the difference in the
number of contacts counted by [31]. In [31], contact survey data in three different phases
of the pandemic (before the pandemic, during the lockdown, and post-lockdown) in four
locations in China (Wuhan, Shanghai, Shenzhen, and Changsha) were collected. Survey
data show that the average daily contacts in Shanghai before the pandemic was 18.8 (95%
CI 17.5–20.1), and would have been reduced to 2.3 (95% CI 2–2.8) during the lockdown.
We used this data to set q = 0.1. The transition rate of people’s exposure takes the form
dS
dt

=
−βSI

N
− βqSQI

N
. The probability of moving from the exposure stage to the infection

stage is represented by σ. The parameter θ denotes the probability that an individual is
isolated. The final probability of moving from the infection stage to the recovery stage
is the γ parameter. We will adapt this model in several different ways to include recent
epidemiological information.

The parameter β (i.e., infection rate) of an individual is equal to the expected number of
cases generated by that individual in a fully susceptible population (i.e., the time-dependent
reproduction number Rt of that individual divided by the length of its infection period α).

β =
Rt

α
(2)

The reproduction number (R) [32] is one of the most critical parameters determining
disease dynamics within infectious disease models, providing a summary measure of the
transmission potential. The actual average number of secondary cases per infected person
at time t is called the time-dependent reproduction number (Rt). Rt shows the temporal
changes that occur with the implementation of control measures, where a value greater
than 1 indicates that the epidemic will be self-sustaining and a value less than 1 indicates
that the number of new cases will decrease over time and that the epidemic will eventually
stop. We used the method proposed by [33] to calculate the Rt values in our model from
the data at the beginning of the outbreak.
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Table 1. Main model parameters description.

Parameter Description

β Infection rate
γ Recovery rate
σ Quarantine rate
θ Morbidity rate
q Quarantined infection weight
N Total number of nodes

Rt Reproduction number
α Infection period

2.3. Community Network

Considering that non-pharmaceutical intervention policies at different administrative
area scales are implemented at the beginning of an outbreak, we constructed a multi-scale
community network with different administrative area scales based on the FARZ algo-
rithm [34] as shown in Figure 1 and described below. The FARZ algorithm proposes a
new method to evaluate the accuracy of community detection algorithms using modular
networks. Community detection algorithms are used to partition a network into subsets
with intrinsic similarities, such as dividing users in a social network into different commu-
nities. However, the accuracy of these algorithms is difficult to assess precisely because
the true community structure is often unknown. The FARZ algorithm proposes a method
based on modular networks to address this issue, which involves partitioning the network
into different modules and evaluating accuracy by comparing the similarity between these
modules and pre-defined benchmark modules. The FARZ algorithm expands the network
one node at a time using a probability of community assignment proportional to the cur-
rent community size. The resulting network has a heavy-tailed distribution with similar
characteristics to the real network. FARZ has three input parameters, FARZ (n, m, k),
which determine the population, average number of contacts, and number of communities,
respectively. It also has four control parameters that control the strength of the community
structure, clustering coefficient, degree correlation, and distribution of the community sizes,
respectively, with values taken from [35].

Figure 1. Community network layered framework diagram.
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Specifically, we divided the contact network into three layers and used three sizes
of areas to perform the division of close contacts: the number of administrative districts
(large range), number of townships (medium range), and number of residential areas (small
range) in Shanghai, respectively. In the papers [36,37], the relationship between walking
behavior and districts or environmental factors is studied. The different contact weights in
the three network layers were set by referring to the duration and importance percentages
of the three types of walking proposed by [38]. The paper uses survey data from Shanghai
to assess the relationship between environmental characteristics and three domains of
walking behavior (commuting, utilitarian walking, and recreational walking). Commuting
walking indicates commuting trips from home to work and includes the duration and
details of the mode of transportation (e.g., car, walking, biking, motorcycle, metro, or
bus). Utilitarian walking includes walking for non-commuting travel purposes in order to
satisfy daily needs (e.g., shopping, visiting friends, and running errands) [36]. Recreational
walking is defined as walking, strolling, jogging, and other walking behaviors that focus on
walking itself. The average weekly duration of the three walking behaviors was 124.99 min
(standard deviation (SD) ± 130.03), 51.02 min (SD ± 204.45), and 36.14 min (SD ± 96.76),
respectively. The relative importance of built environment attributes (e.g., distance) and
individual-level attributes (e.g., age) is also summarized in the paper [38], and only the
built environment importance was considered in our study. The importance of the built
environment for the three walks was 75.6%, 86.2%, and 81.6%, respectively.

As shown in Figure 2, the three layers have their own contact weights in the network,
which are calculated as (average weekly movement time/total average weekly movement
time) × the importance of the built environment. BA corresponds to commuting walking,
calculated as (124.99/212.15) × 0.756 = 0.445. BT corresponds to utilitarian walking, calcu-
lated as (51.02/212.15)× 0.86 = 0.207. BR corresponds to recreational walking, calculated as
(36.14/212.15)× 0.816 = 0.139. The three range settings through the three-layer network can
reflect different variations in NPIs and can also show different trends in infection behavior
under the restriction of different movement patterns. For example, when Beijing took NPIs
to prevent the deterioration of the disease in the early stage of COVID-19 [39], people were
restricted to their respective administrative districts; thus, the infection behavior was easier
to manage and control in a large range compared with possible negligence and omission in
a small range. Therefore, it is clear that NPI strategies for different tiers are tailored to the
characteristics of the tier scale, thus allowing for a more effective handling of COVID-19.

Figure 2. Local and global transmission diagram.

The dynamics of controlled transmission events leading to the exposure of susceptible
individuals are the basis of epidemiological models; thus, here, we explain the transmission
dynamics of the model in detail. For the model considered in this study, the propensity of a
given individual to become infected was calculated using the following equation, where
disease transmission to close contacts or to incidental contacts may occur, as determined
by the structure of the exposure network. Local transmission (TL) is a person who is in
frequent repeated continuous or close contact: a family member, friend, or other close
relationship. In contrast, global transmission (TG) are infrequent casual or brief contacts.
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The model’s differential equations were applied to calculate the propensity of the
possible state transitions at all nodes at each time step. These propensities were then used
to compute the probabilities of all possible state transitions normalized across the entire
population. A random node and the corresponding transition were selected in each time
step based on these probabilities. Each node i has an indicator function δX(i) that represents
the state of node i. If node i is in X, its value is 1, otherwise the value is 0.

δX(i) =

{
1 if i ∈ X
0 if i /∈ X

(3)

In general, the propensity to infect susceptible individual i, P(i)(S → E), is propor-
tional to the association between the prevalence and incidence of infected individuals in
the exposed population, and the propensity to transition between states for a given node is
given by the following equation:

P(i)(S→ E) =
[(

1− BA − BT − BR
)
TG +

(
BA + BT + BR

)
TL
]
δS(i)

P(i)(E→ I) = σδE(i)

P(i)(I → R) = γδI(i)

P(i)(E→ QE) = θEδE(i)

P(i)(I → QI) = θIδI(i)

P(i)(QE → QI) = σQδQE(i)

P(i)(QI → R) = γQδQI (i)

(4)

2.3.1. Global Transmission

A portion of a given individual’s interactions is with casual contacts that are assumed
to be individuals randomly selected from the total population, independent of the contact
network. For these global interactions, each node in the population is equally likely to be
in contact with every other node, and the population can be considered to be well-mixed.
Thus, the global transmission (TG) is calculated in the same way as the mass action interval
model, assuming that the population is well-mixed.

TG =
βI + βqQI

N
(5)

2.3.2. Local Transmission

Some of the interactions of a particular individual are with their “close contacts”. The
close contacts of an individual are defined as the nodes adjacent to a given node in the
contact network, and CG(i) denotes the set of close contacts of individual i: the nodes
adjacent to node i in the contact network graph G. |CG(i)| denotes the size of this set: the
number of close contacts owned by i.

With respect to local transmission, transmissibility is considered on a pairwise basis;
that is, an infection rate β is assigned to each directed edge of the contact network rep-
resenting the propagation from infected node j to susceptible node i, which depends on
the infection rate of a single infected individual j. The propensity for a given susceptible
individual to become exposed due to local transmission is calculated as the product of
that individual’s susceptibility and the sum of the transmissibility of their infectious close
contacts divided by the size of their local network.

TL =
β
[
∑j∈CG(i) δI(j)

]
+ βq

[
∑k∈CG(i) δQi (k)

]∣∣CG(i)
∣∣ (6)
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2.4. Global Sensitivity Analysis

Global sensitivity analysis (GSA) apportions the influence that model parameter
uncertainties have on the uncertainty of model output [40]. In this analysis, GSA is
performed using the Sobol’ method [41], which is a variance-based method that provides a
measure of the sensitivity of the output to each input parameter. The Sobol’ indices used
in this report are first-order sensitivity indices (S1) and total sensitivity indices (ST). The
first-order sensitivity indices measure the effect of the input parameter on the output when
the other parameters are fixed, while the total sensitivity indices measure the effect of the
input parameter on the output when the other parameters are varied along with it.

In order to perform the sensitivity analysis, we use the Saltelli sampling method
provided by the SALib package, which generates a set of input parameter values. The
output of the model for each set of input parameter values is then used to compute the
Sobol’ indices, which measure the sensitivity of the output to each of the input parameters.
The Sobol’ indices are used to rank the input parameters by their importance in determining
the output.

In more detail, the Saltelli sample is generated from the continuous input variables in
the problem dictionary using a uniform distribution. In this case, the problem dictionary
specifies nine input variables with bounds between 0 and 1. The sample size is set to
1024 and the input variables are sampled using the Saltelli method, which generates
N × (2 × D + 2) samples, where N is the number of unique values for each input variable
and D is the number of input variables. For this analysis, N is set to 8 (a power of 2) resulting
in 1536 samples drawn from uniform distributions for each variable. The Saltelli sample
is then used to generate the model output, which is the number of infected individuals
for each parameter combination. The Sobol’ indices are then computed using the model
output and the Saltelli sample to determine the relative importance of each input variable.

3. Results
3.1. Epidemic Curves for Shanghai

We conducted simulations for Shanghai, and the model parameters can be seen in
Table 2 below. Figure 3 shows the long-term dynamics of the model, taking into account the
closure measures implemented in Shanghai. Shanghai began implementing strict closure
measures on 1 April and gradually eased the quarantine policy from 16 May. The model
predicts that the peak number of infections occurred in mid-April. The trend between the
curve simulated by the model (red line) and the real data (yellow line) is close as can be
seen in the figure.

Table 2. Model parameters for March to July in Shanghai.

Parameter Values

BA 0.445
BT 0.207
BR 0.139
Rt 4.6 (95% CI 3.97–5.36)
α 7.7 (95% CI 7.26–8.15) [42]
γ 0.38
σ 0.967
θ 0.02
q 0.1

Population (103) 24,900
Number of administrative districts 16

Number of township districts 215
Number of residential areas 6228
Initial number of infections 2

Start time 3/2
Quarantine start time 4/1
Quarantine relief time 5/16
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(a) (b)

Figure 3. (a) Simulation results. (b) After numerical smoothing. The simulation curve for Shanghai
from 2 March, where the red line is the model simulation result, the yellow line is the real number of
confirmed cases, the blue dotted line is the start of the closure on 1 April, and the green dotted line is
the time when the closure measures were slowed down on 16 May.

We compared our model (red line) and the model using the population age distribution
(blue line) with the real data (yellow line), and the difference between the two models and
the real data can be seen in Figure 4. The population age distribution model [35] was used
to construct community networks with different age distributions and household sizes. We
collected data on the age distribution [26] and the number of contacts in each age group [31]
in Shanghai and simulated the infection results from March to July in Shanghai. We also
calculated the median absolute percentage error (MAPE) between the two models and the
real data. In the case of the 4-month-long simulation, it is reduced by 13.08% compared to
the population age distribution model. The MAPE of 24.96% for the multi-scale network
model in the strict closure measure time period (4/1–5/16) is also lower than that of 40.12%
for the population age distribution model, showing a reduction of 15.16%.

Figure 4. Comparison between models. The red line is the result of the multi-scale network model
simulation, the yellow line is the real number of confirmed diagnoses, and the blue line is the infection
curve simulated using the Shanghai population age distribution model.



Healthcare 2023, 11, 1467 9 of 14

3.2. Epidemic Curves for 16 Administrative Districts in Shanghai

To view the model simulations at a smaller scale and compare them with the simulation
results of the entire city of Shanghai, we applied the model framework to 16 districts in
Shanghai for individual simulations, and the model parameters can be seen in Table 3
below. For the district simulation, we reduced the number of layers in the community
network, kept only the township district layer and residential areas layer, and set the initial
parameters for different districts.

In Figure 5, we can see that the simulated infection trends are partially consistent for
each district, especially in areas with more confirmed cases, such as Minhang and Pudong,
but there are also areas where the simulated results are not consistent, which is due to two
reasons: there are two peaks in the actual number of confirmed cases during the quarantine
period, such as Hongkou, or the actual number of confirmed cases is too small and the
transmission is successfully suppressed at an early stage, such as Jinshan.

Figure 5. Simulation of the 16 administrative districts of Shanghai.

As shown in Figure 6, we summed up the number of infections simulated in the
16 districts (black line) and compared it with the simulation results in Shanghai (red line).
We found that the MAPE between the two was 32.02%. The obvious difference between
the two results lies in the peak of the wave, which we believe is mainly due to the fact that
the 16 districts were simulated separately and that there was no interaction between the
districts before the implementation of the control measures, i.e., before 1 April. Thus, the
peak size of the outbreak could not reach as high as the Shanghai simulation results.
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Figure 6. The black line is the total number of infections in the 16 administrative regions, and the red
line is the simulation result for Shanghai.

Table 3. Description of the parameters of the 16 administrative regions.

Community Rt
Initial Number

of Infections Start Time Population
(103)

Number of
Township
Districts

Number of
Residential

Areas

Huangpu 2.55 5 3/11 662 10 169
Xuhui 3.0 3 3/5 1113 13 307

Changning 3.27 1 3/11 693 10 185
Jingan 3.27 2 3/8 975 14 266
Putuo 4.03 1 3/11 1239 10 275

Hongkou 2.6 4 3/9 757 8 194
Yangpu 4.2 2 3/11 1242 12 288

Minhang 3.7 6 3/5 2653 13 586
Baoshan 3.32 2 3/5 2235 12 509
Jiading 2.44 4 3/5 1834 10 378
Pudong 4.87 2 3/5 5681 36 1398
Jinshan 2.14 4 3/11 822 10 238

Songjiang 2.8 7 3/5 1907 17 367
Qingpu 1.98 3 3/8 1271 11 351

Fengxian 3.27 1 3/11 1140 11 340
Chongming 2.85 3 3/11 637 18 377

3.3. Global Sensitivity Analysis of the SEIQR Model

In this report, we present the results of a global sensitivity analysis (GSA) of the SEIQR
model, using the Sobol’ method, and the results can be seen in Table 4 below. The analysis
aimed to determine the impact of each of the model’s input parameters on the uncertainty
of the model output. The model takes into account the spread of a hypothetical disease in a
population, and the output is the number of infected individuals. The Sobol’ indices used
in this report are first-order sensitivity indices (S1) and total sensitivity indices (ST). The
first-order sensitivity indices measure the effect of the input parameter on the output when
the other parameters are fixed, while the total sensitivity indices measure the effect of the
input parameter on the output when the other parameters are varied along with it.
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The results of the analysis show that the most influential parameter on the model’s
output is γ, the recovery rate from the infectious state, with a total sensitivity index of
1.86. This means that when all input parameters are varied simultaneously, γ has the
greatest impact on the model output. The second most influential parameter is Rt, the
basic reproduction number, with a total sensitivity index of 0.11. The third most influential
parameter is σ, the rate of latent individuals becoming infectious, with a total sensitivity
index of 0.22. The first-order sensitivity indices (S1) show the effect of each input parameter
on the output when the other parameters are fixed. The results indicate that the parameter
with the greatest first-order sensitivity index is γ, followed by Rt and θI , the rate of recovery
from the infectious state. This means that these parameters have a relatively large influence
on the model output, even when the other parameters are held constant.

Table 4. Global sensitivity analysis.

Parameter S1 ST

Rt 0.0419 0.1912
Infectious period (days) 0.0384 0.1077

σ 0.0445 0.1952
γ 0.1420 1.1236

σQ 0.0006 0.0002
γQ 0.0053 0.0356
θE 0.0702 0.2218
θI 0.1698 1.8588
q 0.0137 0.0209

In summary, the results of the sensitivity analysis suggest that the most important
parameters to consider when trying to reduce the uncertainty in the SEIQR model output
are γ, Rt, and σ. These parameters should be the focus of future research and efforts to
improve the model’s accuracy.

4. Discussion

Since the strength of mathematical models, whether simulating or predicting future
dynamics, depends on the accuracy of the case reports, it is important to analyze the
uncertainty and to assess the degree of variability in the parameter estimates. The time
span of the time series used can significantly affect the values of the parameters. This is
particularly true in the early stages of an epidemic, when the relationship between infected,
deceased, and recovered individuals is not entirely clear. For example, if the number
of confirmed cases is low, it is difficult to determine whether quarantine measures are
being strictly enforced. Moreover, this under-representation suggests that the number of
infections is much larger than the number of confirmed cases. Among the most affected
parameters are those related to the infection and recovery rates and the Rt value.

It can be concluded that the smaller the area from which quarantine between popula-
tions is implemented, the more effectively the spread of the epidemic is limited. However,
such a quarantine from a small area will result in a high medical cost, in addition to incon-
venience to people’s lives, so it is important to strike a balance between the extent of the
quarantine and the social cost.

Any such modeling study has many limitations [43]. An extended description of the
limitations specific to this study is provided. Specifically, (1) these models are only approxi-
mations of real-world scenarios, and we simplified many aspects of the epidemiological
process of disease transmission in order to make these models computationally feasible. For
example, we did not consider any entries or exits for closed systems and did not consider
effects such as vaccination differences [44] or seasonal factors [22]; (2) these models are
strongly driven by infection rate data, whose recording can be problematic; (3) these models
are also influenced by a variety of other data types, each with different availabilities, and
we may never be able to fully calibrate detection and measurement bias issues; and (4) the
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understanding of this dynamic epidemic is growing daily, so this modeling framework
should not be expected to be definitive, or the data driving these models should not be
expected to be fixed. Finally, we emphasize that we modeled a range of outcomes that we
believe are likely to occur under the scenario based on the data observed to date and our
model assumptions. We recommend these simulations to be viewed as useful guides.

Additionally, we made the simplifying assumption that districts are isolated from
each other and that the only way for infection to spread between districts is through
global transmission or contacts in other network layers. However, in reality, there is often
significant inter-regional mobility that can impact the spread of infectious diseases [45].
Future studies could explore how incorporating mobility between regions may affect our
model’s predictions.

5. Conclusions

In this study, we implemented a modified SEIQR model that incorporates a multi-
scale network that considers social interactions occurring at different spatial scales while
distinguishing between intensive and non-intensive crowd contacts in order to assess the
impact of NPIs on the epidemic at different time periods. We used infection data from
March 2022 to July 2022 in Shanghai for the simulation and analysis, and the experimental
results show that the model is able to successfully simulate infection outcomes over a
long period of time using pre-infection data and can be applied to simulations of different
scales and NPIs. When facing the emergence of new variants in the future, interventions
in different countries and regions may have different degrees of impact. Our model can
provide useful recommendations for preventing and controlling COVID-19 outbreaks.
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