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Abstract: As the advanced form of nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohep-
atitis (NASH) will significantly increase the risks of liver fibrosis, cirrhosis, and HCC. However, there
is no non-invasive method to distinguish NASH from NAFLD so far. Additionally, liver biopsy re-
mains the gold standard to diagnose NASH, which is not appropriate for routine screening. Recently,
artificial intelligence (AI) is under rapid development in many aspects of medicine. Additionally, the
application of AI in clinical information may have the potential to diagnose NASH non-invasively.
This review summarizes the latest research using AI, specifically machine learning, to facilitate the
diagnosis, prognosis, and monitoring of NAFLD. Additionally, according to our prior results, this
work proposes future development in this area.
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1. Introduction

About 25% of individuals with low alcohol intake were affected by liver disease in a
worldwide sample [1]. It has been pointed out that 33.9% of the Asian population had non-
alcoholic fatty liver disease (NAFLD) during 2012–2017 [2]. Non-alcoholic steatohepatitis
(NASH) is a progressive state of non-alcoholic fatty liver disease. It significantly increases
the risks of hepatocellular carcinoma, cirrhosis, and liver fibrosis [3]. To our knowledge, as
the most reliable way to diagnose NASH and evaluate hepatic fibrosis stage, liver biopsy
is not appropriate for routine screening. The liver biopsy also has certain limitations,
including patient acceptability, puncture risk, economic cost, diagnostic heterogeneity,
etc. Therefore, non-invasive diagnostic methods to distinguish NASH from NAFLD have
important application prospects.

Artificial intelligence (AI) has been developing rapidly in many aspects of medicine in
recent years, including Image recognition, non-invasive diagnosis, and treatment decision
making [4,5]. Additionally, the use of AI in clinical information may have the potential to
diagnose NASH non-invasively. In this review, we have summarized the latest research
using AI to facilitate the diagnosis, prognosis, and monitoring of NAFLD/NASH. We
searched for reported studies of human experiments in English till Jun 2022 via PubMed.
Keywords included nonalcoholic steatohepatitis with artificial intelligence, deep learning,
and machine learning.

2. Results
2.1. NAFLD Diagnosis

Histologically, hepatic fat content is normal if the proportion of hepatocytes with fatty
degeneration is below 5% [6–9]. If this number is over 5%, diagnosis of NAFLD will be
considered when the possibility of other chronic liver diseases is ruled out [3,10]. Some
invasive methods were widely applied in clinical practice. Less invasive methods that use
serum biomarkers include fatty liver index (FLI) [11], hepatic steatosis index (HSI) [12],
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SteatoTest [13], and nonalcoholic fatty liver (NAFL) screening score [14]. The imaging
methods were also widely used, including ultrasound [10], computed tomography (CT) [15],
controlled attenuation parameter (CAP) [16], and magnetic resonance-based techniques [17].
Ultrasound is used as the first-line diagnostic tool to evaluate hepatosteatosis, and serum
markers are alternative methods when non-invasive imaging technologies are unavailable
in larger screening studies.

2.2. NASH Diagnosis

Nonalcoholic steatohepatitis (NASH) was first named in 1980 and indicates a situation
of chronic liver inflammation [18]. The diagnosis of NAFLD requires evidence of hepatic
steatosis of more than 5% by imaging or histology in the apparent absence of excessive
alcohol consumption. By comparison, the diagnosis of NASH necessitates a biopsy, and
the histological examination must show more than 5% hepatic steatosis, ballooning degen-
eration of hepatocytes, and inflammation of liver lobules (Figure 1). The system, NAFLD
activity score (NAS), can be used to access the characteristics of NAFLD [19]. Numerous
experimental settings in NAFLD studies have proven that characteristic-based NAFLD
histological lesion scoring is effective.
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NASH can be diagnosed without invasion by means of imaging, serum biomarkers,
and biomarker panels. Common serum biomarkers include cytokeratin-18 (CK18) [20],
inflammatory markers (CXCL10, TNF-α, IL-8) [21–23], adipocytokines and hormones
(FGF21) [20], serum iron [24], etc. Biomarker panels include NASH Test [25], NASH Clin-
LipMet score [26], etc. Diagnostic imaging tools include vibration-controlled transient
elastography (VCTE) [24], magnetic resonance elastography (MRE) [27], MRI-based tech-
nology assessing liver iron accumulation [24], multiparametric magnetic resonance imaging
(MRI) technology [28], etc. Some of the above techniques demonstrate good sensitivity
and specificity in small samples. In addition, some microRNAs, such as miR-34a and
MiR-122 [28,29], also have the potential to be effective biomarkers.
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2.3. NAFLD/NASH-Related Fibrosis

In the NAFLD/NASH population, there are four grades based on the degree of
fibrosis. According to NASH-CRN, fibrosis has four categories: no fibrosis or mild fibrosis,
significant fibrosis, advanced fibrosis, and cirrhosis [30]. The overall mortality rates of
NAFLD patients in the last three categories are 1.6-, 3.04-, and 6.53-fold compared to that
of nonfibrotic or mild fibrosis patients [31].

Commonly known biomarkers for predicting fibrosis are hyaluronic acid (HA), pre-
cursor C3-protein (PRO-C3), procollagen of type III collagen (PIIINP), and TIMP1 [32].
Some biomarker panels, such as FIB-4 [33], NAFLD fibrosis score (NFS) [34], and BARD
score [35], were also applied to predict fibrosis. Several imaging tools were also widely used
in the diagnosis of fibrosis. VCTE, an elastography modality performed by FibroScan using
ultrasound-based technology, is the first FDA-approved elastography technique [36]. Shear
wave elastography (SWE) [37], ARFI elastography [38], and MRE [39] were confirmed for
diagnosis of liver fibrosis.

Biomarker panels are reproducible and cheap. They have a good NPV but have a
low PPV. MRE has high accuracy for detecting fibrosis severity but is not widely used
due to its high cost and low accessibility. Transient elastography, in addition to biomarker
panels, is commonly used for evaluating the degree of fibrosis, but its efficiency should be
further investigated in other independent studies. By combining serum biomarkers with
imaging technologies, unnecessary liver biopsies can be largely reduced when detecting
liver fibrosis.

2.4. Artificial Intelligence

Artificial intelligence (AI) is a large field of transdisciplinary science. The scientific
disciplines underlying AI include logic, statistics, cognitive psychology, decision theory,
neuroscience, linguistics, cybernetics, and computer engineering. Machine learning (ML)
is a subdiscipline of AI that enables computers to learn from data. ML is an overarching
term for several methods to achieve AI and is the primary driver of the growth in AI
commercial applications. ML has emerged as the chief AI tool to obtain cognitive insights,
make predictions, and support decision making by a computer. ML represents a departure
from earlier AI methods (expert systems) that operated by using an exhaustive set of logic
rules, hand-coded in software, that attempted to anticipate all possible outcomes of a
problem. With ML, computers can infer their own rules using advanced software methods
(algorithms). It can be divided into three categories: supervised learning (the machine
generates results by learning from both input and output data), unsupervised learning
(the machine produces results without training of labeled data), and deep learning (the
machine learns from a training dataset and predicts outcomes for new data). The current
applications of AI in NAFLD and NASH are included in Table 1. Out of all 12 studies,
9 used supervised learning, 2 used unsupervised learning, and 1 used deep learning.
Among them, the technique used for deep learning is the convolutional neural network;
the technique used for unsupervised learning is cluster analysis; and the main techniques
used for supervised learning are logistic regression, support vector machine, decision tree,
random forest, and XGBoost. The percentage of use of each technique is shown in Figure 2.
The support vector machine is the most applied technique in NAFLD study, accounting for
1/4 of all studies.
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Table 1. The current application of AI in NAFLD and NASH.

Data Type Objective Numbers of
Patients Features Results Country Ref

e-health record Predict NASH 162 Accuracy
AUROC

Logistic regression gives
an accuracy of 77.3% and
Fuzzy Data Mining gives
an accuracy of 75%. With
CDSS, the accuracy was

91.9% and gives AUROC
= 91.7%

France [40]

Optum analytics

Diagnose NASH
Predict NASH
among NAFL

patients

Total patients in
database, n = 86 Mn

NASH = 17,359
Healthy = 17,590

At risk
NAFL = 73,190

Statistical summaries
of temporal lab data
(e.g., temporal mean)

for ALT, AST, and
PLT, basic

demographics
information and type

2 diabetes status

AUROC=83%-88%
XG-Boost is the best
Prevalence of NAFL

cohort classified as NASH
(48%)

Prevalence of NAFL
cohort classified as

healthy (16%)

USA [41]

NIDDK NAFLD
adult database

the Optum
de-identified

Electronic Health
Record dataset

Diagnose NASH
Training set n = 704

Validation set
n = 1016

NASHMap (HbA1c,
AST, ALT, Total

protein, AST/ALT,
BMI, TG, Height,

Weight, WBC, Hct,
Alb, HTN, Gender)

XGBoost performed
highest performance

14 and 5 feature model in
NIDDK dataset (AUROC

82% and 80%) and
Optum® EMR (AUROC of

76% and 74%)

USA
Switzer-

land
Germany

[42]

Imaging
Classify chronic

liver disease
(CLD)

126 patients
(56 healthy controls,

70 with CLD)

ultrasound shear
wave elastography

(SWE) imaging, with
a stiffness value
clustering and

machine learning
algorithm

The highest accuracy in
classification of healthy to

CLD
subject discrimination

from the support vector
machine model was 87.3%

with sensitivity and
specificity values of 93.5%

and 81.2%, respectively.
AUROC = 0.87

(confidence interval:
0.77–0.92)

Greece
France
USA

[43]

diagnosis of
fibrosis and

NASH

104 consecutive
adults

magnetic resonance
elastography (MRE)

ultrasound-based
transient elastography

(TE)
liver biopsy analysis

MRE detected any fibrosis
with AUROC = 0.82

MRI-based proton density
fat fraction (MRI-PDFF)

identified steatosis of
grades 2 or 3 with

AUROC =0.90

USA [44]

diagnosis of liver
disease

internally evaluated
in 225 patients

(mean age,
14.1 years) and

externally
evaluated in

84 patients (mean
age, 13.7 years)

Clinical and
T2-Weighted MRI

Radiomic Data

The combination of
clinical and radiomic

features produced the best
performance

(AUC = 0.84), compared
with clinical (AUC = 0.77)
or radiomic (AUC = 0.70)

features alone.
Support vector machine
(SVM) model in external

validation with an
accuracy of 75.0%,

sensitivity of 63.6%,
specificity of 82.4%, and

AUC of 0.80.

USA [45]
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Table 1. Cont.

Data Type Objective Numbers of
Patients Features Results Country Ref

liver fibrosis
quantification

62 consecutive
participants

Texture analysis (TA)
–derived parameters

combined with
machine learning

(ML)
of non-contrast-

enhanced T1w and
T2w fat-saturated (fs)

images vs MR
elastography (MRE)

The AUC for TA on T1w
was similar to MRE

(0.82 [95% CI 0.59–0.95] vs.
0.92 [95% CI 0.71–0.99],

p = 0.41)

Switzerland [46]

Histology
Quantifying

hepatic steatosis
(HS)

86 archived liver
biopsy samples

Second Harmonic
Generation

microscopy analysis
using GENESIS

(HistoIndex,
Singapore)

Good correlation was
observed between the
histopathologists and

automated SHG
microscopy assessment of

HS with Pearson
correlation of 0.93:

p < 0.001

Singapore [47]

Quantitative
Evaluation of

Fibrosis,
Inflammation,

Ballooning, and
Steatosis in

Patients With
NASH

219 nonalcoholic
fatty liver disease
(NAFLD) /NASH

liver biopsy
samples

qFIBS, a
computational
algorithm that
quantifies key

histological
features of NASH

Automated qFIBS
analysis outputs showed
strong correlation with

each respective
component of the NASH
CRN scoring (p < 0.001;

qFibrosis [r = 0.776],
qInflammation [r = 0.557],

qBallooning [r = 0.533],
and qSteatosis [r = 0.802])
and high area under the

receiver operating
characteristic curve values

(qFibrosis [0.870–0.951;
95% confidence interval

{CI}, 0.787–1.000;
p < 0.001], qInflammation

[0.820–0.838; 95% CI,
0.726–0.933; p < 0.001),

qBallooning [0.813–0.844;
95% CI, 0.708–0.957;

p < 0.001], and qSteatosis
[0.939–0.986; 95%

CI,0.867–1.000; p < 0.001])

China
Singapore

United
Kingdom

[48]

Quantitative
measurement of

liver
histology and

disease
monitoring

liver biopsy
samples from three

randomized
controlled trials of

therapies for
patients

with advanced
fibrosis attributable

to NASH
(STELLAR-3

[NCT03053050],
STELLAR-

4[NCT03053063],
and ATLAS

[NCT03449446]).

PathAI (machine
learning-based

approach)

ML method has shown
reproducibility

and sensitivity and was
prognostic for disease

progression,
demonstrating the power

of ML to advance our
understanding of disease
heterogeneity in NASH,

risk stratify
affected patients, and

facilitate the development
of therapies

USA [49]
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Table 1. Cont.

Data Type Objective Numbers of
Patients Features Results Country Ref

Differentiate
between non-
NASH and

NASH

79 NAFLD patients

topo- logical data
analysis methodology
combined with linear

machine learning
techniques

Over 90% accuracy for the
classification between

NASH and non-NASH
NAFLD groups. AUROC
0.946 for the classification

of NASH and NAFL2
(type 2 of Matteoni

classification),

Japan [50]

quantification of
steatosis,

inflammation,
ballooning, and

fibrosis in
biopsy specimens

from patients
with NAFLD

246 consecutive
patients with

biopsy-proven
NAFLD

machine learning

software identified
histologic features of

NAFLD
interobserver and

intraobserver agreement
(0.95–0.99); higher than

semiquantitative scoring
systems, (0.58–0.88)

United
Kingdom

Greece
[51]
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2.5. AI System Based on E-Health Record

Multi-disciplinary clinic models were recommended in the management of NAFLD [52,53].
Electronic health records (EHRs) record patient information, such as gender, BMI, ethnicity,
laboratory test results, and comorbidities. Large datasets allow AI to detect risk factors of
individual NASH patients.

In 2013, Douali N introduced a new clinical decision support system (CDSS) for
diagnosing NASH and compared the system with machine learning algorithms. In this
study, the accuracy of diagnosing NAFLD was 91.7% [40].

In 2018, Fialoke S used a machine learning method to predict NASH in NAFLD
patients [41]. In this study, Optum Analytics, which included more than 80 million patients,
was analyzed. Four machine learning models, logistic regression, decision tree, random
forest, and XGBoost (all examples of supervised learning), were applied to create NASH
classifiers, and 23 classifiers were confirmed. The best model was based on the XGBoost
method and area under the receiver operating characteristic (AUROC) was 88%. This
model was applied to a NAFLD cohort (N = 73,190); 45,797 patients were classified as
NASH (62.6%) and 27,393 as healthy.

In 2019, NASHMap© (Novartis Pharma AG, Basel, Switzerland) was applied in
real-world settings [42]. NASHMap© is used for predicting the occurrence of NASH
based on 14 laboratory and clinical parameters. Various types of machine learning have
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advantages in interpreting each parameter to diagnose NASH. Among them, the XGBoost
model works best [54]. This model adopted two large databases, the National Institute
of Diabetes and Digestive and Kidney Diseases (NIDDK) registry and Optum® EMR, to
legitimize the model. NASHMap© illustrated outstanding performance in the NIDDK
dataset (AUROC of 0.82 and 0.80 in both 5- and 14-feature models, respectively), and the
result was reproducible in the Optum® EMR dataset. NASHMap© successfully recognized
that an extra number of 879,269 people had NASH who were not diagnosed in the Optum®

EMR [42].

2.6. AI Based on Imaging

Ultrasound, CT, MRI, positron emission tomography, and histology are common
medical imaging techniques. Supervised machine learning and deep learning algorithms
can be tested on medical imaging. Random forests or support vector machines (SVM)
(both examples of supervised ML) can use regions of interest (ROI) chosen by medical
professionals or predefined information to identify image-based biomarkers on typical
imaging. Deep neural networks can improve detection, classification, and segmentation
accuracy. The convolutional neural network (CNN) has been the most widely used method
deep learning. It can learn multiple convolutional filters and train classifiers simultaneously.
It performs end-to-end learning to automatically extract desired characteristics.

VCTE and ultrasound (US) elastography are common techniques with which to assess
hepatic fibrosis. MRE can work not only more exactly but is also more capable of reproduc-
ing results than VCTE and US elastography. MRE can acquire more information to identify
liver fibrosis, hepatic steatosis, and NASH if it is combined with MRI proton density fat
fraction, which quantifies hepatic steatosis, and multiparametric MRI, which maps together
fat fraction, liver stiffness, and fast T1 [43,44].

In 2019, Lili He a machine learning model that sorted out MRE-derived liver fibrosis
according to the features of clinical and non-elastography MRI [45]. Support vector ma-
chine models practiced categorization by means of clinical features and radiomic features
separately or with the use of both of them. The model internally assessed 225 patients
and externally 84 patients in an independent cohort. In the internal cross-validation test,
combined use of both features contributed the most remarkable result (AUROC = 0.84),
whereas the other two results were clinical (AUROC = 0.77) or radiomic (AUROC = 0.70)
features alone [45]. The combined feature allowed the SVM model to exactly assort patients
with 81.8% accuracy, 72.2% sensitivity, and 87.0% specificity. In the external validation
test, the SVM model generated 0.80 AUROC, 75.0% accuracy, 63.6% sensitivity, and 82.4%
specificity [45]. This study demonstrated that this model, with the help of both clinical and
T2-weighted radiomic features, can work quite well in the diagnosis of liver fibrosis.

In 2020, Schawk analyzed the diagnostic accuracy of liver fibrosis using parameters
based on texture analysis (TA) by using MR elastrography with machine learning applied
on T1w and T2w-phase images [46]. With 62 participants, TA and ML had accuracies of
85.7% on T1w and 61.9% on T2w in classifying high-grade and low-grade liver fibrosis.
The AUC of TA in T1w was similar to that of the MRE, and the AUROC of the T2w phase
was significantly lower than that of MRE. Schawkat’s study suggested that TA-derived
measurements of T1w combined with ML have similar accuracy to that of the MRE in
quantifying liver fibrosis.

The above studies have proved that it is possible to achieve effective prediction of liver
fibrosis by combining imaging and clinical data and applying machine learning methods,
and suggests that non-invasive diagnosis of NASH is possible.

2.7. AI in Histology

In the NAS system, scores over four are defined representing clinical NASH. However,
this system is semiquantitative due to the variation inter/intra-observer. At present, some
AI attempts have been used to solve the above problems.
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In 2018, Goh et al. reported the GENESIS system for the diagnosis and quantification
of hepatic steatosis [47]. A new technology named second harmonic generation (SHG)
microscopy uses multiphoton imaging techniques for histological tissue. In this study,
microscopy analysis was performed on 86 preserved liver samples. The reliability of this
study was supervised by three liver pathologists.

In 2020, Liu et al. reported a qFIBS system for quantification of fibrosis, ballooning,
steatosis, and inflammation for patients with NASH [48]. They used the second-harmonic-
generation/two-photon excitation fluorescence technique to quantify specific histological
patterns of NASH patients automatically. A qFIBS was established based on in silico
analysis of four fundamental histological marked variables, which included inflamma-
tion (qInflammation), steatosis (qSteatosis), fibrosis (qFibrosis), and hepatocyte ballooning
(qBallooning). Each variable was regarded as continuous but not categorical. Automated
qFIBS analysis outputs showed a strong correlation with each element of the NASH Clin-
ical Research Network scoring (p < 0.001; qFibrosis (r = 0.776), qBallooning (r = 0.533),
qInflammation (r = 0.557), and qSteatosis (r = 0.802) ) and high AUROC values (qFibrosis
(0.870–0.951; 95% confidence interval [1], [0.787–1.000], qBallooning [0.813–0.844], qInflam-
mation [0.820–0.838), and qSteatosis [0.939–0.986]) [48]. The results showed a capability of
distinguishing different stages of histological diseases.

In 2021, Taylor-Weiner et al. introduced another AI approach (PathAI) for quantifying
liver histology and disease monitoring in NASH [49]. This system is based on a machine
learning method to accurately measure NASH heterogeneity, severity, and treatment re-
sponse. Histology samples were taken from three randomized controlled studies, and
deep convolutional neural networks were used to validate major histological patterns in
NASH, including inflammation, ballooning, steatosis, and fibrosis. This system generated
reproducible and sensitive results, which suggests that machine learning can improve
researchers’ acknowledgement of the disease development and heterogeneity of NASH,
further categorize high risk patients, and improve the outcomes of NASH treatment in the
long term.

In addition, some studies of AI applications in histology have been reported.
Teramoto T et al. used a topological data analysis methodology combined with linear
ML techniques and applied this method using Matteoni classification to liver biopsies
for stratifying NAFLD subtypes [50]. Forlano R et al. used ML to develop fully auto-
mated software for quantification of inflammation, steatosis, ballooning, and fibrosis in
biopsy specimens from NAFLD patients and testified this method in a separate group of
patients [51]. Data from 246 NAFLD patients with confirmed biopsy results were collected.
The algorithm was trained by biopsy data of the first 100 subjects, and the training re-
sults were validated with the data of the remaining 146 samples. The computer-identified
NAFLD histologic characteristics had an observer agreement of between 0.95 to 0.99. The
results from the semiquantitative system scoring were from 0.58 to 0.88, lower than those of
the computer identified features. In a paired liver biopsy specimen subgroup, quantitative
analysis had an advantage in sensitivity in detecting distinctions compared to the NASH
Clinical Research Network scoring system.

3. Conclusions

At present, AI is widely used in medical studies, especially in imaging diagnosis.
With the increasing incidence of NAFLD, the diagnosis of NASH has become a major
issue. The existing studies provide effective preliminary data support for the non-invasive
diagnosis of NASH. However, it is still relatively difficult to obtain high-quality medical
imaging data compared to big data from other industries. Data accumulated by a single
medical institution are often insufficient to train an effective deep learning model, whereas
those from different medical institutions are usually rarely interoperable and shared. In
addition, training AI algorithms using medical images involves non-technical issues, such
as protecting patient privacy. Therefore, there is considerable room for improvement in
algorithms related to NASH diagnosis, including but not limited to relational analysis,
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quantitative (statistical) analysis, and hypothesis testing. Additionally, AI also requires the
participation of medical institutions, medical experts, academic organizations, companies,
and third-party operators to drive its development further. In the future, artificial intelli-
gence promises to be an encouraging method to improve our ability to identify patients
with NASH and those at risk for advanced fibrosis by objectively assessing liver images
and improving deficiencies in the histological assessment of the liver. Artificial intelligence
will be integrated into clinical care to aid in the care and follow-up of liver-related diseases.
Based on larger cohorts, a NASH AI diagnosis system is likely to be developed and applied
in clinical practice.
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