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Abstract: Ulcerative colitis is a bowel disease of unknown cause. This research is a proof-of-concept
exercise focused on determining whether it is possible to identify the genes associated with ulcerative
colitis using artificial intelligence. Several machine learning and artificial neural networks analyze
using an autoimmune discovery transcriptomic panel of 755 genes to predict and model ulcerative
colitis versus healthy donors. The dataset GSE38713 of 43 cases from the Hospital Clinic of Barcelona
was selected, and 16 models were used, including C5, logistic regression, Bayesian network, dis-
criminant analysis, KNN algorithm, LSVM, random trees, SVM, Tree-AS, XGBoost linear, XGBoost
tree, CHAID, Quest, C&R tree, random forest, and neural network. Conventional analysis, including
volcano plot and gene set enrichment analysis (GSEA), were also performed. As a result, ulcerative
colitis was successfully predicted with several machine learning techniques and artificial neural
networks (multilayer perceptron), with an overall accuracy of 95–100%, and relevant pathogenic
genes were highlighted. One of them, programmed cell death 1 ligand 1 (PD-L1, CD274, PDCD1LG1,
B7-H1) was validated in a series from the Tokai University Hospital by immunohistochemistry. In
conclusion, artificial intelligence analysis of transcriptomic data of ulcerative colitis is a feasible
analytical strategy.

Keywords: ulcerative colitis; artificial intelligence; machine learning; artificial neural net-
works; autoimmunity; transcriptome; immune checkpoint; immuno-oncology; PD-L1; immune
microenvironment

1. Introduction

Ulcerative colitis is a disease of the colon that is characterized by recurrent episodes
of inflammation of the mucosa. It usually involves the rectum, and it can extend beyond
toward the proximal areas of the colon continuously.

The onset of ulcerative colitis is usually gradual, and symptoms are progressive
during several weeks. The patients usually present with diarrhea, sometimes with blood,
abdominal pain, urgency, or tenesmus [1,2]. Systemic symptoms may also be present,
including fever, fatigue, and weight loss [2].

Disease severity assessment is important for clinical management and includes the
Montreal classification (mild, moderate, and severe) [3], and the Mayo scoring system that
evaluates the stool pattern, most severe rectal bleeding of the day, endoscopic findings, and
global assessment [4]. The diagnosis is based on the presence of chronic diarrhea of more
than 4 weeks and the demonstration of active inflammation on endoscopy and chronic
changes on the biopsy [2].

There are a series of features suggestive of ulcerative colitis on the biopsy, including
crypt abscesses, crypt branching, shortening and disarray, and crypt atrophy. The epithelial
layer is also affected and shows mucin depletion and Paneth cell metaplasia. The mucosa is
inflamed, and increased lamina propria cellularity is found, along with basal plasmacytosis,
basal lymphoid aggregates, and lamina propria eosinophils [2]. The histological features
can be evaluated using the Geboes Score, the simplified Geboes Score [5], and others, such
as the Robarts histopathology index and Nancy index [6].
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We have recently described some of the immune microenvironment elements of the
mucosa of ulcerative colitis patients and found that T lymphocytes and macrophages were
important components of the inflammatory infiltrate [7]. The aim of this study was to use
artificial intelligence analysis, using gene expression data, to identify the genes associated
with the development of ulcerative colitis. This research is a proof-of-concept analysis
using publicly available transcriptomic data to demonstrate that machine learning and
artificial neural networks are useful for diagnosing ulcerative colitis and for understanding
the pathogenesis.

2. Materials and Methods

A publicly available gene expression dataset of ulcerative colitis was searched at the
National Library of Medicine, National Center for Biotechnology Information, webpage:
https://www.ncbi.nlm.nih.gov/ (accessed on 5 July 2022). The dataset GSE38713 was
selected [8].

The inclusion criteria for ulcerative colitis patients were the following: age between 18
and 65, and diagnosis of UC established at least 6 months before inclusion and exclusion of
concomitant infection [8].

Active disease was defined using an endoscopic and histological scores. The Mayo sub
score ≥ 2, and MATTS ≥ 3, respectively. The definition of inactive disease was based on
endoscopic and histologic scores of Mayo sub score = 0 and MATTS ≤ 2, respectively; and a
remission state for a minimum of 5 months before biopsy collection and remained inactive
for at least 6 months after [8]. Uninvolved mucosa from patients with active ulcerative
colitis was defined as a colonic segment with a completely normal endoscopic appearance,
normal histology, and absence of any previous evidence of active disease [8].

The series comprised a total number of 43 biopsies, including 13 healthy controls, 8
inactive ulcerative colitis, 7 non-involved active ulcerative colitis, and 15 involved active
ulcerative colitis [8].

This dataset contains gene expression data from a whole-genome transcriptional anal-
ysis of colonic biopsies from patients with histologically active and inactive UC, as well as
non-inflammatory controls. Total RNA had been extracted by Rneasy Kit (Qiagen) accord-
ing to the manufacturer’s instructions. The biotinylated cRNA was prepared according to
the standard Affymetrix protocol. The sample hybridization protocol was the standard
Affymetrix protocol. The sample scan protocol was the standard Affymetrix protocol using
a Gene chip scanner 3000. Data processing: the data were analyzed with Bioconductor
tools in R (http://www.r-project.org) (accessed on 3 August 2022) using GC-RMA as a
normalization method. Next, a conservative probe-filtering step was performed, excluding
those probe sets not reaching a log2 expression value of 5 in at least 1 sample. The sample
platform identification was GPL570, [HG-U133_Plus_2] Affymetrix Human Genome U133
Plus 2.0 Array [8].

A basic tool to compare two or more groups of samples to identify genes that are
differentially expressed across experimental conditions was initially used: the GEO2R
tool, webpage: https://www.ncbi.nlm.nih.gov/geo/geo2r/ (accessed on 5 July 2022). The
analysis options were the following: adjustment to the p values using the Benjamini &
Hochberg (False discovery rate), auto-detect application of log transformation to the data,
not the application of limma precision weights, and no forced normalization. For the
analysis, the significance level cut-off was set at 0.05. The volcano and MA plot contrasts
were control vs. active ulcerative colitis.

Several machine learning analyses, including artificial neural networks, were per-
formed. For all statistical analyses, several software was used for data preparation, pro-
cessing, analysis, and confirmation of results. The software included Microsoft excel 2016
(Microsoft Corporation), EditPad Lite (Just Great Software Co., Ltd., Phuket, Thailand),
GSEA v4.2.3 (UC San Diego, Broad Institute, San Diego, CA, USA), JMP Pro 14 (JMP
Statistical Discovery LLC, SAS, Cary, North Carolina, USA), Minitab 21 (Minitab, LLC,
State College, PA, USA), IBM SPSS Statistics 26 and modeler 18 (IBM), and RapidMiner

https://www.ncbi.nlm.nih.gov/
http://www.r-project.org
https://www.ncbi.nlm.nih.gov/geo/geo2r/
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Studio 9 (RapidMiner). GEO2R ran on R 3.2.3, Biobase 2.30.0, GEOquery 2.40.0, and limma
3.26.8. All the analyses were performed as described in our recent publications [9–18]. A de-
tailed description of the artificial neural networks is given in references [9,10,13,16]. GSEA
is described in reference [17]. Immunohistochemical procedures in references [11,12,15].
Machine learning in references [14,17,18]. For this analysis, a desktop equipped with a 12
core processor AMD Ryzen 9 5900X, 16 GB of RAM, and a GPU Nvidia GeForce RTX 3060
Ti was used.

3. Results

Results summary:

• Conventional gene expression analysis using volcano plot differentiated the expression
of active ulcerative colitis vs healthy donors broadly using all the genes of the array.

• Gene set enrichment analysis (GSEA) using an autoimmune discovery panel showed
enrichment toward the ulcerative colitis phenotype, highlighting the most relevant
genes in the leading edge.

• Several machine learning and artificial neural network analyses predicted ulcerative
colitis against healthy donors using the autoimmune discovery gene expression panel.

• A high expression of programmed cell death 1 ligand 1 (PD-L1, CD274) in ulcerative
colitis was validated in an independent series using immunohistochemistry analysis
for histological identification of protein expression.

3.1. Conventional Analysis Using the GEO2R Software

A conventional gene expression analysis was performed using the GEO2R software,
which compared the gene expression between 13 healthy controls and 15 involved active
ulcerative colitis.

Based on the adjusted p values, the 10 most important gene probes were associ-
ated with active ulcerative colitis, including SLC6A14 (219795_at), REG1B (205886_at),
REG1A (209752_at), LPCAT1 (201818_at), DUOXA2 (230615_at), CD55 (201926_s_at), C4BPB
(208209_a_at), and KCND3 (213832_at), and associated with healthy controls, including
HMGCS2 (240110_at) and DPP10-AS1 (236351_at).

This type of analysis used all the genes of the array (Figure 1). Therefore, the results
are of limited interest as they lacked pathway analyses. Nevertheless, the CD274 (PD-L1)
gene probe (227458_at) was identified, with an adjusted p value of 1.73 × 109, and was
associated with active ulcerative colitis.
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Figure 1. Volcano plot. This type of plot is useful to identifying genes that differ significantly between
healthy controls and active ulcerative colitis. This type of graph relates fold change to p values.
Upregulated genes are highlighted in red and downregulated in blue.
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3.2. Gene Set Enrichment Analysis (GSEA) Using an Autoimmune Discovery Panel

A panel of 755 genes was selected from the Affymetrix Human Genome U133 Plus
2.0 Array. For this analysis, if one gene had several probes, the probes were collapsed to
the maximum expression so that each gene had only one expression value. This panel,
named the autoimmune discovery panel, contained genes closely associated with germline
variants across nine different autoimmune diseases or relevant to the immune response. The
autoimmune disease coverage included multiple sclerosis, rheumatoid arthritis, systemic
lupus erythematosus, type 1 diabetes, ankylosing spondylitis, celiac disease, inflammatory
bowel disease (Crohn’s disease and ulcerative colitis), and psoriasis. The disease-associated
genes were curated from studies available through ImmunoBase (www.immunobase.org;
www.opentargets.org (accessed on 3 August 2022).

Gene set enrichment analysis (GSEA) is a computational method that determines
whether an a priori defined set of genes shows statistically significant, concordant differ-
ences between two biological states (e.g., phenotypes). This research tested whether the
autoimmune discovery panel (priori set of genes) showed differences between ulcerative
colitis versus healthy controls (43 cases, 13 controls, and 30 ulcerative colitis). The GSEA
showed enrichment of the pathway toward the ulcerative colitis patients. The most relevant
genes of the leading edge were IL1RN, MMP3, OSMR, FCGR3B, FCGR3A, TNC, TNFRSF6b,
CD274 (PD-L1), PLAU, and S100A9. In Figure 2, the GSEA plot is shown.
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Figure 2. Gene set enrichment analysis (GSEA) using an autoimmune discovery panel. The GSEA
analysis confirmed that a priori set of genes of the autoimmune discovery panel showed a significant
difference between ulcerative colitis and healthy controls. The analysis showed enrichment toward
ulcerative colitis. The most relevant genes of the leading edge were IL1RN, MMP3, OSMR, FCGR3B,
FCGR3A, TNC, TNFRSF6b, CD274 (PD-L1), PLAU, and S100A9.

www.immunobase.org
www.opentargets.org
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3.3. Machine Learning and Artificial Neural Networks
3.3.1. Ulcerative Colitis Versus Healthy Controls

The same gene expression matrix with the autoimmune discovery panel of the GSEA
analysis was used to predict ulcerative colitis status (n = 30) against healthy controls
(n = 13). A total of 16 models were used, including C5, logistic regression, Bayesian network,
discriminant analysis, KNN algorithm, LSVM, random trees, SVM, Tree-AS, XGBoost linear,
XGBoost tree, CHAID, Quest, C&R tree, random forest, and neural network. Table 1 lists
the models in order according to the overall accuracy, and the number of genes used
in each final model are also shown. Figures 3 and 4 show some of the predictive and
classification models.

Table 1. Prediction of ulcerative colitis using machine learning and artificial neural network modeling.

Model Overall Accuracy (%) No. Fields (Genes) Used Most Relevant Genes

C5 100 2 GART, IL21R

Logistic regression 100 734

AAMP, ABHD6, ACKR2, ACOXL, ACSL6,
ADA, ADAM30, ADCY3, ADCY7, AFF3,
AGAP2, AHI1, AHR, AIRE, ANKRD55,
ANTXR2, APEH, APOBEC3G, ARG1,
ARHGAP30, ARID5B, ARPC2, ATF4,

ATG16L1, ATG5, ATM, B2M, B3GNT2,
BABAM2, BACH2, BAD, BANK1, BATF,
BATF3, BCL10, BCL3, BCL6, BID, BLK,

BLNK, BORCS5, and BSN.
Discriminant 100 734 -

LSVM 100 734 CCL11, IL1RN, MMP3, CXCL3, FCGR3A,
TLR3, NFIL3, TTYH3, NLRP2, and OSMR

SVM 100 734 -
XGBoost Linear 100 734 -

XGBoost Tree 100 734 -

Neural Network 100 734
BSN, TBX21, ITGAE, TMBIM1, IRF5,
IL12B, IL18R1, PLEKHG5, COG6, and

RBM17
CHAID 97.7 2 IP6K1, ZFP90

Random Forest 97.7 734
PDLIM4, SLC22A5, SCAMP3, VDR,

MAPKAPK2, SLC15A4, KLF4, IRAK2,
NFIL3, and CXCL11

KNN Algorithm 95.4 734 -
C&R Tree 95.4 12 METTL1, ADA

Quest 83.7 6 IRAK1
Bayesian Network 65.1 734 -

Random Trees 0 734 N/A
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Figure 3. Modeling ulcerative colitis versus healthy controls using C5 tree, CHAID tree, and artificial
neural networks. Several machine learning techniques, including artificial neural networks, were
used to predict ulcerative colitis using gene expression data from the autoimmune discovery panel.
This figure shows the results of the C5 tree (which used GART and IL21R genes in the final model),
CHAID tree (IP6K1 and ZFP90), and the neural network (which used the 734 genes of the autoimmune
discovery panel). The accuracy of these 3 methods was high, 100%, 98%, and 100%, respectively.
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Figure 4. Modeling ulcerative colitis versus healthy controls using random forest and Bayesian
network. This figure shows the results of the modeling of the prediction of ulcerative colitis against
healthy controls using gene expression data of the autoimmune discovery panel. The random forest
plot shows the genes of the model, ranked according to their predicted importance. The Bayesian
network also predicted the ulcerative colitis cases (subtype 2 in the figure). The Bayesian network
shows the genes (nodes) and the probabilistic, or conditional, independencies between them. The
causal relationships may be represented, but the links (arcs) of the network do not necessarily
represent direct cause and effect.

3.3.2. Ulcerative Colitis (Involved Active, Non-Involved Active, and Inactive/Remission)
Versus Healthy Controls

The same procedure was repeated, including the same gene expression matrix with
the autoimmune discovery panel as predictors. The series comprised a total number of
43 biopsies, including 13 healthy controls, 8 inactive ulcerative colitis, 7 non-involved active
ulcerative colitis, and 15 involved active ulcerative colitis. The target variable was the
disease, ulcerative colitis (involved active (coded as number/output “2”), non-involved
active (“3”), and inactive/remission (“4”)), and healthy controls (“1”). Several analyses
were performed, and the results of the overall accuracy (%) and the number of genes (fields)
used are shown in Table 2, Figures 5 and 6.

3.4. Validation of CD274 (PD-L1) in an Independent Series

Programmed cell death factor 1 (PD-L1, CD274) was a marker identified both in the
conventional gene expression analysis using the GEO2R and GSEA, and in the machine
learning analyses (Table 2). Twenty cases from a recent publication that included five
healthy controls and fifteen with ulcerative colitis. The primary antibody was that used
was the PD-L1 (extracellular domain-specific) (E1J2J) Rabbit mAb #15165 (CST). The slides
were evaluated under the optical microscope and PD-L1 quantified using Fiji software
(NIH). The bioinformatics analysis was confirmed and showed that ulcerative colitis is
characterized by increased PD-L1 protein expression. Therefore, the CD274 (PD-L1) marker
was validated in another series of cases. Ulcerative colitis versus healthy controls (mean
± STD): 4.7% ± 3.8 versus 1.6% ± 0.9 (p = 0.015) (Figure 7). The cases were endoscopic
biopsies, selected from Japanese patients from 2005 to 2013. The selection criteria were
biopsies taken in the colonoscopy at diagnosis, and the presence of adequate tissue for
histological evaluation. When multiple biopsies were present, the most inflamed was cho-
sen [7]. The clinicopathological characteristics of these 20 cases are shown in Appendix A
Table A1, which includes the Geboes histologic disease activity and the Baron endoscopic
scores. The digital images are shown as Supplementary Data and uploaded to Zenodo
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platform as a zip file (Carreras, Joaquim. (2022). healthcare-1831464 (Version 1). Zenodo.
https://doi.org/10.5281/zenodo.6956123) (accessed on 3 August 2022).

Table 2. Prediction of ulcerative colitis (active, non-involved active, and inactive) using machine
learning and artificial neural network modeling.

Model Overall Accuracy (%) No. Fields (Genes) Used Most Relevant Genes

Logistic regression 100 734 -
Discriminant 100 734 -

SVM 100 734 -
XGBoost Linear 100 734 -

XGBoost Tree 100 734 -
CHAID 97.7 4 MMP3, OSMR, ZFP90, and GSDMB

Random Forest 97.7 734 TLR2, IFNAR2, BID, NCF2, IDO1, FCGR1A,
CSF2RB, TGFBI, S1PR1, and IRAK1

Neural Network 97.7 734 UBASH3A, IL22, TBX21, IL12B, TIGIT, CD19,
TRAF1, IFNG, CARD14, and IRF5

Bayesian Network 95.4 734 -
KNN Algorithm 93.0 734 -

LSVM 86.1 734 -
C5 83.7 2 CD274 and SULT1A1

C&R Tree 65.1 6 CD274
Quest 62.8 6 FCGR3A

Random Trees 0 734 N/A
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Figure 6. Modeling ulcerative colitis versus healthy controls. The target variable was the disease,
ulcerative colitis (involved active (2), non-involved active (3), and inactive/remission (4)), and healthy
controls (1). Using an artificial neural network, it was possible to classify the patients with 97.7%
accuracy; the most relevant gene for predicting the subtype was UBASH3A. The modeling was also
complete with a Bayesian network and C5 tree. Of note, C5 tree only used 2 genes, the CD274 (PD-L1)
and SULTA1, and had an accuracy of 83.7%.
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ative colitis samples were characterized by disruption of the epithelial layer, inflammation of the
lamina propria, crypt branching, shortening, and disarray.

4. Discussion

Machine learning is a branch of artificial intelligence (AI) that uses data and algorithms
similarly to humans, improving its accuracy progressively. Machine learning has become
an important field in data science. By using several statistical techniques, predictions and
classifications are made through trained algorithms. Data mining projects use machine
learning techniques to understand the underlying mechanisms. Eventually, these insights
drive decision making within many types of applications, including in the medical field.
Since big data in medicine is continuously expanding, the necessity of advanced data
analysis is crucial. Machine learning algorithms are usually created using frameworks,
such as TensorFlow, Keras, and Pytorch, that accelerate solution development [19–21].

The term artificial intelligence includes several subfields as machine learning, deep
learning, and neural networks. Nonetheless, neural networks are a sub-discipline of ma-
chine learning, and deep learning is a sub-discipline of neural networks. The difference
between deep learning and machine learning depends on how the algorithm learns. Classi-
cal “not-deep” machine learning requires more structured data to learn, and the human
intervention, in the form of human determination of features to analyze and understand
the differences between data inputs. However, “deep” machine learning can use labeled
datasets (known as supervised learning) and also use raw unstructured data, and they can
automatically determine features that differentiate categories of data, enabling the use of
large datasets [19–21].

The basic structure of an artificial neural network is composed of an input layer, one
or more hidden layers, and an output layer. These layers contain nodes (neurons). Each
node connects to another and has an associated weight and threshold. When the output of
an individual node is above the specified threshold, the node is activated and sends data to
the next network layer. Contrarily, an output below the threshold does not send data to the
next layer. The term “deep” refers to the number of layers of the network. More than three
layers (including the input and output layers) is considered a deep learning algorithm. A
basic neural network would only have three layers [19–21].

There are several commonly used machine learning algorithms, including neural
networks, liner regression, logistic regression, clustering, decision trees, and random forests.
This research used several machine learning techniques, including C5, logistic regression,
Bayesian network, discriminant analysis, KNN algorithm, LSVM, random trees, SVM,
Tree-AS, XGBoost linear, XGBoost tree, CHAID, Quest, C&R tree, random forest, and neural
network. The predictors were 755 gens of an autoimmune discovery panel that contained
genes closely associated with germline variants across nine different autoimmune diseases
or relevant to the immune response. The autoimmune disease coverage included multiple
sclerosis, rheumatoid arthritis, systemic lupus erythematosus, type 1 diabetes, ankylosing
spondylitis, celiac disease, ulcerative colitis, inflammatory bowel disease, and psoriasis.
The target variable was the distinction between ulcerative colitis versus healthy donors,
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or the three variants of ulcerative colitis (involved mucosa active, non-involved mucosa
of active, and inactive/remission) versus healthy donors. Each machine learning method
provided a final model with a different overall accuracy using a defined set of genes of
the panel. This research did not just compare the different models but provided different
solutions to predict ulcerative colitis and to try understanding the pathogenesis. Of note,
low accuracy solutions are to be discarded.

Detailed descriptions of the clinicopathological features of ulcerative colitis have been
recently published [22–30]. A gene that was highlighted in this research was CD274 (PD-L1).
This marker belongs to the immune checkpoint, and it is important for inhibiting the host
immune response. By immunohistochemistry, it was confirmed that high expression of
PD-L1 was characteristic of ulcerative colitis. We recently described the role of PD-L1 in a
DSS colitis model [31]. Other genes that were highlighted were FCGR3A, GSDMB, IFNG,
IRF5, MMP3, OSMR, SULT1A1, TGFBI, and ZFP90 (among others). These genes belong
to the ulcerative colitis autoimmune coverage of the discovery panel, but also belong to
Crohn’s disease, celiac disease, and other immune response genes. Therefore, these markers
are expected to be relevant not only to ulcerative colitis but also to other autoimmune
diseases. For example, polymorphisms of FCGR3A are associated with susceptibility to
ulcerative colitis [32]; gene expression genotype analysis identified GSDMB as a contributor
to inflammatory bowel disease susceptibility [33]; distinct IFNG methylation status was
found in a subset of ulcerative colitis patients based on reactivity to microbial antigens [34],
reducing IRF5 expression attenuated colitis in mice but impairing the clearance of intestinal
pathogens [35]; and in children, MMP3 was correlated with several clinical and endoscopic
activity on ulcerative colitis in children [36].

This study used a series of 43 cases of gene expression to identify ulcerative colitis
markers, and the PD-L1 marker was validated in an independent series of 20 cases. The
number of cases is a limitation. Artificial intelligence tools, especially neural networks, are
very powerful techniques for deciphering patterns even using a small series of cases, but
the results of this research will have to be validated in a larger series of cases.

In conclusion, using an autoimmune discovery gene expression panel and several
machine learning techniques, it was proved that it is possible to predict ulcerative colitis
and identify pathogenic markers.
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Appendix A

Table A1. Clinicopathological characteristics of the cases of ulcerative colitis.

Type PD-L1 (%) Biopsy Age Sex Baron Score Geboes Score

Control 0.84 Rectum 64 Male - -
Control 1.14 Descending 56 Male - -
Control 1.45 Descending 59 Male - -
Control 1.45 Rectum 26 Male - -
Control 3.09 Rectum 59 Female - -

Ulcerative
colitis 1.38 Rectum 51 Male 1 1

Ulcerative
colitis 1.47 Sigmoid 31 Female 2 2

Ulcerative
colitis 1.61 Rectum 37 Female 1 2

Ulcerative
colitis 1.80 Rectum 37 Female 2 2

Ulcerative
colitis 2.06 Rectum 33 Male 2 3

Ulcerative
colitis 2.24 Rectum 77 Female 2 2

Ulcerative
colitis 2.97 Rectum 46 Male 1 3

Ulcerative
colitis 2.98 Sigmoid 41 Male 2 3

Ulcerative
colitis 4.74 Rectum 59 Male 1 2

Ulcerative
colitis 6.34 Rectum 23 Male 2 2

Ulcerative
colitis 4.04 Rectum 22 Female 2 4

Ulcerative
colitis 6.52 Sigmoid 43 Female 3 2

Ulcerative
colitis 6.89 Descending 54 Female 2 4

Ulcerative
colitis 10.99 Rectum 20 Male 3 4

Ulcerative
colitis 14.55 Descending 17 Female 2 2
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