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Abstract: The International Classification of Diseases (ICD) has an important role in building applica-
tions for clinical medicine. Extremely large ICD coding label sets and imbalanced label distribution
bring the problem of inconsistency between the local batch data distribution and the global training
data distribution into the minibatch gradient descent (MBGD)-based training procedure for deep
multi-label classification models for automatic ICD coding. The problem further leads to an over-
fitting issue. In order to improve the performance and generalization ability of the deep learning
automatic ICD coding model, we proposed a simple and effective curriculum batching strategy in this
paper for improving the MBGD-based training procedure. This strategy generates three batch sets
offline through applying three predefined sampling algorithms. These batch sets satisfy a uniform
data distribution, a shuffling data distribution and the original training data distribution, respectively,
and the learning tasks corresponding to these batch sets range from simple to complex. Experiments
show that, after replacing the original shuffling algorithm-based batching strategy with the proposed
curriculum batching strategy, the performance of the three investigated deep multi-label classification
models for automatic ICD coding all have dramatic improvements. At the same time, the models
avoid the overfitting issue and all show better ability to learn the long-tailed label information. The
performance is also better than a SOTA label set reconstruction model.

Keywords: automatic ICD coding; curriculum learning; minibatch gradient descent; deep learning

1. Introduction

The International Classification of Diseases (ICD) is a healthcare classification system
initiated by the World Health Organization [1]. It is mainly used for uniformly coding
diseases, symptoms, processes, injuries and other features contained in electronic medical
records (EMRs) [2]. The coding results are widely used for epidemiological studies [3], the
billing and reimbursement for medical services [4] and diagnostic information retrieval [5].

The ICD coding task requires professionals to master both medical knowledge and
the ICD coding system. The coding process is time-consuming and laborious. In addition,
different professionals may have different understandings of the complex ICD coding
system. This may also lead to inconsistent coding results. Consequently, automatic ICD
coding based on machine learning techniques has become an interesting research area in
recent years [6,7].

Automatic ICD coding is usually regarded as a multi-label classification problem.
The performance of automatic ICD coding is directly affected by extremely large label
sets and imbalanced label distribution [8,9]. Recently, researchers have challenged these
issues, mainly from two perspectives. One is reconstructing the label sets (ReLS) through
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designing different label-combining strategies [7,8,10]. The new label sets consist of multi-
granularity labels. Another is building multi-level label hierarchical classifiers based on
hierarchical joint learning mechanisms [9,11]. The main idea of these methods is to reduce
the label space dimension and alleviate the imbalanced label distribution issue.

Deep multi-label classification models are widely used for automatic ICD coding,
and the minibatch gradient descent (MBGD) is a widely used optimization algorithm for
training the models [7]. In each iteration during a training procedure, the gradient updates
of the model parameters are approximated, based on the examples in one batch. The studies
show that a larger batch size results in a lower frequency of gradient updates and better
gradient update approximation, but it may hurt generalization and result in finding poorer
local optima [12].

In this paper, we further find that, during training, deep multi-label classification
models for automatic ICD coding, which split the training data into batches with a simple
but commonly used shuffling algorithm in MBGD, always result in the local data distribu-
tion of the batches (or the local batch data distribution) being inconsistent with the global
training data distribution (see Figure 1). This phenomenon causes the local statistics of
batches to vary substantially from the global statistics of the training data [13]. It will also
hurt the model performance and generalizability (see Table 1).

1 
 

 

Figure 1. Comparing the global training data distribution (left) with sampled local batch data
distributions (right). The right four charts are drawn based on four batches randomly chosen from
one model training procedure. The model trained was based on the original MBGD, and the batch
size is 500.

Table 1. Three representative deep multi-label classification models, TextCNN, TextRNN and Tex-
tRCNN for automatic ICD coding; all show signs of the overfitting issue. The algorithms obtained
decent performance on the training data (top) but observed a large performance gap between training
data and test data.

Models TextCNN TextRNN TextRCNN

F1micro on Training Data 0.695 0.789 0.624
F1micro on Test Data 0.325 0.282 0.317

To challenge the inconsistency problem, we propose a simple and effective curriculum
batching strategy to conveniently replace the shuffling algorithm for splitting the training
data into batches. Assuming that the uniform data distribution (UDD) is easier to be learned
by deep multi-label classification models for automatic ICD coding than the shuffling data
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distribution (SDD), and the SDD is easier to be learned than the original imbalanced training
data distribution (IDD), the proposed strategy applies three specific sampling algorithms to
generate three batch sets with the three types of mentioned data distributions. The models
then iterate each batch set, in turn, and learn the ICD coding experience from the easiest
batch set to the hardest batch set.

A series of experimental results show that the proposed strategy can effectively avoid
the overfitting issue and dramatically improve the automatic ICD coding performance
compared with the three representative deep multi-label classification models and one
state-of-the-art ReLS method for automatic ICD coding. Moreover, the improved models
also have a better ability to learn the long-tailed label information. To the best of our
knowledge, this is the first work to introduce a curriculum learning method for automatic
ICD coding with deep multi-label classification models. In summary, the contribution of
this paper is fourfold:

• This paper finds that the shuffling algorithm in the MBGD always causes the local data
distribution of batches to be inconsistent with the global training data distribution,
which hurts the model’s performance and generalizability;

• This paper alleviates the problems of poor generalization ability and low classification
accuracy of the deep learning model in the field of ICD automatic coding;

• This paper greatly improves the learning ability of the automatic ICD coding model
for data with long-tailed labels;

• This paper introduces the curriculum learning method into automatic ICD coding of
deep multi-label classification model for the first time.

2. Related Work
2.1. Automatic ICD Coding

Automatic ICD coding is a widely discussed, hot research topic in the field of medicine
and healthcare [6,7]. Many statistical machine learning methods have been applied to
challenge this problem [6,14]. In recent years, with the widespread success of deep learning,
it has also been introduced to solve the problem of automatic ICD coding [7,15]. The
automatic ICD coding problem is formulated as a multi-label classification problem [16,17].

Extremely large label sets and imbalanced data distribution are two main issues di-
rectly impacting coding performance. Mullenbach presented a Convolutional Attention
for Multilabel Classification (CAML) model incorporating an attention technique with
convolutional neural networks [18]. Sadoughi extended this approach by adding a max-
imum pooling layer across all the multiple convolution layers [19]. To further improve
the performance of CAML, Li integrating a multi-filter CNN architecture with a residual
CNN architecture, which is called a multi-filter residual convolutional neural network [16].
Bhutto present a Deep Recurrent Convolutional Neural Network with Hybrid Pooling
(DRCNN-HP), which considers the different lengths as well as the dependency of the
ICD code-related text chunks [20]. Another current solution idea is to reduce the label
space dimensions to alleviate the imbalanced data distribution. The label set reconstruction
method [7,8,10] and the multi-label hierarchical classifier-based method [9,11] are two repre-
sentative approaches. Differently from the previous studies, in this paper we explored further,
from the perspective of how these problems affect the local model training procedure.

2.2. Mini-Batch Gradient Descent

Mini-batch gradient descent is the widely used optimization algorithm to train deep
neural models [21,22], including the deep multi-label classification models for automatic
ICD coding [7]. How to effectively use MBGD to train models is always a concern in
machine learning and other related fields [23,24]. There are many aspects of research,
including the effect of batch normalization [25], batch size and learning rate settings [12,26],
etc. We studied the inconsistency problem between the local batch data distribution and
the global training data distribution and attempted to avoid the risk of overfitting and to
improve the model generalization ability.
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2.3. Curriculum Learning

Elman first proposed a “starting small strategy” approach to learn a model with a
curriculum [27]. Two methods were developed, including an incremental input method
and an incremental memory method. The motivation behind these methods was that
compound sentences make it a little difficult for neural networks to learn grammatical
concepts in the early phases of training. Therefore, these methods make the models learn
gradually, by varying the percentage of simple and compound sentences used during
training or constraining the model’s capacity in the early phases of training [27].

Bengio et al. [28] revisited Elman’s approach and formalized the approach of starting
training on easy examples first and then gradually introducing more complex examples
during the training. This type of approach was named as “curriculum learning”, and it can
achieve significant improvements in generalization. The core of curriculum learning is to
develop a curriculum strategy to train the models from simple to complex.

Consequently, we proposed a simple and effective curriculum batching strategy for
automatic ICD coding with deep multi-label classification models in order to solve the
inconsistency problem mentioned earlier, improve the model generalization ability and
avoid the risk of overfitting. The curriculum batching strategy generates and sequentially
utilizes three types of batch sets composed of examples from easy-to-learn to hard-to-learn.

3. Methodology

In this section, we first review the original MBGD-based training procedure for deep
multi-label classification models for automatic ICD coding. Then, we introduce the pro-
posed curriculum batching strategy and how to integrate it conveniently into the MBGD-
based training procedure, followed by the description of three specific sampling algorithms
for obtaining batch sets satisfying the UDD, SDD and IDD.

3.1. MBGD-Based Training Procedure

The MBGD-based training procedure for deep multi-label classification models for
automatic ICD coding is shown in Figure 2. This procedure consists of two modules: the
data batch process and model training. In module one, the training data set D is divided
into several mini-batches (b1, b2, . . . , bK−1, bK), which constitute the batch set B. Second,
each mini-batch b is sent to module two in turn. Every example (x, y) in mini-batch b
contains an electronic case x and its corresponding ICD codes y, a real example (x, y)
is shown in Figure 3. Third, the examples are sent to the model training module. The
deep multi-label ICD coding model uses the electronic case x to predict its ICD codes
and compares the predicted output with the real output y. Finally, module 2 calculates
the losses for each sample and updates the model. The procedure is repeated until the
model converges.

To be specific, there are six data or parameter processes and/or computational steps
in the procedure, including:

1. Batching Strategy: In this data process, a shuffling algorithm is commonly applied [26];
firstly, each example (x, y) in training data D is randomly sorted to generate a list.
Then, the batch set B(b1, b2, . . . , bK−1, bK) is formed by scanning the list with a sliding
window with the size of M, i.e., the batch size. Thus, K, the number of batches b in B,
equals d|D|/M e. This data process sometimes may be performed more than once;

2. Parameter Initialization: In this parameter process, θ0 are usually drawn randomly
from a distribution (e.g., uniform) as the initialization parameters;

3. Loss Computation: Many kinds of deep multi-label classification models for automatic
ICD coding can be applied in this step, including TextCNN, TextRNN and TextRCNN,
which are compared in this paper. We uniformly note them as fθk (xi). fθk (xi) means
that the model f (xi) takes the example xi as the input with the kth iteration’s parameter
θk. The loss of the current kth iteration, L(θk), is the mean of the loss values obtained
based on examples in Bk. A loss value obtained based on one example (xi, yi) in Bk
is noted as Li

(
yi, fθk (xi)

)
;
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4. Gradient Update Estimation: According to θk, fθk (xi) and the examples in Bk, the kth
iteration’s gradient updates, ∆θk, can be estimated by the average of the gradients of
the examples in Bk, as shown in Figure 2;

5. Parameter Update: The (k + 1)th iteration’s parameter, θk+1, is calculated, based on
θk and ∆θk with the hyperparameter learning rate η;

6. Optimized Parameter Output: In general, the steps from 3 to 5 will loop E epochs
until the model converges.
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Theoretically, ∆θk is the unbiased estimation of the kth iteration’s gradient updates.
Consequently, a larger batch size leads to a better gradient update approximation and
results in a lower frequency of gradient updating. However, there is no “free lunch”, in
that it may also hurt generalization and result in finding poorer local optima [12].

Moreover, the commonly used batching strategy mentioned above makes each Bk carry
different local statistics information from the global statistics information of B, due to the
inconsistency between the local data distribution of Bk and the global data distribution of
B. In addition, the extremely large label sets and imbalanced data distribution problems of
automatic ICD coding also easily lead to a local overfitting on a small number of frequently
occurring labels, due to the imbalanced label distribution ofD. To challenge these problems,
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we propose a simple and effective curriculum batching strategy to conveniently replace the
shuffling algorithm in the MBGD-based training procedure.

3.2. Curriculum-Batching Strategy

In the original MBGD-based training procedure for deep multi-label classification
models for automatic ICD coding, B is generated by the batching strategy introduced
in Section 3.1, and the generated B is used repeatedly by the following processes in the
procedure and, sometimes, B may be regenerated. To challenge the problems mentioned
earlier, we propose a curriculum batching strategy (CBS) data batch process module in
order to generate batch sets BUDD, BSDD and BIDD with three types of data distribution, i.e.,
UDD, SDD and IDD, respectively. The structure of the new module is shown in Figure 4.
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Figure 4. The curriculum batching strategy proposed in this paper has a similar structure to the
batching strategy in the original MBGD-based training procedure for deep multi-label classification
models for automatic ICD coding. Differently, BUDD, BSDD and BIDD will be iterated in turn from
easy to hard.

The data batch process CBS can conveniently replace the original data batch process in
Figure 2 (as depicted in Figure 4) except that the CBS will generate three batch sets, includ-
ing BUDD, BSDD and BIDD, which are sampled from the original training data, respectively,
based on specific sampling algorithms. BUDD is generated through a stratified sampling
with replacement (SSR); BSDD is generated based on the original shuffling algorithm; and
BIDD is generated by a probability sampling with replacement (PSR). The specific SSR and
PSR methods will be described later; the original shuffling algorithm follows the batching
strategy introduced in Section 3.1.

The intuitive assumption of the CBS is that BUDD is easier to be learned by the deep
multi-label ICD coding models than BSDD, and, in the same way, BSDD is easier than
BIDD. Moreover, BUDD makes the models have an equally likely opportunity to learn the
examples corresponding to each type of label, which can alleviate the imbalanced data
distribution problem [29,30]. BSDD allows models to learn every example corresponding to
each type of label. BIDD expects models to learn the ICD coding experience from examples
through keeping the consistency between the local data distribution of Bk and the global
data distribution of B. So far, we have designed a curriculum strategy. According to the
idea of curriculum learning [28,31], BUDD, BSDD and BIDD will be learned sequentially.

SSR for generating BUDD: The labels of the ICD coding system are diverse, extremely
large and imbalanced. These issues make the examples in D have unequal opportunities
to be learned by the models, which easily lead to a local overfitting on a small number of
frequently occurring labels in a fixed number of loops.

Stratified sampling has the ability to ensure that every characteristic of the population
is properly represented in one sample [32]. Consequently, we designed a simple SSR to
generate a batch set satisfying the requirement that every example corresponding to each
type of label in D has an equal chance to be learned by the models.
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First, SSR samples M labels randomly, where M equals the batch size. Then for each
sampled label, SSR samples one example with a replacement randomly from the examples
in D whose corresponding labels contain the sampled label. Finally, the M examples
constitute one batch. The above procedure will be repeated N times, where N is the size of
the batch set BUDD. The sampled N batches form the batch set BUDD. In this paper, N is
uniformly set to d|D|/Me.

PSR for generating BIDD: Each Bk in BUDD and BSDD still carries different local
statistics information from the global statistics information of D. In order to ensure the con-
sistency between the local batch data distribution and the global training data distribution,
we designed a simple PSR to generate a batch set satisfying the requirement that every
example in B is drawn from the global data distribution of D with a replacement.

Differently from the SSR, the PSR firstly draws M labels according to the label distribu-
tion of B, where M equals the batch size. Then, for each drawn label, the PSR samples one
example randomly from the examples in D whose corresponding labels contain the drawn
label. Finally, the sampled M examples constitute a batch. After repeating above procedure
N′ times, the batch set BIDD is formed. In this paper, N′, i.e., the size of the batch set BIDD,
is uniformly set to d|D|/Me, too.

4. Experiments
4.1. Experimental Dataset

In our experiments, the third version of the Medical Information Mart of Intensive
Care (MIMIC-III) dataset [33] was adapted for evaluating the effectiveness of our proposed
curriculum batching strategy for automatic ICD coding with multi-label classification
models. As described in Section 3.1 above, we used one discharge summary (electronic
case) of the NOTEEVENTS in MIMIC-III and its corresponding ICD-9 codes to form an
example. Next, we conducted a series of data cleaning and preprocessing for all the samples
to obtain the experimental dataset D. The specific preprocesses were as follows:

• All the punctuation, numbers and stop words were removed from all the examples;
• The discharge summaries were segmented into tokens by using the space as the

separator, and then we built a vocabulary V ′ based on these tokens;
• The TF-IDF values of each word in V ′ are calculated, based on all the examples, and

only the top 10,000 words are kept to be used to build the final vocabulary V .

After preprocessing, the basic information of D is listed in Table 2.

Table 2. The basic information of the MIMIC-III dataset after preprocessing in this paper.

|D| Unique
Labels

Avg. Words
per Example

Max Words
in Examples

55,177 6918 898 4604

Min Words
in Examples

Avg. Labels
per Example

Max Labels
per Example

Min Labels
per Example

2 11 39 1

As shown in Table 2, D contains 55,177 different electronic medical records with 6918
different diseases in the ICD-9 code. Furthermore, in our experiments, D is further divided
by a shuffling algorithm into a training dataset Dtrain, a validation dataset Dval and a test
dataset Dtest in the ratio of 7:1:2.

4.2. Evaluation Metrics

In this paper, widely used micro-measures for multi-label classification tasks, including
Precisionmicro (Pmicro), Recallmicro (Rmicro), F1-Scoremicro (F1micro) and F1-Scoremacro (F1macro),
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are used for evaluating the model performance, and the equations of these measures are
shown as follows:

Pmicro =
TP

TP + FP
(1)

Rmicro =
TP

TP + FN
(2)

F1micro =
2× Pmicro × Rmicro

Pmicro + Rmicro
(3)

Pmacro =
1
|L|∑

|L|
l Pl

micro, Rmacro =
1
|L|∑

|L|
l Rl

micro (4)

F1macro =
2× Pmacro × Rmacro

Pmacro + Rmacro
(5)

where TP is the number of examples where the predictions are true positives; FP is the
number of examples where the predictions are false positives; FN is the number of examples
where the predictions are false negatives; and |L| is the size of the label space.

4.3. Experimental Settings

In our experiments, we firstly trained TextCNN, TextRNN and TextRCNN for au-
tomatic ICD coding on Dtrain and tuned them on Dval ; three models were implemented,
based on an open-source tool named NeuralNLP [34]. Finally, we applied the best model
on Dtest to get the results. A shuffling algorithm was applied for generating batches, and
the batch size was set to different values to observe the sensitivity of the models. Adam
was used as the optimizer, and the learning rate η and the epochs E were set to 0.008 and
150, respectively. The results are listed in Table 3.

Table 3. The automatic ICD coding performance of TextCNN, TextRNN and TextRCNN with different
batch sizes. The best results are in bold.

Batch
Size

TextCNN TextRNN TextRCNN
Pmicro Rmicro F1micro F1macro Pmicro Rmicro F1micro F1macro Pmicro Rmicro F1micro F1macro

500 0.5365 0.2341 0.3254 0.0237 0.4725 0.2005 0.2815 0.0243 0.4867 0.2324 0.3146 0.0302
1000 0.5456 0.2311 0.3246 0.0222 0.5084 0.1814 0.2674 0.0192 0.5021 0.2265 0.3121 0.0264
2000 0.5397 0.2260 0.3186 0.0216 0.4769 0.1761 0.2572 0.0183 0.4945 0.2250 0.3092 0.0261
5000 0.5578 0.2207 0.3163 0.0197 0.4941 0.1644 0.2467 0.0162 0.4677 0.2379 0.3154 0.0265
7000 0.5403 0.2241 0.3168 0.0214 0.5541 0.1383 0.2214 0.0108 0.4694 0.2401 0.3174 0.0256

CBS was applied on TextCNN, TextRNN and TextRCNN for the automatic ICD coding
through directly replacing the original shuffling algorithm-based batching strategy. We
refer to them by “TextCNN+CBS”, “TextRNN+CBS” and “TextRCNN+CBS”. BUDD, BSDD
and BIDD were built offline previously, and they were switched to be utilized in the training
procedure every 50 epochs. For the sake of fairness, the other settings are the same as the
settings described earlier, and the results are listed in Table 4.

Table 4. The automatic ICD coding performance of TextCNN+CBS, TextRNN+CBS and TextR-
CNN+CBS with different batch sizes. The best results are in bold.

Batch
Size

TextCNN+CBS TextRNN+CBS TextRCNN+CBS
Pmicro Rmicro F1micro F1macro Pmicro Rmicro F1micro F1macro Pmicro Rmicro F1micro F1macro

500 0.8121 0.6251 0.7064 0.5789 0.8072 0.4487 0.5766 0.4619 0.8246 0.6004 0.6949 0.5669
1000 0.8403 0.6693 0.7449 0.5802 0.7919 0.3605 0.4954 0.3300 0.8546 0.6167 0.7161 0.5563
2000 0.8507 0.5813 0.6907 0.4234 0.7226 0.2042 0.3184 0.0551 0.8304 0.5230 0.6418 0.4738
5000 0.8432 0.4940 0.6230 0.2898 0.6983 0.1510 0.2483 0.0198 0.8350 0.4142 0.5530 0.3602
7000 0.8005 0.3468 0.4839 0.0882 0.6638 0.1063 0.1832 0.0062 0.7800 0.3240 0.4580 0.1571
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One ReLS method mentioned in [10] was applied directly to TextCNN, TextRNN and
TextRCNN as a reference comparison model, and we named the results TextCNN+ReLS,
TextRNN+ReLS and TextRCNN+ReLS. The settings of the models are the same as the
settings mentioned earlier. Their results are listed in Table 5.

Table 5. The automatic ICD coding performance of TextCNN+ReLS, TextRNN+ReLS and TextR-
CNN+ReLS with different batch sizes. The best results are in bold.

Batch
Size

TextCNN+ReLS TextRNN+ReLS TextRCNN+ReLS
Pmicro Rmicro F1micro F1macro Pmicro Rmicro F1micro F1macro Pmicro Rmicro F1micro F1macro

500 0.4987 0.3412 0.4052 0.0977 0.4391 0.3107 0.3639 0.0816 0.4611 0.3471 0.3961 0.1030
1000 0.5091 0.3320 0.4019 0.0973 0.4171 0.3016 0.3501 0.0781 0.5065 0.3401 0.4069 0.0981
2000 0.5574 0.3474 0.4280 0.1010 0.4757 0.3052 0.3719 0.0817 0.5318 0.3624 0.4310 0.1067
5000 0.6290 0.3241 0.4277 0.0829 0.4882 0.3052 0.3756 0.0854 0.5638 0.3529 0.4341 0.1046
7000 0.6190 0.3310 0.4313 0.0824 0.5157 0.2890 0.3704 0.0813 0.5408 0.3567 0.4299 0.1068

Moreover, every experiment described above was run three times, and the average of
the results is reported.

4.4. Overall Results

First of all, comparing F1micro in Table 3 with that in Table 4 shows clearly that, after
changing the original batching strategy to CBS, the performance of TextCNN, TextRNN
and TextRCNN improved by more than double. In particular, the F1macro increased from
less than 5% to around 50% (F1macro is more affected by the long-tailed label). Moreover, the
results shown in Tables 4 and 5 demonstrate that, with a simple and effective curriculum
batching strategy substitution, the results of TextCNN+CBS, TextRNN+CBS and TextR-
CNN+CBS are much better than TextCNN+ReLS, TextRNN+ReLS and TextRCNN+ReLS,
which use a complex label set reconstruction method. These results demonstrate that
our proposed curriculum batching strategy for automatic ICD coding with multi-label
classification models is effective.

All the results state that feeding the training data to the deep multi-label ICD coding
model with an easy-to-learn data distribution first, and then, gradually, with a hard-to-learn
data distribution can effectively improve the model’s performance.

In order to illustrate the ability of our proposed strategy for automatic ICD coding with
deep multi-label classification models without harming the generalization ability of the
models, we also applied the models TextCNN+CBS, TextRNN+CBS and TextRCNN+CBS
directly on Dtrain. The results are listed in Table 6. By comparing the F1micro in Tables 4
and 6, it is easy to find that the performance of the models on the training data is comparable
to that on the test data. It means that TextCNN+CBS, TextRNN-+CBS and TextRCNN+CBS
do not suffer from the overfitting problem.

Table 6. The automatic ICD coding performance obtained by applying the models TextCNN+CBS,
TextRNN+CBS and TextRCNN+CBS directly on the training data.

Batch
Size

TextCNN+CBS
(On Training Data)

TextRNN+CBS
(On Training Data)

TextRCNN+CBS
(On Training Data)

Pmicro Rmicro F1micro F1macro Pmicro Rmicro F1micro F1macro Pmicro Rmicro F1micro F1macro

500 0.7934 0.5898 0.6766 0.8312 0.7886 0.4219 0.5496 0.6854 0.8039 0.5650 0.6636 0.8132
1000 0.8198 0.6353 0.7157 0.8179 0.7755 0.3395 0.4721 0.4451 0.8339 0.5805 0.6842 0.7935
2000 0.8290 0.5472 0.6592 0.5278 0.7195 0.1919 0.3029 0.0612 0.8076 0.4939 0.6130 0.6502
5000 0.8225 0.4658 0.5947 0.3245 0.6984 0.1400 0.2332 0.0208 0.8158 0.3892 0.5263 0.4777
7000 0.7839 0.3269 0.4614 0.0902 0.6672 0.0979 0.1707 0.0066 0.7908 0.2624 0.3938 0.1954
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4.5. Detailed Analysis

It can be seen from the results listed in Tables 3–5 that the proposed curriculum batch-
ing strategy for automatic ICD coding with deep multi-label classification models improves
the results of F1micro as well as the results of Pmicro and Rmicro. This result is different from
the results obtained by the models TextCNN, TextRNN, TextRCNN, TextCNN+ReLS, Tex-
tRNN+ReLS and TextRCNN+ReLS. They improve the Pmicro performance while sacrificing
their Rmicro performance. This further demonstrates that, after applying our proposed CBS
to the training procedure, the generalization ability of the trained models has improved.

Our results are also consistent with the results of other existing research. Larger
batch sizes result in a lower frequency of gradient updates and better gradient update
approximation, but they hurt the performance (as shown in Tables 3–5). Therefore, the
batch size should not be too large, and, of course, it should also not be too small. In our
experiments, when the batch size is set to 1000, the results are the best for TextCNN+CBS
and TextRCNN+CBS, and when it is set to 500, the results are the best for TextRNN+CBS.

Moreover, we plotted the training procedures for the nine models whose F1micro are
shown in bold in Tables 3–5 in order to observe the convergence of every model. The
training procedures are grouped according to their base models, i.e., TextCNN, TextRNN
and TextRCNN, and presented in Figures 5–7, respectively. In the three figures, the X-
axis is the number of epochs and the Y-axis is the loss value; the loss is calculated using
BCEWITHLOGITSLOSS in PyTroch, and its calculation formula is as follows:

`(x, y) = [y·logσ(x) + (1− y)·log (1− σ(x))], (6)

It can be seen in these figures that all the models converge after 150 epochs.
It can also be observed from Figures 5–7 that TextCNN+CBS, TextRNN+CBS and

TextRCNN+CBS converge the fastest, respectively, in their group. TextCNN+ReLS, Tex-
tRNN+ReLS and TextRCNN-+ReLS have the slowest rate of convergence, but they have
better F1micro than their base models, TextCNN, TextRNN and TextRCNN. The results show
that our proposed curriculum batching strategy for automatic ICD coding with multi-label
classification models can help the models to find their better local optima quickly through
a gradual learning process without hurting their generalization ability.

Moreover, the loss values of TextCNN+CBS, TextRNN-+CBS and TextRCNN+CBS, in
Figures 5–7 at the 50th epoch and the 100th epoch, all have two interesting change points
showing a steep rise and then a steep drop. These change points occur when BUDD switches to
BSDD, and BSDD switches to BIDD, respectively. That means when the local data distribution
changes dramatically, the loss will be affected. In other words, the performance of the models
would be hurt at those points. However, owing to our proposed curriculum batching strategy,
the models can quickly adapt to the new data distributions. It not only keeps good prediction
performance, but also avoids the risk of falling into a local optimal solution.
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4.6. Evaluating the Learning Difficulties of BUDD, BSDD and BIDD

In this paper, the proposed strategy is based on an intuitive assumption that BUDD
is easier to be learned by the deep multi-label ICD coding models than BSDD, and BSDD
is easier to be learned than BIDD. The implication of this assumption is that the data
distribution of BIDD is more like the data distribution of D than that of BSDD, and the data
distribution of BSDD is more like that of D than that of BUDD.

In order to further verify the effectiveness of the proposed curriculum batching strat-
egy, the data distribution similarities between the three generated batch sets and D, i.e., the
learning difficulties of BUDD, BSDD and BIDD, are evaluated by using the Kullback–Leibler
Divergence (KLD) and the Jensen–Shannon Distance (JSD). The evaluation results are listed
in Table 7. It can clearly see that the data distribution of BUDD is the least like that of D.
BSDD is the next, and the data distribution of BIDD is the most like that of D.

Table 7. Learning difficulties of BUDD, BSDD and BIDD evaluated by KLD and JSD, respectively. The
smaller the KLD value is, the more difficult to be learned the batch set is. The smaller the JSD value
is, the less difficult to be learned the batch set is.

Method BUDD BSDD BIDD

KLD 0.124 0.103 0.090
JSD 33.3 × 10−3 12.8 × 10−3 8.97 × 10−3
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4.7. Ablation Experiments of CBS

To prove the effectiveness of the curriculum in the CBS, we designed and implemented
ablation experiments for the three models, and the experimental results are shown in Table 8.
It can be clearly observed that all the performance indicators of the three models are steadily
improving with the increase in the curricula.

Table 8. Results of ablation experiment (batch size = 1000).

Model Curriculum Pmicro Rmicro F1micro F1macro

TextCNN
BSDD 0.5456 0.2311 0.3246 0.0222

BUDD+BSDD 0.7556 0.3224 0.4407 0.1584
BUDD+BSDD+BIDD 0.8403 0.6693 0.7449 0.5802

TexRNN
BSDD 0.5084 0.1814 0.2674 0.0192

BUDD+BSDD 0.7963 0.3832 0.5174 0.2536
BUDD+BSDD+BIDD 0.7919 0.3605 0.4954 0.3300

TextRCNN
BSDD 0.5021 0.2265 0.3121 0.0264

BUDD+BSDD 0.7378 0.2590 0.3766 0.1399
BUDD+BSDD+BIDD 0.8546 0.6167 0.7161 0.5563

4.8. Evaluating the Long-Tailed Label Learning Performance

The improvements in the automatic ICD coding performance benefit from our pro-
posed curriculum batching strategy. The improvements are also related to the ability of
the proposed strategy to promote the learning of the long-tailed labels (labels with a low
frequency in D, as shown in Figure 8). In the early phase of the training, we used BUDD,
which satisfies the uniform distribution, to train the models. This not only provided a
simple learning task, but also allowed the information in the long-tailed labels in the
MIMIC-III dataset to be learned fully. To evaluate this, we set a threshold γ = 219. If the
frequencies of labels were lower than γ, we considered these labels the long-tailed labels.
Then, we calculated the precisions and recalls of the long-tailed labels of the models, and
the results are listed in Table 9. It vividly shows that the proposed curriculum batching
strategy improves the long-tailed label learning ability of deep multi-label classification
models for automatic ICD coding.
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Table 9. Comparing the recalls of the long-tailed labels of TextCNN, TextRNN and TextRCNN with
their CBS-improved models for automatic ICD coding.

Model Precision Recall

TextCNN 0.0188 0.0498
TextRNN 0.0169 0.0442

TextRCNN 0.0103 0.0269
TextCNN+CBS 0.2599 0.6369
TextRNN+CBS 0.2593 0.6617

TextRCNN+CBS 0.1943 0.4778

5. Conclusions and Future Work

In this paper, we observed that extremely large ICD coding label sets and imbalanced
label distribution lead to inconsistency between the local batch data distribution and the
global training data distribution, and this inconsistency brings the overfitting problem into
the mini-batch gradient descent algorithm-based training procedure for deep multi-label
classification models for automatic ICD coding. Therefore, we proposed and investigated a
simple and effective curriculum batching strategy to replace the original shuffling algorithm-
based batching strategy in the training procedure. The proposed strategy emphasizes
that the model training procedure should be gradual, rather than random; the proposed
curriculum batching strategy realizes a gradual model training procedure by generating
three batch sets offline through applying three specific sampling algorithms. These batch
sets satisfy the uniform data distribution, the shuffling data distribution and the original
training data distribution, respectively. The learning tasks corresponding to these batch
sets range from easy to hard. A series of experiments demonstrate the effectiveness of
the proposed batching strategy. After replacing the original shuffling algorithm-based
batching strategy with the proposed curriculum batching strategy, the performance of
the three investigated deep multi-label classification models for automatic ICD coding all
improve dramatically. At the same time, the models avoid the overfitting issue and all
show better ability to learn the long-tailed label information. In addition, we also compared
the performance with a state-of-the-art label set reconstruction model for automatic ICD
coding. The performance of ours is consistently higher than that of the state-of-the-art
model. These results further prove the effectiveness of the proposed curriculum batching
strategy for automatic ICD coding with multi-label classify-cation models.

Possible directions for future work may include choosing the course of the CBS strategy
adaptively according to the convergence of the multi-label classification model during the
training. Currently, the order of courses and the number of times they are used are fixed.
Another direction is to combine transfer learning and pre-train the model with data sets in
the medical field.
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