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Abstract: We propose a model of network formation as a two-stage game with chance moves and
players of various types. First, the leader suggests a connected communication network for the players
to join. Second, nature selects a type vector for players based on the given probability distribution, and
each player decides whether or not to join the network keeping in mind only his own type and the
leader’s type. The game is of incomplete information since each player has only a belief over the payoff
functions of others. As a result, the network is formed, and each player gets a payoff related to both
the network structure and his type. We prove the existence of the Bayesian equilibrium and propose
a new definition of the stable partially Bayesian equilibrium defining the network to be formed and
prove its existence. The connection between the stable partially Bayesian equilibrium and the Nash
equilibrium in the game is examined. Finally, we investigate the characteristics of the network structures
under the stable partially Bayesian equilibrium in a three-player game with the major player as well as
in the n-player game with a specific characteristic function.

Keywords: network formation; Bayesian equilibrium; stable partially Bayesian equilibrium; asym-
metric players; chance moves

1. Introduction

The network formation process has been widely examined since network games be-
came a hot topic in game theory. There exist many approaches modeling the network
formation. Aumann and Myerson [1] were the first to model the network formation as a
game, describing it by an extensive-form game using the theory of cooperative games with
communication structures. Jackson and Watts [2] propose a model of dynamic network
formation process and mainly focus on characterizing the set of stable networks. Goyal and
Vega-Redondo [3] develop the dynamic network game to examine the interaction between
a partner’s choice and his individual behavior in coordination games. The network con-
structed influences the players’ payoffs that is a result of a position in the formed network
or the information the players access (see Möhlmeier et al. [4]). In some competition
models, the network is a basis for interaction among players. The network is formed at the
first stage of the game, and then the players are involved in the game and their payoffs
are affected by the network structure formed before. The models of the network forma-
tion are described by Mazalov and Chirkova [5]. Multistage network games with perfect
information are considered by Petrosyan and Sedakov [6], where players can change the
network structure at each stage, and the equilibrium is found in this class of dynamic games.
Cooperative two-stage network games are studied by Gao et al. [7], where first players
form the network following some rules, and then realize cooperative strategies. Perc and
Szolnoki [8] investigate the coevolution of strategy and network, exploring how and why
network structures influence the evolution of cooperation. In addition, Wang et al. [9]
model friendship relationships by means of complex networks and study how network
formation can be affected by various games and rules. Two approaches to the endogenous
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graph formation based on sequential link announcement and revision are proposed by
Khmelnitskaya et al. [10].

We realize the idea of the dynamic network formation, when the network is formed in
two steps. We assume that there is a leader or “the most important” player who initiates
the network formation. His strategy is to suggest a network from the set of undirected
connected graphs without loops to other players. We keep in mind the idea that in real life
the communication is usually encouraged by a “zero” person, and then it can or cannot
be supported by other participants. In our model, after the network is proposed, nature
or a chance acts by making players heterogeneous in payoffs assigning different types to
them. This step allows the modeling of non-symmetry in players’ behavior. The result of
nature’s choice is not known to the players. The player knows only his own type as well as
the leader’s one. Therefore, we come to the game with a stochastic structure.

Considering stochastic factors involved in the game can refer not only to the random-
ness in transition from state to state similar to the one in stochastic games (see Shapley [11]),
but also to uncertainty about game duration. Parilina and Zaccour [12] consider the class of
dynamic games played over event trees representing both stochastic nature of parameters
of the game and random termination time. Gromova and Plekhanova [13] examine prop-
erties of cooperative solutions in multistage games when the game duration is stochastic,
and it affects the players’ behavior. Ballard [14] provides game-tree search algorithms for
games that include chance moves. Our model is referred to the class of dynamic network
formation games with the chance moves.

In most models, the players are assumed to be symmetric that means the individuals
are the same except the labels. Models with heterogeneous players are a trend, since in
practice, heterogeneous people are fairly common, e.g., females and males, individuals
with various education backgrounds, etc. In addition, it is also reasonable that vari-
ous people have different standards and face various cases although being in the same
community, such as different levels of salary, getting different information about the com-
munity, etc. Heterogeneous players in networks are introduced by Larrosa and Tohmé [15],
where payoff to a player is associated not only with the number of links in those paths, the
end of which is this player, but also with his own value. Sun and Parilina [16] propose a
dynamic network formation game model with heterogenous players. In the model, payoff
functions are defined in a different way for two types of players based on the private
information that players obtain from the leader.

In our network formation model, after nature’s move the players simultaneously
and independently choose whether to join the network proposed by the leader or not.
They choose their actions based on the information they have about their own types,
in particular, on how to calculate their payoffs in the network that can be potentially
formed. Once the network is formed as a result of the players’ moves, the payoff to a
player is defined according to his type taking into account the network structure and
the values of the initially given characteristic function. The way to define the payoff
is to assign the component of a cooperative solution of a graph-restricted cooperative
game (e.g., see Myerson [17], Mazalov and Trukhina [18], Tejada and Álvarez-Mozos [19],
and Khmelnitskaya et al. [20]).

Combining the chance moves and non-symmetric players, the game introduced in
the paper is of incomplete information. The way to find the solutions in such games is to
apply the concept of the Bayesian Nash equilibrium proposed by Harsanyi [21]. We define
the stable partially Bayesian equilibrium in network formation game and introduce the
relation between this equilibrium and the Nash equilibrium in the game. The equilibrium
existence proof is based on the results of Radner and Rosenthal [22] who present sufficient
conditions for the existence of the pure strategy Bayesian equilibrium. The stable partially
Bayesian equilibrium determines, maybe non-unique, network structure which is finally
formed. We should notice that the resulting network structure depends on players’ types,
probability distribution over players’ types and the player who is assigned as a leader.
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The rest of the paper is organized as follows. In Section 2 basic definitions and
notations are briefly introduced. In Section 3, the model of the two-stage network formation
game with non-symmetric players and chance moves is presented. A special form of a
two-stage game in an extensive form is described and investigated in Section 4. In Section 5
we introduce the main results, providing the proof of the Bayesian equilibrium existence in
any subgame. The definition of the stable partially Bayesian equilibrium and its existence
are provided in Section 5, in which we also show the connection between the stable partially
Bayesian equilibrium and the Nash equilibrium. A three-player game with a major player
is investigated in Section 6. Then an n-player game with two projects for the leader is
considered in Section 7. We briefly conclude in the last section.

2. Preliminaries

Let the set of players be N = {1, . . . , n}, n ≥ 3. Suppose there is a player called the
leader. We give a brief description of a cooperative game with a communication structure.
A cooperative game with transferable utility is a pair (N, v), where v : 2N → R is a
characteristic function that assigns the worth v(S) to every coalition S ⊆ N, with v(∅) = 0.
For the simplicity of notation and if no ambiguity appears, we write v when we refer to
game (N, v). It is natural to allow the formation of not only a grand coalition, but also
any coalition S ⊆ N. Denote by vS a cooperative game within coalition S ⊆ N while
considering limited cooperation within S, where vS : 2S → R, and vS(S′) = v(S′), S′ ⊆ S.

The communication structure on N is specified by graph (N, Γ), where Γ ⊆ Γc
N =

{ij | i, j ∈ N, i 6= j} is a collection of unordered pairs of nodes (links). For ease of notation
and if no ambiguity appears, we write Γ when we refer to the graph (N, Γ). Moreover,
for any graph Γ and any coalition S ⊆ N, the subgraph of Γ on S is denoted by ΓS, where
ΓS = {ij ∈ Γ | i, j ∈ S}. In graph Γ, a sequence of different nodes (i1, . . . , ik), k ≥ 2 is a
path from i1 to ik, if for all h = 1, . . . , k− 1, ihih+1 ∈ Γ. We say two nodes are connected,
if there exists a path from one node to another. The graph is connected, if any two nodes
are connected. Given graph Γ, S ⊆ N is connected, if ΓS is connected. Denote by CΓ the
set of maximally connected coalitions, called components of graph Γ, and let CΓ(i) be the
component containing Player i.

Given the characteristic function v(S), S ⊆ N, and graph Γ, determine the new
characteristic function using the following approach [17]:

vΓ(S) = ∑
T∈S/Γ

v(T), (1)

where S/Γ =
{
{i | i, j are connected in S by Γ} | j ∈ S

}
.

Given v(S), S ⊆ N, and Γ, vector ξ(Γ) = (ξ1(Γ), . . . , ξn(Γ)) is defined as a payoff
vector determined for cooperative game v with graph Γ. Moreover, ξi(ΓS) denotes the
payoff to Player i ∈ S in game vS with graph ΓS. For instance, if the Myerson value Y(Γ) is
chosen as a cooperative solution [17], then

ξi(Γ) = Yi(Γ) = Shi(vΓ) (2)

for all i ∈ N, where Shi(vΓ) is the i-th component of the Shapley value of Player i in game
(N, vΓ) (see [23]).

Example 1. Consider a three-player game. The values of characteristic function are v({1}) = 1,
v({2}) = v({1, 2}) = 2, v({3}) = 1/2, v({2, 3}) = 5/2 and v({1, 3}) = v({1, 2, 3}) = 3.
Let the communication structure be given by Γ = {12, 13}. Using Formula (1), we calculate the
values of the new characteristic function and obtain

vΓ({2, 3}) = v({2}) + v({3}) = 5
2

,
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and for any coalition S ⊆ {1, 2, 3} such that S 6= {2, 3}, vΓ({S}) = v(S) since such a coalition S
is connected in Γ. Using the values of characteristic function vΓ we calculate the Myerson value by
Formula (2), i.e.,

Y(Γ) =
(

11
12

,
7
6

,
11
12

)
.

3. Model
3.1. Players of Various Types

We assume that there can be a finite number of players’ types. In addition, with all
other similar situations the payoffs to the players of various types are defined in different
ways. Let T = {I1, . . . , Il} denote a finite set of types for any player i, i ∈ N. The set of type
vectors over N is denoted by T̄ = ×i∈NT. Let p ∈ 4(T̄) be a probability distribution over
the set of type vectors that satisfies p(ti) = ∑t−i∈T̄−i

p(ti, t−i) > 0 for each player i ∈ N and
every type ti ∈ T, where T̄−i = ×j∈N\{i}T, t−i = (tj)j 6=i ∈ T̄−i. The probability distribution
p is common knowledge for all players.

With characteristic function v(S), S ⊆ N, and graph Γ formed, the payoff to Player i
of type Ik, 1 ≤ k ≤ l, denoted as Ki(Γ, Ik), is assumed to be defined.

Remark 1. Payoff Ki(Γ, Ik), a function of both the network structure and the type of player i ∈ N,
can be defined in different ways. For instance, it can be defined as

Ki(Γ, Ik) = ξi(Γ, Ik) + θi(Γ, Ik), (3)

where ξi(Γ, Ik) is the payoff value of Player i determined by some cooperative solution relative to
type Ik in game vCΓ(i), and θi(Γ, Ik) is a kind of extra encouragement or punishment to Player i of
type Ik in network Γ.

Example 2. Consider the three-player game presented in Example 1. Now we demonstrate how
we define the payoff function assuming that ξi(Γ, I1) is the ith component of the Myerson value
with the given network Γ, and θi(Γ, I1) is the number of direct links Player i possesses in network
Γ. As a result, the payoff to Player 2 of type I1 is

K2(Γ, I1) =
7
6
+ 1 =

13
6

.

3.2. Games with Chance Moves and Players of Various Types

The transition from one stage to another in a dynamic game is accomplished by
the players’ actions. It is possible to produce the situations in which the dynamic game
proceeds by some chance factors. These sorts of transitions are chance moves. Player
0, being nature, selects a type vector t = (t1, t2, . . . , tn) ∈ T̄ according to some given
probability distribution p, then the game process proceeds to the next stage. We should
notice that the whole game does not start from the nature move in our model. With vector
t, Player i knows the type ti which has been selected for him, also he knows the type of the
leader, but does not know the types of other players. Hence, Player i has a belief over the
types of other players, which is defined by a conditional probability distribution. Thus,
the network formation game with the chance moves and unknown players’ types is of
incomplete information under the given assumptions.

3.3. Two-Stage Network Formation Game

The two-stage network formation game with the chance moves, players of various
types and the leader takes places as follows:

Stage 1. The leader, say Player 1, chooses network (graph) Γ from set U0 (e.g.,
he proposes a joint project), where U0 is the subset of undirected connected graphs without
loops on N. The cooperative game v representing the power of any coalition S is given and
known for all players.
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Remark 2. We assume that Player 1 is determined as the leader before the game starts, and in
fact, the case, where Player i ∈ N, i 6= 1, is set to be the leader can be described in the same way.
Moreover, any player who is set as the leader possesses a unique type, I

′ ∈ T in the game, which is
known for all players.

Stage 2. Based on the proposal from Player 1 of the network structure, players N \ {1}
and nature choose actions at the second stage.

Nature selects a type vector t = (t1, . . . , tn) according to p(·|t1 = I
′
), which is the

conditional probability distribution based on the fact that Player 1 is determined as the leader.
The set of all possible type vectors nature is able to select is {t | t1 = I

′}, which is denoted by
T̄(1). Indeed, Player i, i ∈ N \ {1}, knows the type ti that has been selected for him and the
type of the leader, I

′
, but does not know types tj, j ∈ N \ {1, i} of other players.

The players from N \ {1}, knowing the proposed network and their respective types se-
lected by nature, simultaneously and independently choose the actions from their common
action set A, which is {accept, reject}. By choosing the action ‘accept’, player i ∈ N \ {1}
joins the network. Otherwise, if he chooses the action ‘reject’, he starts playing as an
individual player. Please note that in the following part, we denote the action ‘accept’ by
‘a’, and the action ‘reject’ by ‘r’.

We denote by Γu the network which is finally formed, where u = (u2, . . . , un) is
the vector of actions that have been selected by players N \ {1} at the second stage,
and it is specified as Γu =

{
{ij | ij ∈ Γ, ui = uj = a} ∪ {1i | 1i ∈ Γ, ui = a}

}
. Finally, Player

i ∈ N \ {1} gets payoff Ki(Γu, ti), and the leader, Player 1, gets payoff K1(Γu, I
′
).

4. Two-Stage Game as Game in Extensive Form

The described two-stage game with the chance moves and players of various types
can be considered to be the extensive-form game Φ with the set of players N ∪ {0} on a
game tree describing the game process and denoted by Z.

4.1. Construction of a Tree Graph

Let X = X0 ∪ X1 ∪ . . . ∪ Xn ∪ Xn+1 be the finite set of vertices, where X0 denotes
the set of vertices at which nature makes the chance moves, X1 = {x0} is a unique
vertex of the leader, Xi is the set of vertices at which player i ∈ N \ {1} makes moves
and Xn+1 = {x : Fx = ∅} is the set of terminal vertices. For any vertex x ∈ X \ Xn+1,
Fx is the set of those vertices which can be realized immediately after the vertex x has
been realized. For any set V ⊆ X, F(V) = ∪

x∈V
Fx, and F2

x = F(Fx), Fk
x = F(Fk−1

x ),

F̂x = {x} ∪ Fx ∪ F2
x ∪ . . . ∪ Fk

x ∪ . . .. By construction, Fx0 = X0, F(X0) = X2, F(Xi) = Xi+1
for i = 2, . . . , n.

We denote the vertex to which the game process moves after Player 1 suggests network
Γ by xΓ ∈ X0. The subgame which begins at vertex xΓ is denoted by Φ(xΓ). Let x(Γ, t)

2
denote the personal vertex of Player 2 at which the game process arrives after nature
selects the type vector t ∈ T̄(1) at xΓ. In terms of the incomplete information players
get, the set of personal vertices of player i ∈ N \ {1} is partitioned into finite number of
subsets X(Γ,j)

i , Γ ∈ U0, j ∈ {1, . . . , l}, which are referred to as the information sets of player

i, where X(Γ,j)
i = {x ∈ Xi | x ∈ F̂

x(Γ, t)
2

, ti = Ij}. In addition, for any x ∈ Xi, i ∈ N \ {1},
Player i does not know the vertex itself, but knows that such a vertex is in a certain
information set X(Γ,j)

i ⊂ Xi. For Player 1, there is a unique information set, X1.

4.2. Two-Stage Game on a Tree Graph

Before we describe how a two-stage game proceeds on the finite tree graph constructed
above, we first define each player’s behavior strategy in extensive-form game. Th behavior
strategy of the leader (Player 1) in game Φ is function b1 which is a mapping from X1
to a probability distribution over set U0, b1 : X1 −→ 4(U0). The behavior strategy of
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Player i ∈ N \ {1} in game Φ is function bi which assigns probability distribution over
set A to each of his information set, X(Γ,j)

i ⊂ Xi. In addition, let bΓ
i , i ∈ N \ {1} denote the

truncation of bi to subgame Φ(xΓ), where bΓ
i : {X(Γ,j)

i | X(Γ,j)
i ⊆ F̂xΓ} −→ ∏

X(Γ,j)
i ⊆F̂xΓ

4(A).

We denote the terminal vertex which can be reached with probability 1 from vertex
x(Γ, t)

2 if each player k ∈ N \ {1} chooses action uk ∈ A with probability 1 in his information

set X(Γ,j)
k , where tk = Ij, by xu

(Γ, t). And at each terminal vertex x ∈ Xn+1, payoff vector
H(x) = (H1(x), . . . , Hn(x)) is given. The payoff for player i ∈ N at terminal vertex xu

(Γ, t)
is defined as

Hi(xu
(Γ, t)) = Ki(Γu, ti). (4)

The two-stage network formation game on the finite tree graph Z proceeds as follows.
At vertex x0, the leader (Player 1) chooses the network Γ ∈ U0, then the game process
moves to vertex xΓ. At xΓ, nature (Player 0) selects the type vector t ∈ T̄(1) according
to the conditional probability distribution p(·|t1 = I

′
) which is a common belief of all

players. Because of the incomplete information over the type vector chosen by nature,
the game process moves to the information sets X(Γ,j(2))

2 , . . ., X(Γ,j(n))
n simultaneously,

where Ij(i) = ti for i = 2, . . . , n. Then each player i ∈ N \ {1} chooses an action ui ∈ A for
the corresponding information set independently. Finally, the game process terminates at
vertex xu

(Γ, t), and Player i ∈ N gets the payoff Hi(xu
(Γ, t)).

4.3. The Expected Payoff in the Extensive-Form Game Φ

Combining the probability distribution over type vectors selected by nature and the
players’ behavior strategies, below we investigate the expected payoff of each player in the
extensive-form game Φ.

The behavior strategy bi of player i ∈ N \ {1} satisfies the following:

bi(X(Γ,j)
i ) =

(
bi(X(Γ,j)

i ; ui)
)

ui∈A ∈ 4(A)

for j = 1, . . . , l, Γ ∈ U0, where bi(X(Γ,j)
i ; ui) is the probability that player i chooses the action

ui ∈ A at information set X(Γ,j)
i . Then we consider subgames Φ(xΓ), Γ ∈ U0. If the behavior

strategy vector of players N \ {1} is b−1 = (b2, . . . , bn), and the type vector selected by
nature is t ∈ T̄(1), then the action vector u = (u2, . . . , un) is chosen with the probability

bΓ
2 (X(Γ,j(2))

2 ; u2)× . . .× bΓ
n(X(Γ,j(n))

n ; un) (5)

in subgame Φ(xΓ), where Ij(i) = ti for i ∈ N \ {1}. Therefore, given the type vector
t ∈ T̄(1) selected by nature and vector b−1, the expected payoff to Player i ∈ N in subgame
Φ(xΓ), denoted by Ei(t; bΓ

−1), is

Ei(t; bΓ
−1) = ∑

u∈ ∏
j∈N\{1}

A
bΓ

2 (X(Γ,j(2))
2 ; u2) · . . . · bΓ

n(X(Γ,j(n))
n ; un)Hi(xu

(Γ, t)), (6)

where Ij(k) = tk for k ∈ N \ {1}.
Now consider the conditional probability distribution over the type vectors selected

by nature. The expected payoff to Player i ∈ N in subgame Φ(xΓ) with the chosen vector
b−1 can be defined as follows:

Ēi(bΓ
−1) = ∑

t−1∈T̄−1

p(t−1|t1 = I
′
) · Ei((I

′
, t−1); bΓ

−1), (7)

where p(t−1|t1 = I
′
) = p(I

′
, t−1)/ ∑

t′∈T̄(1)
p(t

′
).
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Moreover, the expected payoff to Player i ∈ N \ {1} of type ti ∈ T in subgame Φ(xΓ)
can be defined since Player i does not know the types of players from the set N \ {1, i},
and it is defined as

Êi(bΓ
−1|ti) = ∑

(t−i)−1∈(T̄−i)−1

p
(
(t−i)−1|t1 = I

′
, ti
)
· Ei
(
(I
′
, ti, (t−i)−1); bΓ

−1
)
, (8)

where p
(
(t−i)−1|t1 = I

′
, ti
)
= p(I

′
, ti, (t−i)−1)/ ∑

t′∈T̄(1)
p(ti, t

′
−i).

The following proposition shows the correlation between the expected payoffs Ēi(bΓ
−1)

and Êi(bΓ
−1|ti).

Proposition 1. The expected payoff Ēi(bΓ
−1) can be expressed by Êi(bΓ

−1|ti) as

Ēi(bΓ
−1) = ∑

ti∈T
p(ti|t1 = I

′
) · Êi(bΓ

−1|ti), (9)

where p(ti|t1 = I
′
) = ∑

t′∈T̄(1)
p(ti, t

′
−i)/ ∑

t′∈T̄(1)
p(t

′
).

Proof. From (8), we can get

∑
ti∈T

p(ti|t1 = I
′
) · Êi(bΓ

−1|ti)

= ∑
ti∈T

p(ti|t1 = I
′
) · ∑

(t−i)−1∈(T̄−i)−1

p
(
(t−i)−1|t1 = I

′
, ti
)
· Ei
(
(I
′
, ti, (t−i)−1); bΓ

−1
)

= ∑
ti∈T

∑
(t−i)−1∈(T̄−i)−1

p(ti|t1 = I
′
) · p

(
(t−i)−1|t1 = I

′
, ti
)
Ei
(
(I
′
, ti, (t−i)−1); bΓ

−1
)
.

Then we may simplify the following equation as

p(ti|t1 = I
′
)p
(
(t−i)−1|t1 = I

′
, ti
)
=

∑
t′∈T̄(1)

p(ti, t
′
−i)

∑
t′∈T̄(1)

p(t′)
· p(I

′
, ti, (t−i)−1)

∑
t′∈T̄(1)

p(ti, t′−i)

=
p(I

′
, ti, (t−i)−1)

∑
t′∈T̄(1)

p(t′)
= p(t−1|t1 = I

′
).

Consequently, the following relationship is obtained:

∑
ti∈T

p(ti|t1 = I
′
) · Êi(bΓ

−1|ti) = ∑
t−1∈T̄−1

p(t−1|t1 = I
′
) · Ei((I

′
, t−1); bΓ

−1) = Ēi(bΓ
−1).

Finally, we define the expected payoff to any player in the extensive-form game Φ.
Below we consider only Player 1’s behavior strategies under which a certain element from
the set U0 is chosen with probability 1 that is

b1(X1) = (0, . . . , 1, . . . , 0).

Given behavior strategy profile b = (b1, . . . , bn), the expected payoff to Player i ∈ N
in game Φ is defined as

Gi(b) = Ēi(bΓ
−1),

where network Γ ∈ U0 is chosen with probability 1 under b1.
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5. Main Results

As the two-stage game is represented in an extensive form, in every subgame Φ(xΓ),
Γ ∈ U0, each type ti ∈ T corresponds to the information set X(Γ,j)

i , Ij = ti. Since there are
various types for each player, below we consider the Bayesian equilibrium which provides
the actions for players of different types.

Definition 1. Behavior strategy vector b̃Γ
−1 of players from N \ {1}, is the Bayesian equilibrium

in subgame Φ(xΓ), Γ ∈ U0, if for any player i ∈ N \ {1}, any type ti ∈ T, and any possible action
ui ∈ A the following inequality holds:

Êi(b̃Γ
−1|ti) ≥ Êi

(
(ui,

(
b̃−1)

Γ
−i
)
|ti
)
. (10)

Proposition 2. Every subgame Φ(xΓ), Γ ∈ U0 of the extensive-form game Φ on tree graph Z
admits the Bayesian equilibrium.

Proof. It follows from [24], in which it is stated stating that every game with the incomplete
information in which the set of types is finite and the set of actions of each type is finite
has the Bayesian equilibrium (in behavior strategies). Indeed, in each subgame Φ(xΓ)
of game Φ, every player does not know the payoffs of other players except the leader’s
payoff since he knows only the leader’s type and his own type chosen by nature. Thus,
the game is of incomplete information. Moreover, the leader has a unique type, other
players possess a finite number of types, and for any player of any type the set of actions,
A, is finite. Above all, at least one Bayesian equilibrium b̃Γ

−1 can be found in each subgame
Φ(xΓ), Γ ∈ U0.

As the existence of the Bayesian equilibrium in each subgame is proved in Proposition 2,
we investigate the connection between the Nash equilibrium and the Bayesian equilibrium
in any subgame of the extensive-form game Φ.

Definition 2. Behavior strategy vector b̄Γ
−1 of players from N \ {1} is the Nash equilibrium in

subgame Φ(xΓ), Γ ∈ U0, if for any player i ∈ N \ {1}, each strategy bΓ
i of Player i the following

inequality holds:

Ēi(b̄Γ
−1) ≥ Ēi

(
bΓ

i ,
(
b̄−1)

Γ
−i

)
. (11)

Proposition 3. If b̃Γ
−1 is the Bayesian equilibrium in subgame Φ(xΓ), Γ ∈ U0, then b̃Γ

−1 is also
the Nash equilibrium, and vice versa.

Proof. We prove it based on [25] that in a game with the incomplete information in
which the number of each player’s types is finite, each Bayesian equilibrium is also the
Nash equilibrium, and conversely every Nash equilibrium is also a Bayesian equilibrium.
Each subgame Φ(xΓ) is of incomplete information since players N \ {1} do not know the
exact payoffs of others, and T, the common set of types for each player is also finite. Thus,
we can directly get the result.

Combining the results from Proposition 2 and Proposition 3, we can get Theorem 1 below.

Theorem 1. Every subgame Φ(xΓ), Γ ∈ U0, of the extensive-form game Φ on tree graph Z admits
the Nash equilibrium.

Obtaining the Bayesian equilibrium (if there are many Bayesian equilibria, then we can
choose one randomly) in each subgame, we can get the strategy profile of players N \ {1} in
the extensive-form game. Below, we propose a new concept of the stable partially Bayesian
equilibrium for game Φ taking into account the leader’s strategy.
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Definition 3. Behavior strategy profile b∗ = (b∗1 , . . . , b∗n), where network Γ∗ ∈ U0 is chosen with
probability 1 under b∗1 , is called the stable partially Bayesian equilibrium in game Φ if the following
two conditions are satisfied:

1. For any Γ ∈ U0, (b∗)Γ
−1 is the Bayesian equilibrium in subgame Φ(xΓ);

2. G1(b∗) ≥ G1(b1, (b∗)−1) for any strategy b1 of the leader (Player 1).

Theorem 2. There exists the stable partially Bayesian equilibrium in the extensive-form game Φ.

Proof. By Proposition 2, at least one vector (b∗)−1 can be found such that (b∗)Γ
−1 is the

Bayesian equilibrium in subgame Φ(xΓ) for any Γ ∈ U0. Let b∗1 be the behavior strategy of
Player 1 such that

b∗1 = arg max
b1

G1(b1, (b∗)−1). (12)

Then the strategy profile b∗ constructed above satisfies both conditions in Definition 3,
thus it is the stable partially Bayesian equilibrium in the extensive-form game Φ.

Remark 3. We call the equilibrium concept as the stable partially Bayesian equilibrium to highlight
that in any subgame starting from stage 2, the equilibrium concept is the Bayesian equilibrium and
the expected payoff of the leader is larger when he chooses strategy b∗1 rather than any other strategy
b1. In addition, the set of all stable partially Bayesian equilibria in game Φ is denoted by SPBE.
The theorem below shows the connection between the stable partially Bayesian equilibrium and the
Nash equilibrium in the extensive-form game Φ.

Theorem 3. Each stable partially Bayesian equilibrium is also the Nash equilibrium in the
extensive-form game Φ, and the converse is not necessarily true.

Proof. Let b̄ be the stable partially Bayesian equilibrium in game Φ, and Γ∗ is chosen with
probability 1 under b̄1. Then by condition 2 of Definition 3, we know that for Player 1,
and any strategy b1,

G1(b̄) ≥ G1(b1, b̄−1).

Then for any player i ∈ N \ {1}, first consider any strategy bi such that bΓ∗
i = b̄Γ∗

i ,
and we obtain that

Gi(b̄) = Ēi(b̄Γ∗
−1) = Gi(bi, b̄−i).

Then consider any strategy bi such that bΓ∗
i 6= b̄Γ∗

i , and from Proposition 3 we have

Gi(b̄) = Ēi(b̄Γ∗
−1) ≥ Ēi

(
bΓ∗

i ,
(
b̄−1)

Γ∗
−i

)
= Gi(bi, b̄−i).

Above all, for any player i ∈ N and any strategy bi, the inequality

Gi(b̄) ≥ Gi(bi, b̄−i)

holds. Therefore, b̄ is also the Nash equilibrium in game Φ. Conversely, let b̄ be the Nash
equilibrium in game Φ, while it cannot be guaranteed that b̄Γ

−1 is the Bayesian equilibrium
in subgame Φ(xΓ) for any Γ ∈ U0. Thus, the converse is not necessarily true.

Remark 4. We continue to consider the three-player game described in Example 1 by defining more
essential parameters such as the probability distribution of the chance move, the payoff functions
for players of various types, etc. We provide the link: http://hdl.handle.net/11701/27022, accessed
on 8 March 2021 (and see http://hdl.handle.net/11701/27021 for the program code, accessed on 8
March 2021) to Supplementary Materials where the tree graph describing the game and detailed
calculations are provided.

http://hdl.handle.net/11701/27022
http://hdl.handle.net/11701/27021
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6. Three-Player Game with Major Player

Below we investigate a three-player game with a major player where the major player
(Player 1) differs from other players, and other players are supposed to be identical,
that indicates that conditions:

v({1, 3}) = v({1, 2}), v({2}) = v({3})

are satisfied. Following [26], the characteristic function in the game is defined in the
following form:

v(S) =

{
α(s− 1) + β/s, 1 ∈ S,

0, 1 /∈ S,
(13)

where α and β are positive constants.
The possible interpretation of the characteristic function (13) is shown further. Player 1

can be the leader and he/she gets funding for the project. Without Player 1, coalition S
can obtain nothing. As other players are identical, their contributions into any coalition
are equal. In addition, if Player 1 belongs to coalition S, the productivity or payoff of any
Player 2 or 3 is measured by α > 0, and the productivity β > 0 of the leader, Player 1, is
divided by the number of coalition members. Thus, Player 1’s productivity decreases over
the size of coalition S. If we assume the productivity of the leader is larger than the one of
other players, we may set α < β that has been supposed in [26], but we will not use this
condition in the calculations.

The set of network structures which can be proposed by the leader is U0 = {Γ1, Γ2, Γ3, Γ4},
where Γ1 = {12, 13}, Γ2 = {13, 23}, Γ3 = {12, 23}, Γ4 = {12, 13, 23} shown in Figure 1.
We assume the player can be of two types. The payoff function for Player i of type I1 is
defined as

Ki(Γ, I1) = Yi(Γ), (14)

where Yi(Γ) is a component of the Myerson value [17], and for Player i of type I2, it is
defined as

Ki(Γ, I2) = ESi(Γ), (15)

where ESi(Γ) is the component of the ES value [27] for Player i in game (N, vΓ). We assume
type I1 for the leader.

Figure 1. Network structures Γ1, Γ2, Γ3 and Γ4.

The following two propositions characterize the features of the network structures
formed under the stable partially Bayesian equilibria in the game above for the case where
the probability distribution of the chance move is uniform.

Proposition 4. When α > β
2 and the probability distribution over the set of type vectors is uniform,

then the set of networks formed in SPBE is {Γ1, Γ4}.

Proof. For each subgame xΓ, Γ ∈ U0 in the extensive-form game, the corresponding
strategic form is shown in Tables 1–4, in which the payoff vector is the expected payoffs
to Players 2 and 3 for the corresponding situation in the subgame when the distribution
of the chance move is uniform. Please note that under strategy (a, r), Player i of type I1
chooses the action ‘a’, and Player i of type I2 chooses the action ‘r’. In Tables 1–4, Player 2
chooses the rows, and Player 3 chooses the columns.
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Table 1. Strategic form of subgame xΓ1 .

Strategy (a, a) (a, r) (r, a) (r, r)

(a, a) ( 7α
3 −

13β
18 , 7α

3 −
13β
18 ) (2α− 7β

9 , 5α
3 −

11β
18 ) (2α− 7β

9 , 4α
3 −

4β
9 ) ( 5α

3 −
5β
6 , 2α

3 −
β
3 )

(a, r) ( 5α
3 −

11β
18 , 2α− 7β

9 ) ( 4α
3 −

5β
9 , 4α

3 −
5β
9 ) ( 4α

3 −
5β
9 , α− 7β

18 ) (α− β
2 , α

3 −
β
6 )

(r, a) ( 4α
3 −

4β
9 , 2α− 7β

9 ) (α− 7β
18 , 4α

3 −
5β
9 ) (α− 7β

18 , α− 7β
18 ) ( 2α

3 −
β
3 , α

3 −
β
6 )

(r, r) ( 2α
3 −

β
3 , 5α

3 −
5β
6 ) ( α

3 −
β
6 , α− β

2 ) ( α
3 −

β
6 , 2α

3 −
β
3 ) (0, 0)

Table 2. Strategic form of subgame xΓ2 .

Strategy (a, a) (a, r) (r, a) (r, r)

(a, a) (2α− 5β
9 , 3α− 19β

18 ) (α− 5β
18 , 5α

3 −
11β
18 ) (α− 5β

18 , 4α
3 −

4β
9 ) (0, 0)

(a, r) ( 4α
3 −

4β
9 , 7α

3 −
17β
18 ) ( 2α

3 −
2β
9 , 4α

3 −
5β
9 ) ( 2α

3 −
2β
9 , α− 7β

18 ) (0, 0)
(r, a) ( 4α

3 −
4β
9 , 7α

3 −
17β
18 ) ( 2α

3 −
2β
9 , 4α

3 −
5β
9 ) ( 2α

3 −
2β
9 , α− 7β

18 ) (0, 0)
(r, r) ( 2α

3 −
β
3 , 5α

3 −
5β
6 ) ( α

3 −
β
6 , α− β

2 ) ( α
3 −

β
6 , 2α

3 −
β
3 ) (0, 0)

Table 3. Strategic form of subgame xΓ3 .

Strategy (a, a) (a, r) (r, a) (r, r)

(a, a) (3α− 19β
18 , 2α− 5β

9 ) ( 7α
3 −

17β
18 , 4α

3 −
4β
9 ) ( 7α

3 −
17β
18 , 4α

3 −
4β
9 ) ( 5α

3 −
5β
6 , 2α

3 −
β
3 )

(a, r) ( 5α
3 −

11β
18 , α− 5β

18 ) ( 4α
3 −

5β
9 , 2α

3 −
2β
9 ) ( 4α

3 −
5β
9 , 2α

3 −
2β
9 ) (α− β

2 , α
3 −

β
6 )

(r, a) ( 4α
3 −

4β
9 , α− 5β

18 ) (α− 7β
18 , 2α

3 −
2β
9 ) (α− 7β

18 , 2α
3 −

2β
9 ) ( 2α

3 −
β
3 , α

3 −
β
6 )

(r, r) (0, 0) (0, 0) (0, 0) (0, 0)

Table 4. Strategic form of subgame xΓ4 .

Strategy (a, a) (a, r) (r, a) (r, r)

(a, a) ( 7α
3 −

13β
18 , 7α

3 −
13β
18 ) (2α− 7β

9 , 5α
3 −

11β
18 ) (2α− 7β

9 , 4α
3 −

4β
9 ) ( 5α

3 −
5β
6 , 2α

3 −
β
3 )

(a, r) ( 5α
3 −

11β
18 , 2α− 7β

9 ) ( 4α
3 −

5β
9 , 4α

3 −
5β
9 ) ( 4α

3 −
5β
9 , α− 7β

18 ) (α− β
2 , α

3 −
β
6 )

(r, a) ( 4α
3 −

4β
9 , 2α− 7β

9 ) (α− 7β
18 , 4α

3 −
5β
9 ) (α− 7β

18 , α− 7β
18 ) ( 2α

3 −
β
3 , α

3 −
β
6 )

(r, r) ( 2α
3 −

β
3 , 5α

3 −
5β
6 ) ( α

3 −
β
6 , α− β

2 ) ( α
3 −

β
6 , 2α

3 −
β
3 ) (0, 0)

The calculations show that when α > β
2 , strategy (a, a) of Player i, i = 2, 3 strictly

dominates strategies (a, r), (r, a) and (r, r) in any game represented in Tables 1–4. Thus,
strategy profile

(
(a, a), (a, a)

)
is the unique Nash equilibrium in any game. Then from

Proposition 3, we know that profile (b̄Γ
2 , b̄Γ

3 ), where b̄Γ
i
(
X(Γ,j)

i ; a
)
= 1, i = 2, 3, j = 1, 2, is the

unique Bayesian equilibrium in subgame xΓ for any Γ ∈ U0. The inequality

G1(b1
1, b̄2, b̄3) = G1(b4

1, b̄2, b̄3) = α +
11β

18
>

25β

36
+

5α

6
= G1(b2

1, b̄2, b̄3) = G1(b3
1, b̄2, b̄3)

holds if α > β
2 , where network Γk is chosen with probability 1 under the leader’s strategy bk

1.
Summarizing we obtain that strategy profiles (b1

1, b̄2, b̄3) and (b4
1, b̄2, b̄3) form the set

of all stable partially Bayesian equilibria in the extensive-form game, under which only
networks Γ1 and Γ4 can be formed.

Proposition 5. When α < β
6 and the probability distribution over the set of type vectors is

uniform, the empty network is a unique network that can be formed under the stable partially
Bayesian equilibria.
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Proof. When α < β
6 , strategy (r, r) Player i, i = 2, 3 strictly dominates strategies (a, a), (r, a)

and (a, r) in each game defined in Tables 1–4. Thus, strategy profile
(
(r, r), (r, r)

)
is the

unique Nash equilibrium in each game. Then by Proposition 3, we can obtain that profile
(b̂Γ

2 , b̂Γ
3 ), where b̂Γ

i
(
X(Γ,j)

i ; r
)
= 1, i = 2, 3, j = 1, 2, is the unique Bayesian equilibrium in

subgame xΓ for any Γ ∈ U0. Therefore,

G1(bk
1, b̂2, b̂3) = β

for k = 1, . . . , 4, where network Γk is chosen with probability 1 under strategy bk
1.

Summarizing we obtain that when α < β
6 , any strategy profile (bk

1, b̂2, b̂3), k = 1, . . . , 4
is the stable partially Bayesian equilibrium in the extensive-form game, under which only
the empty network can be formed.

Remark 5. For a value of α ∈ [ β
6 , β

2 ], there may exist several Bayesian equilibria, or the Bayesian
equilibrium in mixed strategies, resulting in various networks that can be formed with positive
possibilities under the stable partially Bayesian equilibria. Thus, here we cannot give the specific
network structure features under the stable partially Bayesian equilibria when β

6 ≤ α ≤ β
2 .

7. Special n-Player Game

We introduce an n-player game with the characteristic function defined in the follow-
ing way:

v(S) =
k

n− s + 1
, S ⊆ N, (16)

where k is a positive constant, s = |S|, n = |N|. The set of network structures which can be
proposed by the leader as the joint projects is U0 = {Γ1, Γ2}, where Γ1 = {12, 13, . . . , 1n},
the star network with the leader, say Player 1, being in the central position, and Γ2 = {ij |
i, j ∈ N, i 6= j}, the complete network of set N. In addition, there are two types for each
player: types I1 and I2. The payoff function for Player i of type I1 is defined as

Ki(Γ, I1) = Yi(Γ) + θi(Γ, I1), (17)

where Yi(Γ) is the component of the Myerson value, and for Player i of type I2, it is
defined as

Ki(Γ, I2) = ESi(Γ), (18)

where ESi(Γ) is the component of the ES value for Player i in game (N, vΓ).
The following theorems characterize the features of the network structures formed

under the stable partially Bayesian equilibria.

Proposition 6. When for any player i ∈ N and any network Γ, θi(Γ, I1) = 0, then independently
of the leader’s type, there exist at least three stable partially Bayesian equilibria in the extensive-form
game regardless of the probability distribution of the chance move.

Proof. First note that the proof below is conducted assuming the type for the leader is I1
skipping the case of type I2 to save the space for which the proof is similar. For any player
i ∈ N \ {1}, consider strategy b̄i such that b̄i(X(Γ,j)

i ; r) = 1 for Γ ∈ {Γ1, Γ2} and j = 1, 2.
Consider the truncation of strategy b̄i to subgame xΓ1 , and the calculations show that for
player i ∈ N \ {1} and network Γ̄ = {1i} which is formed when only player i accepts
network Γ1 or Γ2, we obtain expressions:

Yi(Γ̄) =
k
n

[
1 +

2− n
2n(n− 1)

]
<

k
n
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and
ESi(Γ̄) =

k
n

[
1 +

2− n
n(n− 1)

]
<

k
n

.

While
Yi(∅) = ESi(∅) =

k
n

,

then for any Γ ∈ {Γ1, Γ2} and any strategy bΓ
i of Player i, we have

Ēi(b̄Γ
−1) = p(ti = I1 | t1 = I1) ·Yi(∅)+ p(ti = I2 | t1 = I1) ·ESi(∅) =

k
n
> Ēi(bΓ

i ,
(
b̄−1)

Γ
−i
)
,

which indicates that strategy profile (b̄Γ
2 , . . . , b̄Γ

n) is the Bayesian equilibrium in subgame
xΓ, Γ ∈ {Γ1, Γ2}. Therefore, regardless of the leader’s type, we get

G1(b1
1, b̄2, . . . , b̄n) = G1(b2

1, b̄2, . . . , b̄n) =
k
n

,

where networks Γ1 and Γ2 are chosen with probability 1 respectively under strategies
b1

1 and b2
1. By Definition 3, we conclude that both strategy profiles (b1

1, b̄2, . . . , b̄n) and
(b2

1, b̄2, . . . , b̄n) are the stable partially Bayesian equilibria in the extensive-form game.

Next for Player i ∈ N \ {1}, we consider another strategy b̂i such that b̂i(X(Γ1,j)
i ; a) =

1, b̂i(X(Γ2,j)
i ; r) = 1 for j = 1, 2. From the proof above, it follows that strategy profile

(b̂Γ2
2 , . . . , b̂Γ2

n ) is the Bayesian equilibrium in subgame xΓ2 . Below we prove that (b̂Γ1
2 , . . . , b̂Γ1

n )
is also the Bayesian equilibrium in subgame xΓ1 . The calculations show that for each player
i ∈ N \ {1}, we have

Yi(Γ1) =
k
n

[
1 +

n−1
2 −

n
∑

t=2

1
t

n− 1

]
>

k
n

and
ESi(Γ1) =

k
n

.

As a result,

Ēi(b̂
Γ1
−1) = p(ti = I1 | t1 = I1) ·Yi(Γ1) + p(ti = I2 | t1 = I1) · ESi(Γ1) >

k
n

.

While in network Γ̂1 = Γ1 \ {1i} which is formed when only player i rejects joining
network Γ1, we have

Yi(Γ̂1) =
k
n
< Yi(Γ1),

and

ESi(Γ̂1) =
k
n + k

2
n

<
k
n
= ESi(Γ1).

Therefore, for any strategy bΓ1
i of Player i in subgame xΓ1 , it is true that

Ēi(b̂
Γ1
−1) >

k
n
> Ēi(b

Γ1
i ,
(
b̂−1)

Γ1
−i
)
,

which shows that b̂Γ1
−1 is the Bayesian equilibrium in subgame xΓ1 , no matter which type is

defined for the leader,

G1(b2
1, b̂2, . . . , b̂n) =

k
n
≥ G1(b1

1, b̂2, . . . , b̂n).

By Definition 3, we obtain that strategy profile (b2
1, b̂2, . . . , b̂n) is also the stable partially

Bayesian equilibrium in the extensive-form game.
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In conclusion, given any probability distribution of the chance move, strategy profiles
(b1

1, b̄2, . . . , b̄n), (b2
1, b̄2, . . . , b̄n) and (b2

1, b̂2, . . . , b̂n) are all stable partially Bayesian equilibria
in the extensive-form game no matter which type is defined for the leader.

Proposition 7. When θi(Γ, I1) = 0 is satisfied for any player i ∈ N and any network Γ, there are
two cases:

1. If the leader’s type is I1, then, regardless of the probability distribution of the chance move,
the empty network ∅ can be realized under SPBE;

2. If the leader’s type is I2, then, whatever the probability distribution over the set of type vectors
is given, networks Γ1 and ∅ can be realized under SPBE.

Proof. 1. From Proposition 6, we know that if the leader’s type is I1 (or I2), then strategy
profiles (b1

1, b̄2, . . . , b̄n), (b2
1, b̄2, . . . , b̄n) and (b2

1, b̂2, . . . , b̂n) are all stable partially Bayesian
equilibria in the extensive-form game regardless of the probability distribution by the
chance move. In addition, under any of the three equilibria, the empty network can
be formed.

2. For the empty network, the result can be obtained similarly to Item 1. Then for
network Γ1 consider strategy profile (b1

1, b̂2, . . . , b̂n), when the type for the leader is I2,
so we have

G1(b1
1, b̂2, . . . , b̂n) = G1(b2

1, b̂2, . . . , b̂n) =
k
n

.

Thus, profile (b1
1, b̂2, . . . , b̂n) is the stable partially Bayesian equilibrium in the game,

under which network Γ1 is formed.

Then we turn to set θi(Γ, I1) = ni(Γ)/(n− 1), where ni(Γ) is the number of neighbors
of Player i in network Γ. Table 5 below summaries the resulting networks (the last column
in Table 5) which can be formed under the stable partially Bayesian equilibria by different
conditions for any given probability distribution of the chance move.

Table 5. Summary of the results with θi(Γ, I1) = ni(Γ)/(n− 1).

Leader’s Type Conditions Networks

I1/I2 2n2 − nk + 2k ≤ 0 ∅

I1/I2

{
2n2 − nk + 2k ≤ 0
n(n + 1) ≥ k {∅, Γ2}

I1

 2n2 − nk + 2k ≤ 0
k
n

[ n
∑

t=2

1
t −

n−1
2

]
+ 1 ≥ 0 {∅, Γ1}

I1


n+1
∑

t=2

1
t −

n−1
2 > 0

n(n + 1) ≥ k
Γ1

I1


n+1
∑

t=2

1
t −

n−1
2 < 0

n(n + 1) ≥ k
Γ2

I2 2n2 − nk + 2k ≤ 0 {∅, Γ1}
I2 n(n + 1) ≥ k {Γ1, Γ2}

8. Conclusions

We propose a model of the network formation when players are non-symmetric in their
payoff functions or types. The players’ types are the private information. First, one player
is assigned to be the leader and he proposes a network to be formed to other players. Sec-
ond, other players make decisions to accept or reject the network simultaneously. After that,
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the network is formed by the given rule. We prove the existence of an equilibrium called
the stable partially Bayesian equilibrium in the network formation game with the incom-
plete information about players’ types. We examine the relation between the equilibrium
and the Nash equilibrium. The three-player game with a major player with the specific
characteristic function is considered to be an example of our model. We also examine an
n-player game with the particular characteristic function and two projects, the star network
and the complete network are investigated if they can be formed under the stable partially
Bayesian equilibria. As a direction for future research, we mention an interesting problem
of defining the steady network which can be formed with the positive probability as a
result of the stable partially Bayesian equilibrium regardless of the appointed leader.
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