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Abstract: The fundamental interest of investors in econometric modeling for excess stock returns
usually focuses either on short- or long-term predictions to individually reduce the investment
risk. In this paper, we present a new and simple model that contemporaneously accounts for short-
and long-term predictions. By combining the different horizons, we exploit the lower long-term
variance to further reduce the short-term variance, which is susceptible to speculative exuberance.
As a consequence, the long-term pension-saver avoids an over-conservative portfolio with implied
potential upside reductions given their optimal risk appetite. Different combinations of short and long
horizons as well as definitions of excess returns, for example, concerning the traditional short-term
interest rate but also the inflation, are easily accommodated in our model.
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1. Introduction

Considerable practical and theoretical effort is being channelled into understanding
the movements of the stock market. This is natural as this is, perhaps, the most signif-
icant driver of returns providing long-term savers with sufficient wealth at retirement.
Long-term predictability strongly impacts investors’ welfare, as pointed out, for example,
by Lioui and Poncet [1]. Recent years have witnessed the emergence of research on pension
products, marking the need to provide an econometric model for planning long-term
savings [2–4]. Such a model should be able to forecast the future serving, for example,
institutional investors like pension funds reacting dynamically to market information.
An accurate econometric approach to long-term savings needs to be able to concurrently
consider both the long and short terms, aiming to align the long-term projections while
circumventing inaccurate trading due to short-term bubbles in the market. Notably, long-
horizon predictability has also been studied in other contexts, e.g., by Carmona et al. [5],
who analyzed return predictability effects on the fair value of long-term executive stock
options, and Bodnar et al. [6] who studied the multi-period (long-run) portfolio choice
problem under return predictability.

Our paper provides a general strategy to support such a novel econometric model.
We consider the standard case of returns in excess of the short-term interest rate and the
perhaps more relevant case of returns in excess of inflation (i.e., real returns) as led by
Merton [2]. In our empirical application, we consider a short-term period of one year
and a long-term period of five years. By its universality, our approach lends itself to any
benchmark, not just short-term interest rate or inflation, and can fit with any assumption of
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a short and long term. The baseline provides a model for the earnings-by-price, which is an
intuitive, attractive quantity, which can be compared with interest rates and other returns,
and is one of the most important drivers of return predictability [7]. A final correction is
applied to ensure that the model is capable of capturing the returns trend.

An accurate model does not only provide a better understanding of the expected
return, but also reduced variation. Our contribution is twofold: First, the application of
predictive regressions for two different horizons individually reduces the noise in short-
and long-term investments. Second, by combining predictions of different horizons, we
further reduce the noise for short-term investment.s This confirms the view put forward
by Lioui and Poncet [1] of long-horizon predictability defenders that the use of long-term
returns reduces the noise in asset returns. The reason is that even in, for example, one-year
returns, a large amount of speculative variation is still included. This is clearly reduced in
longer-horizon investments. However, our simple model is able to optimize the one-year
investments according to the bubble-free long-term variance and reduce variation for
the short-term predictions after year one. We focus on two findings that are particularly
interesting and intuitively appealing. With the aid of our optimal predictive model, we
perceptibly reduce the standard deviation of the one-year returns by 10% from about
18% to 16%. The prediction with incorporated long-term modeling also has a standard
deviation beyond the short term of only around 14%. Therefore, a long-term investor
that optimizes pensions or other long-term savings should rely on this value based on the
available information, rather than the typically used standard deviation of 16% or even
18%. In general, a larger, out-of-line standard deviation would lead to an over-conservative
portfolio with implied potential upside reductions for the long-term saver given their
optimal risk appetite.

The remainder of the paper is structured as follows: In Section 2, we gradually build
our proposed framework from short-term and long-term nonlinear predictive modeling to
their merge to a single model that aims to reduce the investment risk. Section 3 focuses on
our empirical application to one- and five-year excess stock returns based on historical U.S.
market data. Section 4 concludes the paper.

2. Materials and Methods

Linear regression models are popular in predictive modeling as these classical bench-
marks are easy to estimate and interpret. However, the fixed functional form of the
relationship between stock returns and predictive variables leads to inferior predictive
power compared with nonlinear approaches [8–12]. Therefore, we focus on potentially
nonlinear predictive relationships between returns over the next T years in excess of a
reference rate (or benchmark) and a set of economic predictors relevant for the long-term
investor using a fully nonparametric smoother. We analyze the two most important bench-
mark models of Kyriakou et al. [7,13]: the short-term interest rate and the inflation rate.
Note that the former directly corresponds to the prediction of the risk premium (over a
risk-free investment), whereas the latter refers to the forecast of real returns. We aim, first,
to investigate their predictability over horizons of one year and five years separately and
then provide an intuitive single econometric model that combines both predictive horizons.

2.1. One-Year Predictions

We start with annual nominal stock returns defined by St := (Pt + Dt)/Pt−1, where Pt
is the stock price at the end of year t and Dt is the dividends paid during year t. We focus
on returns in excess (log-scale) of a given benchmark B(A)

t−1 with A ∈ {R, C}:

Y(A)
t = ln

St

B(A)
t−1

, (1)
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where B(R)
t := 1 + Rt/100 and B(C)

t := 1 + πt with Rt denoting the short-term interest rate
and πt := (CPIt − CPIt−1)/CPIt−1 is the inflation rate for the consumer price index CPIt
for year t.

Our predictive nonparametric regression model for the one-year (1y) excess returns
defined in Equation (1) is now given by

Y(A)
t = m1y

(
X(A)

t−1

)
+ ξt. (2)

Note that the conditional mean in Equation (2),

m1y(x(A)) := E
(

Y(A)|X(A) = x(A)
)

, x(A) ∈ Rq, (3)

is unknown and its functional form is not predetermined, for example, to be linear, but can
take any shape. Our preferred nonparametric method to estimate this function m1y is
the local-linear smoother because of its flexibility and well-known statistical properties.
For example, the linear function can be estimated without any bias and is thus automatically
embedded in our analysis; that is, if the data-generating process is linear, we expose
this simple functional form. Note further that the error terms ξt in Equation (2) form
a martingale difference process, i.e., ξt are serially uncorrelated random variables with
zero mean, given the past, and the unknown conditionally heteroscedastic variance of the
form σ2

1y

(
x(A)

)
. The elements of the q-dimensional vector X(A)

t−1 in Equation (2), which
collects the explanatory variables, are also transformed under the chosen benchmark A
according to

X(A)
t−1 :=


1+Xt−1

B(A)
t−1

, Xt−1 ∈ {dt−1, et−1, rt−1, lt−1, πt−1}
st−1

B(A)
t−1

= lt−1−rt−1

B(A)
t−1

. (4)

Therefore, X(A)
t−1 contains (combinations of transformed) popular time-lagged predic-

tive variables based on the: (i) dividend-by-price ratio dt−1 = Dt−1/Pt−1; (ii) earnings-by-
price ratio et−1 = Et−1/Pt−1, where Et denotes the earnings accruing to the index in year t;
(iii) short-term interest rate rt−1 = Rt−1/100; (iv) long-term interest rate lt−1 = Lt−1/100;
(v) inflation rate πt−1; and (vi) term spread st−1 = lt−1 − rt−1. The use of such a transfor-
mation is one example of the careful imposition of an additional structure in the statistical
modeling process, which has shown promising results in previous works [10,11,14]. We
call this adjustment of both the independent and dependent variables according to the
same benchmark double (or full) benchmarking.

2.2. Longer-Horizon Predictions

A main contribution of our work is the combination of short- and long-term pre-
dictions into one single model. Hence, we introduce, in addition to the short one-year
predictions, our version of long-horizon predictions. We highlight three important points
that distinguish both cases fundamentally from each other: first, the autoregressive be-
havior of the underlying predictive variable in Equation (6), which is used as the building
block of our econometric model in Section 2.4 as well; second, the more complicated error
structure (serial correlation by construction) in the predictive relationship (8); and, third,
closely related to the last point, a more complicated smoothing parameter selection for the
correct estimation of mTy in Equation (9).

For longer horizons T, with T > 1, we consider the sum of annual continuously
compounded returns defined in Equation (1), that is,

Z(A)
t :=

T−1

∑
i=0

Y(A)
t+i . (5)
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Here, careful econometric modeling is necessary because of the overlapping nature of
the returns Z(A)

t (refer also to Appendix A). For ease of illustration, assume a linear model

for Y(A)
t in Equation (2) as well as some linear and autoregressive behaviors with an order

of one for the forecasting variable X(A)
t−1:

Y(A)
t = β0 + β1X(A)

t−1 + ξt and X(A)
t = γ0 + γ1X(A)

t−1 + ηt, (6)

with ξt as in Equation (2), ηt being a white noise, and regression parameters β0, β1, γ0, and
γ1. A simple linear model for the T-year (Ty) regression problem that directly follows from
Equations (5) and (6) is then

Z(A)
t = φ0 + φ1X(A)

t−1 + νt, (7)

with parameters φ0 and φ1, and error terms νt (more details are deferred to the Appendix A).
Equation (7) shows that the excess stock return for year t over the next T years can be
decomposed into two parts: a predictive linear part dependent only on the variable X(A)

t−1,
the same predictive variable as in the one-year case, and unpredictable error terms νt,
which are now serially correlated by construction.

As the linear setup of Equation (6) could be misspecified and thus not account for
important nonlinearities, we model the functional relationship between the predictive
variable X(A)

t−1 and T-year excess stock returns Z(A)
t in a more flexible nonparametric way

analogous to Equation (2)
Z(A)

t = mTy

(
X(A)

t−1

)
+ νt, (8)

where
mTy(x(A)) := E

(
Z(A)

t |X
(A) = x(A)

)
, x(A) ∈ Rq, (9)

is an unknown smooth function. Note again the important difference between the error
terms of Model (2) and Model (8): while ξt is a martingale difference process, νt is seri-
ally correlated by construction. This property has to be considered when estimating the
unknown conditional mean function mTy; otherwise, fundamental problems occur: the esti-
mators are still consistent but less efficient than those correcting for autocorrelation [15–18];
and, more importantly, the commonly applied automatic smoothing parameter selection
procedures (such as cross-validation and plug-in) break down [19,20]. In the empirical
part of our work, we overcome the aforementioned problems using a special leave-l-out
cross-validation strategy, which is closely related to our method of measuring predictive
power. Our approach to this issue is discussed in detail in the next section.

Before we proceed, we summarize what we have discussed so far: the nonparametric
Models (2) and (8) for one-year and T-year returns, the autoregressive behavior of order
one for the predictive variable in (6), and the necessity of a leave-l-out cross-validation in
the estimation procedure.

2.3. Predictive Power, Variable Selection, and Smoothing Parameter Choice

For our nonparametric one- and T-year models defined earlier, we need an adequate
measure that (a) quantifies and validates the predictive power, (b) allows for comparisons
and ranking of models when different sets of explanatory variables are used (variable
selection), and (c) best selects the bandwidth(s) and thus determines the functional form
of the conditional mean for the given predictive variables (smoothing parameter choice).
In our work, we apply the validated R-squared (R2

V) of Nielsen and Sperlich [14], which
conforms to these requirements. It directly aims to estimate the k-year (ky)-ahead prediction
error based on a leave-l-out cross-validation (with l := 2k− 1) and can thus be used for
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both variable as well as smoothing parameter selection. In our notation, the validated R2 is
defined as

R2
V,ky = 1−

∑
t
(Wt − m̂−t,ky)

2

∑
t
(Wt − W̄−t)2 , (10)

where such estimators are used that leave out l observations around the tth point in time,
m̂−t,ky, for the conditional mean function mky from Equations (2) or (8) with k ∈ {1, T}
and W̄−t for the unconditional (historical) mean of Wt, that is, the k-year return to predict
(equal to Y(A)

t for k = 1 and Z(A)
t for k = T). To maintain the simplicity of notation,

we drop an extra subscript for the bandwidth h used in the calculation of m̂−t,ky, as we
always choose h in the numerator in Equation (10) so that the prediction error is minimized
and thus the largest possible R2

V is achieved for the given predictive variables. Note
that R2

V measures the predictive power of a given model against a benchmark (here,
the cross-validated historical mean). For our setup, this means that when R2

V is positive,
the predictor-based regression Model (2) or (8) outperforms the corresponding historical
mean forecast.

In a time-series context, out-of-sample evaluations are often proposed where a fraction
of the data from the end of the time-series is not used for estimation but is withheld
for evaluation. In the case of uncorrelated errors, Bergmeir et al. [20] showed that cross-
validation, as proposed in this section, is preferred to out-of-sample evaluation. Another
advantage is that cross-validation involves various evaluations, whereas out-of-sample
analysis can test the data only once. This property is especially beneficial when the number
of recorded observations is small, as in our case with annual stock market data. When
errors are correlated, as discussed in Section 2.2 for our T-year predictions, it may be
necessary to omit more than a single point and apply leave-l-out cross-validation (with
l > 1). This strategy avoids model fits that are progressively under-smoothed caused by
too-small bandwidths [21]. Alternative approaches, for example, involve using bimodal
kernels [22] or the correlation-corrected cross-validation [19]. Note that in the case of a
large fraction of skipped data, additional corrections might be required [23].

2.4. An Econometric Model for Combined Short- and Long-Term Predictions

In this section, we present a simple method of combining short- and long-term pre-
dictions. Our model builds on the autoregressive development of the earnings variable
e(A) or, more precisely, on the change in earnings growth, which has been identified as one
of the key drivers of stock prices P. Other important factors, such as the dividend yield
d(A), can be easily incorporated in our model as well, for example, as covariates in the
one- or five-year conditional mean regressions in (2) or (8), which will be used to calibrate
our model. The important contribution of our approach is twofold. First, the application
of predictive regressions for two different horizons individually reduces the noise or risk
for short- and long-term investments. Second, the combination of predictions of different
horizons further reduces the noise or risk for the short-term investment. The reason is
that even in, for example, one-year returns, a large amount of speculative variation is still
included. This is clearly reduced in longer-horizon investments. Using now such T-year
predictions in combination with the one-year ones, the latter benefits from the former as
they are forced to sum up to the long-term predictions after our model is calibrated. In other
words, our model provides one- and T-year predictions that are equal to the conditional
mean forecasts based on regressions (2) and (8) (and thus with an interpolation argument
for the horizons in between), and reduces the variation in the short-term predictions after
year one.

We start with the linear formulations of the autoregressive behavior of order one
of the predictive variable and the linear model version of one-year return predictions in
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Equation (6). Here, we consider the earnings variable e(A) to be this special predictor and
estimate the linear models by ordinary least squares (OLS). In a first step, we obtain:

e(A)
t − e(A)

t−1 = ρ (e(A)
t−1 − ē(A)) + ηt ⇔ e(A)

t = γ0 + γ1e(A)
t−1 + ηt (11)

with unknown parameters γ0 := −ρē(A) and γ1 := ρ + 1, sample average of earnings ē(A),
and independent and identically distributed error terms ηt. The OLS estimates of γ0 and
γ1 shall be denoted by c0 and c1, respectively. In a second step, we apply the linear version
of Equation (2) for the earnings variable e(A):

Y(A)
t+1 = β0 + β1e(A)

t + ξt+1 (12)

with unknown parameters β0 and β1, which will be estimated again by OLS; their estimates
are denoted by b0 and b1, respectively. Remember that we have n observations in our
records. Thus, with Equations (11) and (12) and the corresponding OLS estimates, which
we keep fixed in the following steps, we now forecast out-of-sample Ŷ(A)

n+1, Ŷ(A)
n+2, . . . , Ŷ(A)

n+T .
Our aim was to construct an econometric model that reflects one-year and T-year

predictions (from the preferred models (2) and (8) at hand) simultaneously. For this reason,
we correct Ŷ(A)

n+1, Ŷ(A)
n+2, . . . , Ŷ(A)

n+T in the following linear way:

Ŷ(A),c
n+1 = α0 + α1Ŷ(A)

n+1 + εn+1 (13)

Ŷ(A),c
n+2 = α0 + α1Ŷ(A)

n+2 + εn+2 (14)
...

Ŷ(A),c
n+T = α0 + α1Ŷ(A)

n+T + εn+T , (15)

where α0 and α1 are unknown parameters; εn+1 ∼ N (0, σ2
1 ), and εn+2, . . . εn+T ∼ N (0, σ2

2 )
are independent error terms with unknown variances σ2

1 and σ2
2 . Note that we allow for a

different variation in the first corrected one-year-ahead prediction Ŷ(A),c
n+1 in Equation (13)

compared with the second to Tth corrected one-year-ahead predictions Ŷ(A),c
n+2 , . . . , Ŷ(A),c

n+T
in Equations (14) to (15). This way, our model can account for the lower variation in
longer-horizon returns relative to one-year returns. In other words, after calibrating the
model, we expect σ2

2 to be smaller than σ2
1 . Note further that from Equations (13)–(15), we

directly obtain an expression for the corrected T-year return Z(A),c
n+T :

Z(A),c
n+T =

T

∑
k=1

Ŷ(A),c
n+k = α0T + α1

T

∑
k=1

Ŷ(A)
n+k +

T

∑
k=1

εn+k. (16)

Next, we adequately calibrate Equations (13)–(16), i.e., choose the model parameters
α0, α1, σ2

1 , and σ2
2 , and based on these, obtain the corrected one-year and T-year returns.

Here, we use the recursive representation of the earnings e(A) from Equation (11) with the
starting value e(A)

n (the last earnings observation in our records) together with the linear
predictive model (12) and the corresponding OLS estimates c0, c1, b0, b1. Plugging-in for
the corrected Ŷ(A)

n+1, . . . , Ŷ(A)
n+T , and Z(A),c

n+T gives:
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Ŷ(A),c
n+1 = α0 + α1(b0 + b1e(A)

n ) + εn+1 (17)

Ŷ(A),c
n+2 = α0 + α1(b0 + b1(c0 + c1e(A)

n )) + εn+2 (18)
...

Ŷ(A),c
n+T = α0 + α1

(
b0 + c0b1

T−2

∑
i=0

ci
1 + cT−1

1 b1e(A)
n

)
+ εn+T (19)

and

Z(A),c
n+T = α0T + α1b0T + α1c0b1

T

∑
k=2

k−2

∑
i=0

ci
1 + α1b1e(A)

n

T−1

∑
i=0

ci
1 +

T

∑
k=1

εn+k. (20)

Now, we fix the first and second moments of Ŷ(A),c
n+1 and Z(A),c

n+T with the estimated
values from our preferred (best) one- and T-year predictive Models (2) and (8). By doing so,
we obtain a linear equation system with four equations, which can be easily solved for the
four unknown parameters α0, α1, σ2

1 , and σ2
2 . For this purpose, let µ̂1y and σ̂2

1y be the condi-
tional mean forecast and its estimated variance from Equation (2), respectively; and µ̂Ty

and σ̂2
Ty be the conditional mean forecast and its estimated variance from Equation (8),

respectively. Note that σ̂2
1y and σ̂2

Ty can be readily calculated from the R2
V of the predictive

regressions (2) and (8). A closer inspection of Equation (10) shows that the ratio in our
validation criterion compares the sample variance of the estimated residuals from the
preferred predictive model (the numerator) with the sample variance of the benchmarked
returns (the denominator). Algebraically, we therefore have that R2

V,1y = 1− σ̂2
1y/σ2

Y(A) and
R2

V,Ty = 1− σ̂2
Ty/σ2

Z(A) , and

σ̂2
1y = (1− R2

V,1y)σ
2
Y(A) , (21)

σ̂2
Ty = (1− R2

V,Ty)σ
2
Z(A) . (22)

Given
E(Ŷ(A),c

n+1 ) = µ̂1y, E(Ẑ(A),c
n+T ) = µ̂Ty,

Var(Ŷ(A),c
n+1 ) = σ̂2

1y, Var(Ẑ(A),c
n+T ) = σ̂2

Ty,
(23)

the solution of the equation system (23) is

α0 = µ̂1y − α1

(
b0 + b1e(A)

n

)
, (24)

α1 =
µ̂Ty − Tµ̂1y

S− b0T − b1Te(A)
n

, (25)

where

S := b0T + c0b1

T

∑
k=2

k−2

∑
i=0

ci
1 + b1e(A)

n

T−1

∑
i=0

ci
1,

and

σ2
1 = σ̂2

1y, (26)

σ2
2 =

1
T − 1

(
σ̂2

Ty − σ̂2
1y

)
. (27)

The a priori expectations about our model are the following: First, when the autore-
gressive behavior of the earnings in Model (11) and the linear model for stock returns
(12) produce reasonable predictions Ŷ(A)

n+1, Ŷ(A)
n+2, . . . , Ŷ(A)

n+T , only a marginal correction is
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necessary, i.e., α0 is close to zero and α1 close to one. Second, when Tµ̂1y > µ̂Ty, one-year

returns should diminish over time (as the sum of Ŷ(A)
n+1, . . . , Ŷ(A)

n+T still has to be equal to
µ̂Ty) and α1 becomes negative. Now α0 takes the role of an upper limit (larger than µ̂1y),
from which increasing values (over time) are subtracted to match the T-year prediction µ̂Ty.
Finally, note that by construction, σ2

1 > σ2
2 if and only if Tσ̂2

1y > σ̂2
Ty, that is, the cumulated

risk over T periods of short-term investments exceeds the risk of a T-year investment (as
discussed earlier).

2.5. Data Sources and Descriptive Statistics

Our empirical application is based on historical U.S. stock market data on the annual
frequency. The dataset includes, among other variables, the Standard and Poor’s (S&P)
Composite Stock Price Index, dividends and earnings accruing to the index, as well as
macroeconomic measures like the short-term interest rate, the long-term interest rate,
and the consumer price index covering the period from 1872 to 2020. Table 1 exhibits their
basic descriptive statistics.

Table 1. U.S. market data (1872–2020).

Max Min Mean SD Skew Exc. kurt

S&P stock price index 3278.20 3.25 297.62 607.94 2.57 6.62
Dividend accruing to index 58.24 0.18 6.39 11.36 2.52 6.35
Earnings accruing to index 139.47 0.16 14.80 28.17 2.47 5.66

Short-term interest rate 14.93 0.07 3.99 2.49 0.94 2.27
Long-term interest rate 14.59 1.76 4.51 2.25 1.80 3.68
Consumer price index 257.97 6.47 60.32 74.02 1.34 0.35

We here use an updated and revised version of Shiller’s ([24], Chapter 26) data,
which are available from http://www.econ.yale.edu/~shiller/data.htm (accessed on
16 April 2020). Note that a simple extension of the risk-free rate series was not possible
because the underlying 6 month certificate of deposit rate (secondary market) was discon-
tinued in 2013. We thus followed the strategy of Welch and Goyal [25] and replaced this
variable by an annual risk-free rate based on the 6 month treasury-bill rate (secondary mar-
ket) from https://fred.stlouisfed.org/series/TB6MS (accessed on 16 April 2020). As this
series is available only from 1958, we had to estimate the information prior to 1958 using
results from an OLS regression of the treasury-bill rate on the risk-free rate from Shiller’s
data for the overlapping period 1958 to 2013. With the estimated linear model (R2 of 98.6%,
estimated standard errors in brackets) of

Treasury-bill rate = 0.0961
(0.1009)

+ 0.8648
(0.0146)

× commercial paper rate,

we finally instrumented the risk-free rate from 1872 to 1957. The high correlation of 99.3%
between the actual treasury-bill rate and the predictions for the estimation period verified
the usefulness of this approach.

This section is concluded with Table 2, which displays the standard descriptive statis-
tics for the transformed variables according to Equations (1), (4) and (5). The predictive
variables under the inflation benchmark are more spread out, with a wider range and a
higher standard deviation than the variables under the risk-free rate benchmark. This
property of the inflation benchmark could be beneficial for the estimation process because
a larger variability in the regressors usually leads to a more efficient predictor.

http://www.econ.yale.edu/~shiller/data.htm
https://fred.stlouisfed.org/series/TB6MS
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Table 2. Summary statistics of transformed variables (in percentages). Panel (a) shows the available
variables transformed according to the short-term interest rate, e.g., excess returns corresponding
to the risk premium. Panel (b) shows the available variables net of inflation, i.e., in real terms. l(R)

equals s(R) by construction as explained in the footnote in Section 3.1.

Max Min Mean Sd Skew Exc. kurt

(a) Benchmark: short-term interest rate (A ≡ R)

One-year excess stock returns Y(R) 42.39 −58.26 4.71 17.28 −0.58 0.68
Five-year excess stock returns Z(R) 107.27 −78.54 23.69 36.65 −0.16 −0.37

Dividend-by-price d(R) 7.26 −8.96 0.37 2.78 −0.15 0.15
Earnings-by-price e(R) 13.25 −3.29 3.22 3.07 0.96 1.18
Long-term interest rate l(R) 3.55 −3.46 0.55 1.27 0.01 −0.04
Inflation π(R) 17.00 −19.16 −1.64 5.62 0.24 1.79
Spread s(R) 3.55 −3.46 0.55 1.27 0.01 −0.04

(b) Benchmark: inflation rate (A ≡ C)

One-year excess stock returns Y(C) 54.04 −48.81 6.52 18.04 −0.41 0.64
Five-year excess stock returns Z(C) 122.96 −57.34 32.47 36.33 −0.06 −0.39

Dividend-by-price d(C) 25.49 −13.90 2.38 6.51 0.93 1.77
Earnings-by-price e(C) 29.50 −10.98 5.23 5.93 0.94 2.13
Short-term interest rate r(C) 23.70 −14.53 2.00 5.85 0.40 1.84
Long-term interest rate l(C) 23.70 −13.81 2.55 5.78 0.23 2.17
Spread s(C) 3.51 −3.45 0.55 1.28 −0.02 −0.05

However, the returns transformed with the two benchmarks differ only slightly.
A small upward shift under the inflation benchmark is noticeable in Figure 1, which shows
density plots of the benchmarked returns for both the one- and five-year horizons.

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

One−year horizon

D
en
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inflation benchmark

−0.5 0.0 0.5 1.0

0.
0

0.
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0.
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Five−year horizon
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Figure 1. Kernel density estimates of the probability density function of returns transformed with the risk-free rate
benchmark (solid) and the inflation benchmark (dotted). (Left) One-year horizon. (Right) Five-year horizon. Period:
1872–2020. Data: annual S&P 500.
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3. Results and Discussion
3.1. One- and Five-Year Excess Stock Return Predictability

In what follows, we apply the double benchmarking approach introduced in Section 2
to the annual U.S. stock market data. The Models (2) and (8) are estimated with a local-
linear kernel smoother using the quartic kernel. The optimal bandwidths were chosen
by cross-validation, that is, by maximizing the R2

V introduced in Equation (10). Note that
the linear model is automatically embedded in our approach because of the ability of the
local-linear smoother to estimate this simple functional form without any bias. Remember
that the R2

V value compares the predictive power of a specific model (as a combination of
predictive variables) with the predictive power of the historical mean. Thus, the largest
positive R2

V under each benchmark indicates our favored model with the highest predictive
power. We study the empirical findings of R2

V values based on different validated scenarios
shown for the one- and five-year horizon in Tables 3 and 4, respectively.

Table 3. Predictive power (%) for the one-year excess stock returns Y(A)
t corresponding to the

prediction problem defined in (2). The predictive power is measured by R2
V as defined in (10).

The benchmarks B(A) considered are based on the short-term interest rate (A ≡ R) and the inflation
rate (A ≡ C). The predictive variables used are X(A)

t−1, using the indicated benchmark B(A)
t−1 as shown

in (4). “–” indicates not applicable cases of matched covariate with benchmark. l(R) equals s(R) by
construction as explained in the footnote in Section 3.1.

Benchmark B(A) Explanatory Variable(s) X(A)
t−1

d(A) e(A) r(A) l(A) π(A) s(A)

Short-term rate 3.0 5.0 – 9.6 -1.3 9.6
Inflation 10.2 12.0 7.1 10.4 – 6.6

(d(A), e(A)) (d(A), r(A)) (d(A), l(A)) (d(A), π(A)) (d(A), s(A))
Short-term rate 2.3 – 9.8 1.4 9.8
Inflation 10.1 9.3 9.8 – 15.4

(e(A), r(A)) (e(A), l(A)) (e(A), π(A)) (e(A), s(A))
Short-term rate – 10.7 3.3 10.7
Inflation 11.2 11.1 – 17.5

(r(A), l(A)) (r(A), π(A)) (r(A), s(A))
Short-term rate – – –
Inflation 13.6 – 14.7

(l(A), π(A)) (l(A), s(A))
Short-term rate 7.2 –
Inflation – 14.6

(π(A), s(A))
Short-term rate 7.2
Inflation –

For almost all the variable combinations in the one- and five-year cases as well as under
both benchmarks, we found a positive R2

V , that is, a better predictive power compared
with the historical mean. Only the inflation rate as a single covariate under the short-term
benchmark has a negative R2

V for both horizons and thus no predictive power.
When comparing one- with five-year predictions for the risk-free rate benchmark, we

confirmed the findings of Rapach and Zhou [26] that longer-horizon predictions produce
more accurate estimates than shorter horizons. All considered combinations of predictive
variables have higher R2

V values for the five-year case. However, for the inflation bench-
mark, we observed the contrary, that is, almost all models for the one-year horizon have
a higher predictive power. The only exception is the earnings-by-price variable with a
slightly increased R2

V value in the five-year case.
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Table 4. Predictive power (%) for the five-year excess stock returns Z(A)
t corresponding to the

prediction problem defined in (8). For additional notes, refer to Table 3.

Benchmark B(A) Explanatory Variable(s) X(A)
t−1

d(A) e(A) r(A) l(A) π(A) s(A)

Short-term rate 11.7 10.6 – 15.9 -2.4 15.9
Inflation 10.8 12.4 5.5 8.6 – 1.0

(d(A), e(A)) (d(A), r(A)) (d(A), l(A)) (d(A), π(A)) (d(A), s(A))
Short-term rate 8.6 – 22.2 7.4 22.2
Inflation 9.5 4.2 1.7 – 13.1

(e(A), r(A)) (e(A), l(A)) (e(A), π(A)) (e(A), s(A))
Short-term rate – 21.8 8.4 21.8
Inflation 8.6 4.9 – 14.9

(r(A), l(A)) (r(A), π(A)) (r(A), s(A))
Short-term rate – – –
Inflation 10.8 – 10.1

(l(A), π(A)) (l(A), s(A))
Short-term rate 16.3 –
Inflation – 10.2

(π(A), s(A))
Short-term rate 16.3
Inflation –

Under the short interest benchmark B(R), the term spread s(R) is the most powerful
predictive variable for excess stock returns. In detail, with the prediction constrained to
using only single covariates, the term spread is the best predictor for the one- and five-
year horizon with R2

V = 9.6% and 15.9%, respectively. Note that s(R) and l(R) (and their
combinations with d(R), e(R), π(R)) have the same R2

V by construction of the transformed

spread according to (4). For example, s(R)
t−1 = (lt−1− rt−1)/B(R)

t−1 = (1+ lt−1)/(1+ rt−1)− 1

and l(R)
t−1 = (1+ lt−1)/(1+ rt−1). Both differ by a constant shift of one, which has no impact

on the estimation process with the local-linear smoother. Considering now the models
with combined predictive variables, we find in the one-year case that (e(R), s(R)) yields
R2

V = 10.7%, whereas in the five-year case, (d(R), s(R)) and (e(R), s(R)) perform closely with
R2

V = 22.2% and 21.8%, respectively; for both cases, there is thus increased predictive
power compared with the best model with the single term spread covariate.

Under the inflation benchmark B(C), the earnings variable e(C) is the most powerful
single predictor for the one- and five-year horizons with R2

V = 12.0% and 12.4%, respec-
tively. In the one-year case, the pair (e(C), s(C)) further boosts the predictive power to
R2

V = 17.5%, whereas for the five-year horizon, we find the same variable combination to
be the most predictive model with R2

V = 14.9%.
In our model, which combines both one-year and five-year predictions, we use the

optimal combination of predictive variables for each benchmark and horizon. For conve-
nience, Table 5 summarizes the best models. For consistency and to examine the robustness
of our results, we additionally consider the second-best set of predictors under the risk-free
rate benchmark for the five-year horizon, that is, (e(R), s(R)).

Table 5. Summarized optimal combinations of predictive variables and their predictive power
R2

V (%).

Horizon Risk-Free Rate Benchmark Inflation Benchmark

Variables R2
V Variables R2

V

One-year (e(R), s(R)) 10.7 (e(C), s(C)) 17.5
Five-year (d(R), s(R)) 22.2 (e(C), s(C)) 14.9
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To obtain deeper insights into the relationship between excess stock returns and
the predictive variables for the different benchmarks and horizons discussed above,
Figures 2 and 3 show the estimated nonparametric function m̂ (light blue surface) together
with the underlying observations (dark blue balls). Especially for the risk-free rate bench-
mark, a nonlinear relationship is notable. However, the estimated function seems to be
more stable under the inflation benchmark, that is, it is very similar for the one- and
five-year horizons. All four plots indicate that with an increase in the spread, the predicted
return increases, holding other factors fixed. An increase in the earnings predicts an in-
crease in the return. Note that this effect is stronger for the inflation than for the risk-free
rate benchmark. The dividend-by-price versus excess stock return relation for a fixed
spread under the risk-free rate benchmark and the five-year horizon is U-shaped.

Figure 2. Risk-free rate benchmark. The relation between excess stock returns and predictive variables: the earnings-by-price
ratio and the spread, one-year horizon (left); the dividend-by-price ratio and the spread, five-year horizon (right). Estimated
nonparametric function m̂ (light blue surface) and observations (dark blue balls). Period: 1872-2020. Data: annual S&P 500.

Figure 3. Inflation benchmark. Relation between excess stock returns and predictive variables: the earnings-by-price ratio
and the spread, one-year horizon (left); the earnings-by-price ratio and the spread, five-year horizon (right). Estimated
nonparametric function m̂ (light blue surface) and observations (dark blue balls). Period: 1872-2020. Data: annual S&P 500.
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3.2. Short-Term Exuberance and Long-Term Stability: Combining Predictions of Short and
Long Horizons

In this section, we illustrate the main empirical contribution of our paper. Recall
that the simple econometric model introduced in Section 2.4, which combines short- and
long-term predictions, builds on (a) the predictive power of earnings for excess stock
returns with its linear model formulation of Equation (12) and (b) the autoregressive
development of order one of the earnings in Equation (11). Table 6 shows the estimated
OLS coefficients and regression summaries of the linear Models (11) and (12). We find that
the earnings variable has more predictive power for excess stock returns under the inflation
benchmark than the short-term benchmark: the R2 of the former is more than twice as
large as that of the latter (13.4% versus 5.8%). The autoregressive behavior of the earnings
is stronger in terms of R2 for the short-term benchmark than the inflation benchmark
(63.8% versus 8.2%). However, the much smaller estimated coefficient under the inflation
benchmark (0.286 versus 0.798) indicates a more stable variation in the earnings around
the scaled historical mean. The intercept is also significantly differently estimated from
zero for both benchmarks. Figures 4 and 5 show the linear Models (11) and (12) for both
benchmarks (solid red line) together with estimates of the local-linear smoother (dashed
green line) and the 45◦-line (dotted black line). These illustrations verify the usefulness of
using linear functions in our econometric model in Section 2.4.

Table 6. Estimated parameters (and standard errors in parentheses) of the linear Models (11) and (12)
used for the econometric model in Section 2.4 under the short-term interest rate benchmark or the inflation
benchmark. R2, the standard coefficient of determination of a linear model; Adj. R2, the adjusted R2; Num.
obs., the number of observations used in the regression; RMSE, root mean square error.

Benchmark Short-Term Interest Rate Inflation Rate

Dependent Variable e(R)
t+1 Y(R)

t+1 e(C)
t+1 Y(C)

t+1

Intercept 0.0066 ** 0.0035 0.0373 *** 0.0069
(0.0022) (0.0201) (0.0063) (0.0186)

e(A)
t 0.7976 *** 1.3522 ** 0.2859 *** 1.1144 ***

(0.0500) (0.4531) (0.0799) (0.2350)

R2 0.6384 0.0579 0.0817 0.1343
Adj. R2 0.6359 0.0514 0.0753 0.1283

Num. obs. 146 147 146 147
RMSE 0.0186 0.1683 0.0572 0.1684

*** p < 0.001, ** p < 0.01, * p < 0.05.

The next step in running our model is its calibration to the conditional mean and variance
estimates for the one- and five-year horizons (the right-hand side values in Equation (23));
Table 7 shows those estimates for both benchmarks. Note that we used out-of-sample predic-
tions from the optimal models discussed in Section 3.1 for both horizons (see also Table 5), that
is, µ̂1y and µ̂5y are based on the newest predictive variables in our records (corresponding to
December 2019 values). For the short-term benchmark, the optimal models predict returns
of 4.30 (1 year) and 18.81 (5 years). Note that the average annual return for the five-year
horizon of 18.81/5 = 3.76 is smaller than the predicted return for the one-year horizon of
4.30. The econometric model should be able to adequately capture such a decline in annual
returns and we exactly achieved this, as we show later, via the simple linear correction proposed
in Section 2.4. For the inflation benchmark, the corresponding predictions are 4.15 (1 year)
and 27.41 (5 years). Although the picture is similar for the one-year horizon, the behavior of
the five-year predictions is different. We forecast an increase in one-year real returns as the
average annual return for the five-year horizon of 27.41/5 = 5.48, which is now larger than the
predicted return for the one-year horizon of 4.15.
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Figure 4. Relation between excess stock returns and the earnings-by-price ratio. (Left) Short-term interest rate benchmark.
(Right) Inflation benchmark. Shown are estimates of a linear function (solid red), the local-linear smoother (dashed green),
and the 45◦-line (dotted black). Period: 1872–2020. Data: annual S&P 500.
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Figure 5. Autoregressive behavior of the earnings-by-price ratio. (Left) Short-term interest rate benchmark. (Right) Inflation
benchmark. Shown are estimates of a linear function (solid red), the local-linear smoother (dashed green), and the 45◦-line
(dotted black). Period: 1872–2020. Data: annual S&P 500.

From the upper panel of Table 7, the standard deviations of predicted one-year and
five-year returns, σ̂1y and σ̂5y, respectively, appear reduced compared with the standard de-
viation σ of observed returns through the statistical modeling process for both benchmarks
(Equations (21) and (22)). Under the short-term benchmark, we obtain a reduction from
17.28 to 16.34 (1 year) and 36.65 to 32.33 (5 years), whereas under the inflation benchmark,
from 18.04 to 16.38 (1 year) and 36.33 to 33.52 (5 years). Note that our model combining the
one- and five-year horizons further reduces the uncertainty and thus the risk for one-year
returns under both benchmarks, as we explain below.
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Table 7. Estimated parameters of the econometric model under the short-term interest rate benchmark
or the inflation benchmark (in %). For (conditional) predictions of the mean µ̂ky, the variable
combination with the largest R2

V,ky is used (Table 5). σ̂ky denotes the estimated standard deviation of

the predictions Ŷ(A),c or Ẑ(A),c, σ is the sample standard deviation of Y(A) or Z(A) (Table 2). α̂0, α̂1,
σ̂1, and σ̂2 are the parameter estimates of the econometric model in Section 2.4.

Benchmark Short-Term Interest Rate Inflation Rate

µ̂ky σ̂ky R2
V ,ky σ µ̂ky σ̂ky R2

V ,ky σ

One-year (k = 1) 4.30 16.34 10.67 17.28 4.15 16.38 17.53 18.04
Five-year (k = 5) 18.81 32.33 22.18 36.65 27.41 33.52 14.85 36.33

α̂0 α̂1 σ̂1 σ̂2 α̂0 α̂1 σ̂1 σ̂2

Parameter estimate 13.70 –2.30 16.34 13.95 –0.17 0.95 16.38 14.62

Using the estimated coefficients of the linear Models (11) and (12) (c0, c1, b0, and
b1) as well as the predicted one-year and five-year returns and estimated variation (µ̂1y,
µ̂5y, σ̂2

1y, and σ̂2
5y), we solve the equation system (23) and obtain the estimates α̂0, α̂1, σ̂1,

and σ̂2 (Equations (24)–(27)) reported in the lower panel of Table 7 for both benchmarks.
For the inflation benchmark, we obtain α̂0 = −0.17 and α̂1 = 0.95, i.e., an intercept in
our simple linear correction of predicted one-year returns (13)–(15), which is close to zero
and a slope near one. This implies that only a slight correction suffices in combining
optimal one-year and five-year stock return predictions. However, under the short-term
benchmark, a much stronger correction is necessary to model the decline in the one-year
returns over time: α̂0 = 13.70 and α̂1 = −2.30. Table 8 shows the development of the
one-year returns for the periods of interest, i.e., from n + 1 to n + 5 for both benchmarks.
Note that the corrected risk premium Ŷ(R),c equals 4.30 in period n + 1 by construction,
reduces over time to 3.33 in period n + 5, and sums up over the five-year horizon to 18.81
again by construction. Similarly, the corrected real return Ŷ(C),c equals 4.15 in period n + 1
by construction, increases from year to year to 5.98 in period n + 5, and sums up to the
five-year prediction of 27.41. The underlying development of the earnings and the simple
return predictions from Models (11) and (12) are also shown in Table 8.

Table 8. Predicted excess stock returns from the econometric model in Section 2.4 under the short-term
interest rate benchmark or the inflation rate benchmark. e(A)

n is the last earnings-by-price observation
in our records (transformed according to the benchmark A) and corresponds to December 2019.
Ŷ(A) denotes the one-year predictions of excess stock returns from the linear Model (12) (parameter
estimates in Table 6) and Ŷ(A),c is their corrected counterparts based on (13)–(15) (parameter estimates
in Table 7).

Benchmark Short-Term Interest Rate Inflation Rate

Period e(R) Ŷ(R) Ŷ(R),c e(C) Ŷ(C) Ŷ(C),c

n 2.76 – – 3.47 – –
n + 1 2.87 4.08 4.30 4.72 4.56 4.15
n + 2 2.95 4.23 3.97 5.08 5.95 5.47
n + 3 3.02 4.34 3.71 5.18 6.35 5.85
n + 4 3.07 4.43 3.50 5.21 6.47 5.95
n + 5 – 4.50 3.33 – 6.50 5.98

Another important outcome of our econometric model is the additionally reduced
variation in the corrected one-year returns of the periods n + 2 to n + 5. For the short-term
benchmark, Table 7 reports a reduction from σ̂1 = 16.34 to σ̂2 = 13.95, that is, a drop
in variation of 19.2% compared with the sample standard deviation of one-year returns
of σ = 17.28—the starting point of our analysis. Similarly, for the inflation benchmark,
σ̂1 = 16.38 reduces to σ̂2 = 14.62, that is, a decrease in variation of 19.0% from the sample
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standard deviation of one-year returns of σ = 18.04. σ̂1 > σ̂2 tells us that in predicted
pure one-year returns (i.e., ignoring the long-term view), a sort of bubble is still present.
In other words, even short-term predictions of the one-year horizon are prone to speculative
exuberance. However, our simple model optimizes the one-year investments according to
the bubble-free long-term variance, reducing the variation/risk. This finding is relevant for
long-term investors (above one year), i.e., for the majority of us via our pensions. Figure 6
illustrates this discussion and shows reward-to-variability ratios for each benchmark A
based on the corrected one-year predictions Ŷ(A),c for the periods n + 2 to n + 5 and the
three standard deviations in the model σ, σ1, and σ2.

n+2 n+3 n+4 n+5

σ
σ1

σ2

Reward−to−variability ratios

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

n+2 n+3 n+4 n+5

σ
σ1

σ2

Reward−to−variability ratios

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Figure 6. Comparison of reward-to-variability ratios based on corrected one-year predictions for periods n + 2, . . . , n + 5
and σ (red), σ1 (yellow), and σ2 (green). (Left) Short-term interest rate benchmark. (Right) Inflation benchmark.

Finally, we repeat the model calibration for an alternative set of predictors under the
risk-free rate benchmark for the five-year case, that is, the combination of earnings and
term spread, aiming for congruity in the choice of the baseline set of predictors across
benchmarks and horizons. Analagous to the reports in Tables 7 and 8, Table A1 presents
our estimates, which are minimally affected by this choice, whereas Table A2 exhibits the
development of the earnings and return predictions, which remain qualitatively similar.

3.3. A Final Comment on the Performance and the Choice of the Benchmark

Notice that our underlying estimates when considering the inflation benchmark are
more stable than in the equivalent short-term interest case. The autoregressive earnings
model is also more stable in the inflation case compared with the short-term interest case,
with a much higher mean-reversion. The modeling of excess returns shows a linear shape
in the inflation case (Figure 3) but has considerable variability in the short-term interest case
(Figure 2). Adjusting under the inflation benchmark from a one-year model to a five-year
model is non-dramatic, contrary to the complete change involved in the short-term interest
case. Although both models perform similarly after validation by the short-term interest
rate being ahead in the long-term case, we might tend to prefer to work with the stable
and intuitive inflation benchmark when providing our long-term and short-term model of
stock returns. The choice of the benchmark depends on the ultimate application. If one
follows, for example, one of the key messages of Merton [2], then forecast, especially for
pensions, should be net of inflation.
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4. Concluding Remarks

We propose a state-of-the-art econometric model that accounts contemporaneously for
short- and long-term predictions. Therefore, it serves for short-term market timing as well
as a long-term asset-allocation strategy for the long-term saver. The combination of the
one- and five-year investment horizons thereby reduces the short-term variation by almost
20%. This finding has several implications: First, the high sample standard deviation of
short-term returns indicates the presence of bubbles even in one-year returns. Second,
institutional long-term investors such as pension funds should disregard pure short-term
econometric models when deciding on their long-term asset allocation. Third, for a given
risk appetite level, the ability to add equity exposure to result in increased long-term savers’
portfolio return is significant as it provides better pensions for everyone (see also [2,3]).
Fourth, we found the inflation benchmark that expresses everything in real terms to be
more stable than the often-used short-term interest rate benchmark. The former perfectly
links with Merton’s [2] pension vision and provides good predictive power based on our
empirical results.

We applied our framework to U.S. stock market excess returns and common predictors
based on the short-term interest rate or the inflation benchmark for the one- and five-year
horizons. Of potential interest are reference rates [13], longer horizons (say ten years) [27],
or econometric modeling of the conditional variance [28], but these tasks remain for
future research.
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Appendix A

In Section 2.2, we introduce our setup for the T-year predictions. Here, we describe
in more detail important single steps. Equation (5) defines Z(A)

t as the sum of annual
continuously compounded returns, which are of an overlapping nature:

Z(A)
1 = Y(A)

1 + Y(A)
2 + Y(A)

3 + . . . + Y(A)
T

Z(A)
2 = Y(A)

2 + Y(A)
3 + Y(A)

4 + . . . + Y(A)
T+1

Z(A)
3 = Y(A)

3 + Y(A)
4 + Y(A)

5 + . . . + Y(A)
T+2

...

Z(A)
n−T+1 = Y(A)

n−T+1 + Y(A)
n−T+2 + Y(A)

n−T+3 + . . . + Y(A)
n ,

where n is the number of observations of one-year returns. Using the relations stated in
Equation (6), we easily obtain

http://www.econ.yale.edu/~shiller/data.htm
http://www.econ.yale.edu/~shiller/data.htm
https://fred.stlouisfed.org/series/TB6MS
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Z(A)
t = (β0 + β1X(A)

t−1 + ξt) + . . . + (β0 + β1X(A)
t+T−2 + ξt+T−1)

= β0T + β1γ0

T−1

∑
i=0

T−2−i

∑
j=0

γ
j
1 + β1X(A)

t−1

T−1

∑
i=0

γi
1 + β1

T−1

∑
i=0

T−2−i

∑
j=0

γ
j
1ηt+i +

T−1

∑
i=0

ξt+i

= φ0 + φ1X(A)
t−1 + νt,

where

φ0 := β0T + β1γ0

T−1

∑
i=0

T−2−i

∑
j=0

γ
j
1,

φ1 := β1

T−1

∑
i=0

γi
1,

νt := β1

T−1

∑
i=0

T−2−i

∑
j=0

γ
j
1ηt+i +

T−1

∑
i=0

ξt+i.

Table A1. Estimated parameters of the econometric model under the short-term interest rate bench-
mark or the inflation benchmark based on common predictive variables (earnings and spread) for
one- and five-year horizons. Changes (compared to Table 7) are provided in boldface. See also the
notes in Table 7.

Benchmark Short-Term Interest Rate Inflation Rate

µ̂ky σ̂ky R2
V ,ky σ µ̂ky σ̂ky R2

V ,ky σ

One-year (k = 1) 4.30 16.34 10.67 17.28 4.15 16.38 17.53 18.04
Five-year (k = 5) 20.93 32.41 21.78 36.65 27.41 33.52 14.85 36.33

α̂0 α̂1 σ̂1 σ̂2 α̂0 α̂1 σ̂1 σ̂2

Parameter estimate 6.27 −0.48 16.34 14.00 −0.17 0.95 16.38 14.62

Table A2. Predicted excess stock returns from the econometric model in Section 2.4 under the short-
term interest rate benchmark or the inflation rate benchmark based on common predictive variables
(earnings and spread). Changes (compared to Table 8) are provided in boldface.

Benchmark Short-Term Interest Rate Inflation Rate

Period e(R) Ŷ(R) Ŷ(R),c e(C) Ŷ(C) Ŷ(C),c

n 2.76 – – 3.47 – –
n + 1 2.87 4.08 4.30 4.72 4.56 4.15
n + 2 2.95 4.23 4.23 5.08 5.95 5.47
n + 3 3.02 4.34 4.17 5.18 6.35 5.85
n + 4 3.07 4.43 4.13 5.21 6.47 5.95
n + 5 – 4.50 4.10 – 6.50 5.98
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