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Abstract: A new high-order derivative-free method for the solution of a nonlinear equation is
developed. The novelty is the use of Traub’s method as a first step. The order is proven and
demonstrated. It is also shown that the method has much fewer divergent points and runs faster
than an optimal eighth-order derivative-free method.
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1. Introduction

In engineering and applied science, we encounter the problem of solving a nonlin-
ear equation

f (x) = 0 (1)

For example, the Colebrook equation [1] to find the friction factor, or finding critical
values of some nonlinear function. Another example is given by Ricceri [2] where the first
eigenvalue of Helmholtz equation is found by minimizing a functional. See also [3]. Most
numerical solution methods are based on Newton’s scheme, i.e., starting with an initial
guess x0 for the root ξ, we create a sequence {xn}

xn+1 = xn −
f (xn)

f ′(xn)
. (2)

The convergence is quadratic, that is,

|xn+1 − ξ| ≤ C2|xn − ξ|2. (3)

To increase the order, one has to include higher derivatives, such as Halley’s scheme [4]
using first and second derivatives and is of a cubic order. In order to avoid higher deriva-
tives, one can use multipoint methods, see Petković et al. [5].

Derivative-free methods are either linear (such as Picard), super-linear (such as secant)
or even quadratic, such as Steffensen’s method [6], given by

wn = xn + γ( f (xn))

xn+1 = xn −
γ( f (xn))2

f (wn − f (xn))

(4)

Because multistep methods are usually based on Newton’s steps, derivative-free
methods are based on Steffensen’s method as the first step. There are several derivative-free
methods based on Steffensen’s method for simple and multiple roots. See Kansal et al. [7]
for such family of methods for multiple roots and Zhanlav and otgondorj [8] for simple
roots. In a recent article, Neta [9] has shown that there is a better choice for a first step,
even though it is NOT second order. Traub’s method [10], given by

xn+1 = xn −
f (xn)

( f (xn−2)−− f (xn))

(xn−2 − xn)
− f (xn−2)− f (xn−1)

xn−2 − xn−1
+

f (xn−1)− f (xn)

xn−1 − xn

(5)
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is of order 1.839, and it runs faster and has better dynamics than several other derivative-
free methods. Clearly, one cannot get optimal methods (see Kung and Traub [11]) this way.
Kung and Traub [11] conjectured that multipoint methods without memory using d function
evaluations could have an order no larger than 2d−1. The efficiency index I is defined
as p1/d. Thus, an optimal method of order 8 has an efficiency index of I = 81/4 = 1.6817
and an optimal method of order 4 has an efficiency index I = 41/3 = 1.5874, which is
better than Newton’s method for which I =

√
2 = 1.4142. The efficiency index of optimal

method cannot reach a value of 2. In fact, realistically, one uses methods of an order of
at most 8. For high order derivative-free methods based on Steffensen’s method as a first
step, see Zhanlav and Otgondorj [8] and references there. Such methods are especially
useful when the derivative is very expensive to evaluate and, of course, when the function
is non-differentiable.

Here, we develop a derivative-free method with memory based on Traub’s method (5)
as the first step and the other two steps are based on replacing the derivative by the deriva-
tive of Newton interpolating polynomial of degree 3. In the next section, we will discuss
the order of the scheme and the computational order of convergence, COC, defined by

coc =
ln
∣∣∣∣ xi − α

xi−1 − α

∣∣∣∣
ln
∣∣∣∣ xi−1 − α

xi−2 − α

∣∣∣∣ (6)

where α is the final approximation for the zero ξ.

2. New Method

We suggest a 3-step method having (5) as the first step. The method is

yn = xn −
f (xn)

( f (xn−2)− f (xn))

(xn−2 − xn)
− f (xn−2)− f (xn−1)

xn−2 − xn−1
+

f (xn−1)− f (xn)

xn−1 − xn

,

zn = yn −
f (yn)

f ′(yn)
,

xn+1 = zn −
f (zn)

f ′(zn)
.

(7)

The derivatives in the last two steps are approximated by the derivative of Newton
interpolating polynomial of degree 3:

f ′(yn) = f [yn, xn] + f [yn, xn, xn−1](yn − xn) + f [yn, xn, xn−1, xn−2](yn − xn)(yn − xn−1), (8)

and

f ′(zn) = f [zn, yn] + f [zn, yn, xn](zn − yn) + f [zn, yn, xn, xn−1](zn − yn)(zn − xn), (9)

and f [a, b] is the divided difference.
Let us denote the errors en = xn − ξ, ey = yn − ξ and ez = zn − ξ. The error in the first

step is given by Traub
ey = Ce1.839

n .

The other two steps are of the same order as the Newton’s method, i.e., ez = e2
y and

en+1 = e2
z . Therefore, the order of the method is 4× 1.839 = 7.356. The efficiency index

I = p1/d = 7.3561/3 = 1.945 is higher than that of the 3-step optimal eighth order method.
This is typical of methods with memory.
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In Table 1, we list the computational order of convergence as defined by (6) for 16
different nonlinear functions. The values range from 6.622 to 7.394 with an average value
of 6.872.

Table 1. Computational order of convergence for several functions using our new method.

Index f (x) x0 Number of Iterations COC

1
(
ex+3 − 1

)
(x− 1) 10.0 8 6.78

2 x3 + 4x2 − 10 −2.6 30 7.048
3 (sin x)2 − x2 + 1 2.0 3 6.622
4 (x− 1)3 − 1 3.5 4 6.728
5 x3 − 10 4.0 4 6.901
6 xex2 − (sin x)2 + 3 cos x + 5 −1.0 3 7.048
7 ex2+7x−30 − 1 4.0 9 6.793
8 sin x− x/2 2.0 3 6.848
9 x5 + x− 10, 000 4.0 4 6.780

10
√
(x)− 1/x− 3 9.0 3 6.674

11 ex + x− 20 0.0 5 7.049
12 ln x +

√
(x)− 5 10.0 3 6.659

13 x3 − x2 − 1 4.0 4 6.912
14 x5 − 1 10.0 7 6.749
15

(
ex+1 − 1

)
(x− 1) 5.0 5 7.394

16
(
ex+3 − 1

)(
ex−1 − 1

)
15.0 14 6.964

3. Dynamics Study of the Methods

The basin of attraction method was initially discussed by Stewart [12]. This is better
than comparing methods on the basis of running several nonlinear functions using a certain
initial value. In the last decade, many papers appeared using the idea of basin of attraction
to compare the efficiency of many methods. See, for example, Chun and Neta [13,14] and
references there.

In this section, we describe the experiments with our method as compared to TZKO [8].
We chose four polynomials and one non-polynomial function all having roots within

a 6 by 6 square centered at the origin. The square is divided horizontally and vertically
by equally spaced lines. We took the intersection of all these lines as initial points in
the complex plane for the iterative schemes. The code collected the number of iteration
or function evaluation to converge within a tolerance of 10−7 and the root to which the
sequence converged. If the sequence did not converge within 40 iterations, we denote it
as a divergent point. We also collected the CPU run time to execute the code on all initial
points using a Dell Optiplex 990 desktop computer.

We ran all methods on the following five examples, four of which are polynomials:

1. z2 − 1
2. z3 − 1
3. z4 − 1
4. z5 − 1
5.

(
ez+1 − 1

)
(z− 1)

Remark 1. The additional starting values are x−1 = x0 + 0.01 and x−2 = x0 + 0.02.

It is clear from these tables that our method runs faster (see Table 2), uses fewer
function-evaluations per point (see Table 3) and has much fewer divergent points (see
Table 4). In fact, for 3 out of 5 examples, our method had NO divergent points. We now
take an example known to be hard, i.e., the Wilkinson-type polynomial

q(z) = z(z2 − 1/4)(z2 − 1)(z2 − 9/4)(z2 − 4) (10)
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which has roots at z = 0,±1/2,±1,±3/2,±2. Our method runs fast and had no divergent
points. TZKO requires more than double the CPU run time for our method and had
166,138 divergent points. The plots of the basins for this example are given in Figure 1.
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Figure 1. Our method (left) and TZKO (right) for the roots of the polynomial q(z) (10)
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Figure 1. Our method (left) and TZKO (right) for the roots of the polynomial q(z) (10).

Table 2. CPU time (msec) for each example (1–5) and each of the methods.

Method Ex1 Ex2 Ex3 Ex4 Ex5 Average

TZKO 290.886 545.869 621.265 745.541 334.541 507.620
Neta 201.156 277.703 391.063 435.844 302.438 321.641

Table 3. Average number of function evaluations per point for each example (1–5) and each of
the methods.

Method Ex1 Ex2 Ex3 Ex4 Ex5 Average

TZKO 11.85 19.52 25.60 29.26 12.25 19.70
Neta 6.77 8.01 10.72 11.02 8.37 8.98

Table 4. Number of black points for each example (1–5) and each of the methods.

Method Ex1 Ex2 Ex3 Ex4 Ex5 Average

TZKO 2364 16,674 27,745 33,419 2640 16,568
Neta 487 0 0 0 2542 606

4. Conclusions

We have developed a derivative-free method with memory based on Traub’s method
as the first step. The method is of order 7.356 and has an efficiency index of 1.945, which is
higher than any optimal eighth order method. We have shown that our method is faster,
uses fewer function evaluations per point, and has much fewer divergent points.
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