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Abstract: This aim of this paper is to provide the immune particle swarm optimization (IPSO)
algorithm for solving the single-leader–multi-follower game (SLMFG). Through cooperating with
the particle swarm optimization (PSO) algorithm and an immune memory mechanism, the IPSO
algorithm is designed. Furthermore, we define the efficient Nash equilibrium from the perspective of
mathematical economics, which maximizes social welfare and further refines the number of Nash
equilibria. In the end, numerical experiments show that the IPSO algorithm has fast convergence
speed and high effectiveness.

Keywords: single-leader–multi-follower game; immune particle swarm optimization (IPSO) algo-
rithm; probability density selection function; efficient Nash equilibrium

1. Introduction

In 1950, Nash equilibrium was formulated based on noncooperative games formed
among all players, and the existence of an equilibrium point was proven [1,2]. In economics,
most noncooperative game theory has focused on equilibrium in games, especially Nash
equilibrium and its refinements [3]. Nash equilibrium means that every player cannot
obtain additional advantage by adjusting his/her present strategy individually. The Nash
equilibrium has played significant roles in many disciplines: psychology, economics,
engineering management, computer sciences [4], reinsurance bargaining [5], etc. The Nash
equilibrium may not be unique but multiple. Thus, the player is confused when making
decisions. For the refinement of the Nash equilibrium, efficiency is introduced by using
the efficient mechanism design of mathematical economics [6]. This paper proposes the
efficient Nash equilibrium, which can be beneficial to all players in that social welfare is
maximized and the number of Nash equilibria is greatly reduced. Hence, the study of the
efficient Nash equilibrium has certain practical significance.

A single-leader–multi-follower game (SLMFG) is a special form of the leader–follower
game, also called the bilevel programming problem. Yu [7] introduced the Nash equilib-
rium point existence theorem for the SLMFG and multi-leader–follower game. Jia et al. [8]
established the existence theorem for the weakly Pareto Nash equilibrium of the SLMFG.
Furthermore, SLMFGs are widely used in resource coordination [9], energy scheduling [10],
cellular data traffic and 5G networks [11], hexarotors with tilted propellers [12], etc. The
SLMFG contains one leader and multiple followers. The leader is capable of dominating
and expecting the responses of the followers, and the leader selects the best strategy from
his own feasible strategy space by knowing the responses of the followers. The followers
make their optimal responses according to the leader’s given strategy. Currently, many
problems can be treated as leader–follower problems in reality, such as those between
suppliers and retailers [13], between groups and subsidiaries, between central and local
governments [14], and between defenders and multiple attackers [15].

Furthermore, a SLMFG is regarded as a bilevel programming problem with a leader–
follower hierarchical structure [16]. Currently, the study of linear bilevel programming is
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relatively mature, but the studies on nonlinear bilevel programming are lacking. Nonlinear
bilevel programming is a NP-hard problem [17,18]. Fortunately, with the development
of biological evolution and heuristic algorithms, swarm intelligent algorithms have dis-
played the potential for possibly solving nonlinear bilevel programming problems. Many
scholars have tried to solve the Nash equilibrium of the SLMFG by using swarm intelli-
gence algorithms, including a dynamic particle swarm optimization algorithm [19], genetic
algorithms [20,21], and a nested evolutionary algorithm [22]. We consider swarm intelli-
gence algorithms for solving the SLMFG, which has an evident theoretic foundation and
applied significance.

The paper is organized as follows. In the next section, we present the model of the
single-leader–multi-follower game, the efficient Nash equilibrium of the SLMFG, and some
assumptions of the SLMFG. In Section 3, we consider that the SLMFG is turned into a
nonlinear equation problem (NEP) by using the Karush–Kuhn–Tucker (KKT) condition
and complementarity function methods. In Section 4, the IPSO algorithm consists of intro-
ducing the antibody concentration inhibition mechanism and immune memory function
into the particle swarm optimization (PSO) algorithm. In Section 5, we solve some numer-
ical experiments by utilizing the IPSO algorithm. Additionally, the IPSO algorithm has
the advantages of few parameters, easy implementation, and random generation of the
initial point. Furthermore, the IPSO algorithm has a fast convergence speed, as shown by
observing its off-line performance. Finally, several numerical experiments showed that the
IPSO algorithm is practicable: the efficient Nash equilibrium is solved and the number of
Nash equilibria is greatly reduced.

2. Preliminaries and Prerequisites

In this section, we present the model of the SLMFG, the efficient Nash equilibrium,
and some assumptions of the SLMFG.

2.1. The Model of the Single-Leader Multi-Follower Game (SLMFG)

Assume that I = {1, 2, . . . , n} is a set of followers and yi (i ∈ I) is the control vector

of the ith follower. The ith follower’s feasible strategy set is Yi (i ∈ I), where Y =
n
∏
i=1

Yi,

Y−i = ∏
j∈I\{i}

Yj, and −i = I\{i}. The leader’s feasible strategy set is X, and x ∈ X is the

control vector of the leader. The objective function of the leader is ϕ : X × Y → R, and
the followers’ objective functions are fi : X × Y → R. Furthermore, the followers’ best
response feasible strategies regarding the leader’s strategy parameter x are defined by the
set-value mapping K : X → 2Y as follows:

K(x) = {y ∈ Y| fi(x, yi, y−i) = min
ui∈Yi

fi(x, ui, y−i)}. (1)

Assume that a strategy profile for the followers is y∗ = (y∗1 , y∗2 , . . . , y∗n) ∈ Y; for any
i ∈ I, the following equation is satisfied:

fi(x, y∗i , y∗−i) ≤ fi(x, ui, y∗−i), ui ∈ Yi. (2)
In that case y∗ is called the Nash equilibrium of the followers if the leader’s strategy

x∗ satisfies
ϕ(x∗, y∗) = max

x∈X
ϕ(x, y∗). (3)

x∗ is the Nash equilibrium of the leader; hence, the strategy profile (x∗, y∗) is the Nash
equilibrium of the SLMFG, and this means that each follower cannot obtain additional
payment by altering his/her recent strategy singly, that is, every follower makes his/her
best response when the strategy of the leader is given.

The SLMFG (Figure 1) model of a leader and n followers be expressed as follows:
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Figure 1. The model of the single-leader–multi-follower game.

2.2. The Special Form of the SLMFG

From now on, we make the following some assumptions:

Assumption 1.

(a) The leader’s objective function ϕ : X×Y → R and the leader’s feasible set G, G : X → R are
both continuous.

(b) The followers’ objective functions fi : X × Y → R(i ∈ I) and the followers’ constraint
functions gi : X×Y → R are both differentiable with local Lipschitz continuity.

(c) For every follower i ∈ I, given any y−i, each follower’s objective function fi(x, yi, y−i)(i ∈ I)
is convex concerning yi, and the constraint function gi(x, yi, y−i) is convex with respect to yi.

A general expression for the above model is as follows:

The leader :

{
max
x∈X

ϕ(x, y),

s.t.G(x) ≤ 0,

The followers : ∀i ∈ I,

{
min
y∈Y

fi(x, y),

s.t.gi(x, yi, y−i) ≤ 0,

(4)

where x and y denote the leader’s decision variable and the followers’ decision variables,
respectively. ϕ represents the leader’s objective function and fi(i ∈ I) represent the
followers’ objective functions. The leader first selects his/her own strategy x, and the
followers choose their own strategies y = (y1, . . . , yn) through the leader’s given strategy x.

We define the set for problem (4) as follows [18,23]:
The feasible set of problem (4) is Ω = {(x, y) ∈ X × Y|G(x) ≤ 0, gi(x, yi, y−i) ≤ 0}.

For fixed values of x ∈ X, the feasible set for the followers is Ω(x) = {y ∈ Y|gi(x, yi, y−i) ≤
0}. The projection of Ω in the leader’s decision space is represented by X̄ = {x|∃y, s.t.(x, y)
∈ Ω}. For fixed values of x ∈ X̄, the response set for the followers is K(x) = {y|y ∈
argmin{ fi(x, y)|y ∈ Ω(x)}}, and the induced domain of problem (4) is Ξ = {(x, y)|x ∈
X̄, y ∈ K(x)}. Thus, the problem (4) can be translated into an optimization problem
as follows:

max{ϕ(x, y)|(x, y) ∈ Ξ}. (5)

Since the Nash equilibrium may not be unique but multiple, the players are confused
when making decisions. The refinement of the Nash equilibrium is an essential prerequisite.
Thus, the concept of efficiency is incorporated into the Nash equilibrium, called the efficient
Nash equilibrium, which maximizes social welfare and further refines the number of Nash
equilibria. Efficient Nash equilibrium expresses a win–win idea under certain conditions,
making it beneficial to all players and enabling it to reduce the number of Nash equilibria.

2.3. The Definition of Efficient Nash Equilibrium

We give the following some definitions:
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Definition 1 ((Efficiency) [6]). If a strategy maximizes social welfare in a way that the leader
obtains the biggest rewards and the sum of the followers’ payoff is the smallest in the entire feasible
strategy space, then it is called efficient.

Definition 2 (Efficient Nash equilibrium). Let S be all Nash equilibrium strategies of the
SLMFG, the sum function mapping is U : X × Y → R, Uk(x, y)(k = 0, 1, . . . , n) indicates the
sum of the payoffs obtained from all Nash equilibrium strategies S, where k = 0 denotes the payoff
sum from the leader’s strategy and k = 1, . . . , n denote the payoff sums from followers’ strategy. If
the sum of the payoffs Z∗(Z∗ ∈ S), then, for any other strategy, the sum of the payoffs Z(Z ∈ S)
satisfies the following:

n

∑
i=0

Ui(Z) ≤
n

∑
i=0

Ui(Z∗), ∀Z ∈ S,

and then Z∗ is called the efficient Nash equilibrium. This means that social welfare is maximized,
and each player cannot obtain additional advantages by altering his/her present strategy individually.

The set of Nash equilibria depends on the leader’s decision variable x and the followers’
decision variables y = (y1, . . . , yn). If x and y = (y1, . . . , yn) satisfy the following equation:

ϕ(x∗) = max
x∈X

ϕ(x) = max
x∈X

max
y∈K(x)

ϕ(x, y),

y∗ ∈ K(x∗),

ϕ(x∗, y) ≤ ϕ(x∗, y∗), ∀y ∈ K(x∗), (6)
n

∑
i=1

Ui(x∗, y) ≤
n

∑
i=1

Ui(x∗, y∗), i = 1, . . . , n.

Then, (x∗, y∗) is the efficient Nash equilibrium of the SLMFG, and this signifies that the
leader obtains the largest rewards; the sum of the followers’ payoffs is the smallest under
the strategy profile (x∗, y∗); and the leader and the followers cannot obtain additional
reward by altering their current strategies unilaterally.

3. The Transformation of the SLMFG

When the upper-level leader’s strategy is given, we need to be able to consider convert-
ing the lower-level follower problem into a nonlinear equation problem (NEP). Through
the Karush–Kuhn–Tucker (KKT) condition, the SLMFG is converted into a nonlinear com-
plementarity problem (NCP), and the nonlinear complementarity problem is transformed
into a NEP through the complementarity function method. Therefore, the SLMFG problem
is regarded as a nonlinear optimization problem with a bilayer structure, and the SLMFG
problem is solved by using the IPSO algorithm.

3.1. The SLMFG Is Turned into a Nonlinear Equation Problem (NEP)

When the followers satisfy Assumption 1(b,c), the optimal solutions of the followers
are represented by the Karush–Kuhn–Tucker (KKT) condition, and the followers can be
expressed as NCP through the KKT condition [24]. Therefore, when the leader’s strategy x
is given, if y∗ contains the appropriate constraint condition, after that there is a multiplier
λ∗i such that (x, y∗i , λ∗i ) satisfies the following KKT system [25]:

∇yi L(x, yi, y∗−i, λi) = 0

0 ≤ λi⊥− gi(x, yi, y−i) ≥ 0,
(7)

where gi(x, yi, y−i) are the constraints of the followers, which depend on the control
variables of the leader and the control variables of the followers. The Lagrangian function
for the ith follower of system (7) is as follows:
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L(x, yi, y−i, λi) = fi(x, yi, y−i) + λigi(x, yi, y−i). (8)

Consequently, system (7) is regarded as a first-order necessary condition for the
followers. Let the SLMFG further satisfy Assumption 1(c); then, ∀y−i(i = 1, 2, . . . , n),
formula (5) is turned into a convex optimization problem, and system (7) turns into the
SLMFG’s sufficient state. We can obtain the following result:

Theorem 1. Let the SLMFG satisfy Assumption 1; if (x∗, y∗, λ∗) satisfies Equation (6) and
system (7), then a strategy profile (x∗, y∗) is the efficient Nash equilibrium of the SLMFG.

For F : R×Rn → R, F (x, y) = vec{∇yi fi(x, yi, y−i)}n
i=1, system (7) is equal to the

system as follows:

F (x, y) +
n

∑
i=1
∇yi gi(x, yi, y−i)λi = 0

0 ≤ λi⊥− gi(x, yi, y−i) ≥ 0.

(9)

System (9) is NCP, thus the followers’ problems of the SLMFG are converted into the
NCP for the convex optimization. The Lagrangian function is uncertain differentiable,
so the function needs to be smoothed further [24–26], but the function only needs a
differentiable in this paper. However, through the complementary function, the system (9)
is converted into a NEP in this paper.

3.2. The Nonlinear Complementarity Problem (NCP) Is Converted into a Nonlinear Equation
Problem (NEP)

A NCP is transformed into a NEP through complementarity function methods. The
function φ : R2 → R is called a complementarity function if and only if φ(E, F) = 0 ⇔
E ≥ 0, F ≥ 0, E · F = 0. The Fisher–Burmeister (FB) function can be written as φFB(E, F) =
E + F−

√
E2 + F2, that is, we obtain the following complementarity function:

Θ(x, y, λ) =



L(x, y, λ)
θFB(−g1(x, y), λ1)

...
θFB(−gi(x, y), λi)

...
θFB(−gn(x, y)), λn)


, (10)

where Θ(x, y, λ) is a FB function; then, the solution of Equation (10) is equivalent to
Θ(x, y, λ) = 0. Consequently, the followers’ problems are transformed into a NEP by
the Fisher-Burmeister (FB) complementarity function. Thus, the NCP for the followers
is converted to a NEP. For the NEP, the IPSO algorithm is designed to solve the optimal
responses y∗ of the followers and the leader’s optimal strategy x∗, respectively.

For followers, the fitness function is expressed as follows:

F(x, y) = ‖Θ(x, y, λ)‖2. (11)

Obviously, F(x, y) = 0⇔ Θ(x, y, λ) = 0, which means solving the value of min
x∈X̄,y∈K(x)

F(x, y) under the leader’s fixed strategy. We obtain the followers’ optimal strategies y∗ by
the IPSO algorithm.

For the leader, the fitness function is as follows:

ψ(x, y) = max
x∈X

ϕ(x, y). (12)
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Furthermore, we can obtain the leader’s optimal strategy x∗ by the IPSO algorithm.
For the SLMFG, with (x∗, y∗) satisfying Definition 2, the efficient Nash equilibrium (x∗, y∗)
is solved by using the IPSO algorithm. Finally, we obtain a reasonable, efficient Nash
equilibrium solution by a refinement of the Nash equilibrium, which implies benefits to
all players.

4. The Design of Immune Particle Swarm Optimization (IPSO) Algorithm

For a nonlinear equation equilibrium problem, the IPSO algorithm is designed by
incorporating an immune memory function and an antibody concentration inhibition
mechanism into the PSO algorithm. In this section, the IPSO algorithm is designed.

4.1. The Particle Swarm Optimization (PSO) Algorithm

The PSO algorithm was originally derived by Kennedy and Eberhart [27]. The PSO
algorithm finds the optimal solution through collaboration and shares information among
individuals. In the PSO algorithm, the solution of each optimization problem can be viewed
as a “particle” in the search space. In the PSO algorithm with a population size of M and
an N-dimensional space, xi = (xi1, xi2, . . . , xiN) denotes the position vector of particle i and
vi = (vi1, vi2, . . . , viN) represents velocity vector of particle i. According to the optimization
model, each particle moves towards its own best current position pbest (known as personal
best) and towards the globally best particle gbest (global best). At step t, the basic velocity
and position of particle i are updated using the following equation:

vt+1
i = wvt

i + c1r1(pbest − xt
i ) + c2r2(gbest − xt

i ), (13)

xt+1
i = xt

i + vt+1
i , (i = 1, 2, . . . , M), (14)

where c1 is the cognizant factor and c2 is the communal factor. r1 and r2 are two N × N
diagonal elements uniformly distributed in the section [0,1]. w is the inertia weight and w
has an impact on the global and local exploration capabilities of the particle. When w is
large, the global exploration ability is strong at the beginning of the process. When w is
small, the local exploitation ability is stronger in the search space than when the weight is
large. At present, increasing the value of the dynamic inertia weight value causes a linear
decrease in the weight strategy, and the calculation formula is as follows [28]:

w = wmax − T
wmax − wmin

Tmax
, (15)

where wmax is the maximum inertia weight and wmin is the minimum inertia weight.
Tmax and T are the maximum number of iterations and the current number of iterations,
respectively.

4.2. The Immune Particle Swarm Optimization (IPSO) Algorithm

The IPSO algorithm is a novel intelligent optimization algorithm [29,30] in view of
the immune evolution mechanism and information sharing in biological immune systems.
The optimal solution is regarded as an antibody, and the functions of object and the
restricting terms are considered antigens. The IPSO algorithm is the combination of a
probability concentration selection function and the PSO algorithm. During the process of
particle (antibody) population updating, we always hope that highly adaptable particles
(antibodies) are left behind. If a particle (antibody) is too concentrated, it is difficult
to guarantee the diversity of the particle (antibody), and the algorithm may even fall
into a local optimum. Therefore, those particles which have worse fitness but a better
evolutionary tendency are maintained through the antibody probability concentration
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selection formula. Antibody M + Q consists of a nonempty set X, and the distance of the
antibody F(x, yi)(i = 1, 2, . . . , M + Q) is calculated by

ρ1(x, yi) =
M+Q

∑
j=1
|F(x, yi)− F(x, yj)|, j = 1, 2, . . . , M + Q, (16)

ρ2(xi, y) =
M+Q

∑
j=1
|ψ(xi, y)− ψ(xj, y)|, j = 1, 2, . . . , M + Q. (17)

We can define the concentration formula of particle i as follows:

D1(x, yi) =
1

ρ1(x, yi)
=

1
M+Q

∑
j=1
|F(x, yi)− F(x, yj)|

, (18)

D2(xi, y) =
1

ρ2(xi, y)
=

1
M+Q

∑
j=1
|ψ(xi, y)− ψ(xj, y)|

. (19)

We can attain the probability concentration selection function for the followers as [31]:

P1(x, yi) =

1
D1(x,yi)

M+Q
∑

i=1

1
D1(x,yi)

=

M+Q
∑

j=1
|F(x, yi)− F(x, yj)|

M+Q
∑

i=1

M+Q
∑

j=1
|F(x, yi)− F(x, yj)|

, (20)

where yi(i = 1, 2, . . . , M + Q) represents the particle position for the followers and F(x, yi)
denotes the fitness value of the function for the followers.

Similarly, we can also obtain the probability density selection function for the leader
as follows:

P2(xi, y) =
1

D2(xi ,y)
M+Q

∑
i=1

1
D2(xi ,y)

=

M+Q
∑

j=1
|ψ(xi, y)− ψ(xj, y)|

M+Q
∑

i=1

M+Q
∑

j=1
|ψ(xi, y)− ψ(xj, y)|

, (21)

where xi(i = 1, 2, . . . , M + Q) represents the particle position for the leader and ψ(xi, y) is
the fitness value of the function for the leader.

Increasing the new population Q primarily maintains the dynamic equilibrium of the
population and takes the role of adjusting population concentration. Specifically, when the
evolutionary population exhibits worse diversity and weaker global search ability, the IPSO
algorithm allows the population to shift to a region with a better evolutionary tendency.

4.3. Implementation Steps of the IPSO Algorithm

The IPSO algorithm implement steps are as follows:

Step 1: Initialize the parameters. The maximum number of iterations for the followers is
T1 and the maximum number of iterations for the leader is T2. The acceleration
constants are c1 and c2, the inertia weight values are wmax and wmin, and the
precision is ε. The size of the randomly generated population is M, and the initial
value x0 is randomly generated according to the feasible domain of the leader.

Step 2: The IPSO algorithm can obtain the initial population p0 by randomly generating
the followers’ initial positions yi(i = 1, 2, . . . , n) and initial velocities vyi with the
followers’ set-value mappings.
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Step 3: The IPSO algorithm is used to calculate each particle’s fitness function value for
the followers and find the individual best position pybest and population best
position gybest.

Step 4: Equation (15) is used to compute the inertia weight w.

Step 5: Equations (13) and (14) are used to update the velocities and positions of followers
particles, respectively; compare the fitness functions of the particles; and retain the
population best position in the memory library.

Step 6: Followers are randomly generated to obtain a new population with size Q.

Step 7: We select population M from the new population M + Q through the probability
concentration selection formulation Equation (20).

Step 8: We choose particles from the memory library to replace particles with poor fitness,
and then the immune system produces a next generation of particles p1. Then,
the algorithm continues to update the particle velocities and positions by using
Equations (13) and (14).

Step 9: By calculating the fitness value of particle yi’s current position, yi’s fitness value
is compared with yi−1’s fitness value. If F(x0, yi) < F(x0, yi−1), then yi−1 = yi;
otherwise, yi = yi−1.

Step 10: Each particle’s fitness function value for the followers is calculated, and the
individual best position pybest and population best position gybest are found. Hence,
we can compare the fitness value of the particle yi with the fitness value of the
global gybest; if F(x0, gybest) < F(x0, yi), then yi = gybest; otherwise, gybest = yi.

Step 11: Stopping condition of the followers: Does the maximum number of iterations
T1 or the precision |F(xi−1)− F(xi)| < ε1 satisfy the termination condition? If
yes, we output the optimal particle y∗ (approximate solution of the followers);
otherwise, we return to Step 4 .

Step 12: The followers’ optimal particle y∗ is returned as feedback to the leader.

Step 13: The IPSO algorithm is used to calculate each particle’s fitness function value
for the leader and find the individual best position pxbest and population best
position gxbest.

Step 14: The leader particle’s initial position xi and initial velocity vxi are randomly gener-
ated. For each particle i, Equation (13) is applied for updating the velocity of the
particle and Equation (14) is applied to update the position of the particle.

Step 15: A new population number of size Q is randomly generated.

Step 16: We choose population M from the new population M + Q through the probability
concentration selection formula Equation (21).

Step 17: From the memory library, we choose particles to replace particles with worse
fitness among the population, and the immune system generates a new generation
of particles p1. Then, the algorithm continues to update the particle velocities and
positions by using Equations (13) and (14).

Step 18: By calculating and comparing xi’s fitness value with xi−1’s fitness value, if ψ(xi, y∗)
> ψ(xi−1, y∗), then xi−1 = xi; otherwise, xi = xi−1.

Step 19: Each particle’s fitness function value for the leader is calculated, and the individ-
ual best position pxbest and population best position gxbest are found. Hence, we
can compare the particle xi’s fitness value with the global optimal particle gxbest’s
fitness value; if ψ(gxbest, y∗) > ψ(xi, y∗), then xi = gxbest; otherwise, gxbest = xi.

Step 20: Stopping condition for the leader: Is the maximum number of iterations T2
achieved or is the precision |ψ(xi−1)− ψ(xi)| < ε2? If yes, we output the optimal
particle x∗; otherwise, we return to Step 14.

Step 21: Finally, if (x∗, y∗) satisfies Definition 2, then (x∗, y∗) denotes the efficient Nash
equilibrium set of the SLMFG.
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The flow chart of the IPSO algorithm is presented in Figure 2:

Figure 2. The flow chart of the immune particle swarm optimization algorithm.

4.4. Performance Evaluation of the IPSO Algorithm

The IPSO algorithm expresses a bio-evolving swarm intelligence algorithm that is
parallel to genetic algorithms (GAs), such as “natural selection” and “survival of the fittest”.
Thus, the measurable analysis method proposed by De Jong [32] can be used for evaluating
the convergence of the IPSO algorithm according to its off-line performance.

Definition 3. The functions off-line performance for the followers and the leader are s∗ : R→ R
and u∗ : R→ R, respectively. Their final expressions are as follows:

The followers : s∗(x, y) =
1

T1

T1

∑
t=1

F∗(x, y),

The leader : u∗(x, y) =
1

T2

T2

∑
t=1

ψ∗(x, y).

From above equations, we know that off-line performance represents the cumulative average of
the best fitness function. When particles are closer to the fitness function value, the particles can
better adapt to the SLMFG problems, thus the particles are more suitable for the objective functions
under certain constraints.

5. Numerical Experiment

The SLMFG can be regarded as a bilevel programming problem. In the paper, the IPSO
algorithm is applied for solving the leader’s optimal strategy x∗ and the followers’ optimal
strategy y∗, respectively. The IPSO algorithm parameters are set as follows: the population
size is M = 30, the learning factors are c1 = c2 = 2, wmax = 0.2, and wmin = 0.1. The
maximum numbers for the followers and leader are T1 = 300 and T2 = 200, respectively.
The size of the new population of followers is Q = 10 and the precision of the fitness
function is set to ε = 10−3. The Nash equilibrium of the SLMFG is solved by the IPSO
algorithm, and we can calculate the efficient Nash equilibrium by a refinement of the Nash
equilibrium, which implies benefits to all players.
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Example 1. Suppose we have a SLMFG, where the leader strategy is x and the followers’ strategies
are y1 and y2. The leader’s payoff function is ϕ(x, y), and the followers’ payoff functions are
f1(x, y1) and f2(x, y2).

max
x

ϕ(x, y) = xy1y2

s.t.0 ≤ x ≤ 40.

min
y1

f1(x, y1) = (y1 − 4)2

s.t.2y1 + x ≤ 30,

y1 ≥ 0.

min
y2

f2(x, y2) = (y2 − 5)2

s.t.y2 + 2x ≤ 20,

y2 ≥ 0.

The corresponding numerical results of Example 1 are given in Tables 1 and 2, and its
off-line performance is shown in Figure 3a,b, respectively.

Table 1. The IPSO algorithm for solving the followers’ result of Example 1.

Times Number of Iterations Efficient Nash Equilibrium Fitness Function Value

1 285 y1 = 3.998, y2 = 5.026 21.8 × 10−3

2 274 y1 = 3.998, y2 = 4.997 2.2 × 10−3

3 276 y1 = 3.940, y2 = 5.008 27.7 × 10−3

4 292 y1 = 3.975, y2 = 5.043 44.6 × 10−3

5 288 y1 = 4.031, y2 = 4.994 27.9 × 10−3

(a) The number of iterations for the followers (b) The number of iterations for the leader

Figure 3. Off-line performance of the followers and leader for the IPSO algorithm.

Table 2. The IPSO algorithm for solving the leader’s result of Example 1.

Times Number of Iterations Efficient Nash Equilibrium Fitness Function Value

1 75 x = 7.487 150.445
2 80 x = 7.501 149.932
3 84 x = 7.500 150.000
4 101 x = 7.479 149.898
5 150 x = 7.5032 151.022

In Table 1, the average number of iterations for the follower problem is 283, and we
can obtain that the approximate solution for the followers is (4, 5)T. In Table 2, the average
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number of iterations for the leader problem is 98, and we obtain that the leader’s approxi-
mate efficient Nash equilibrium is 7.5. The efficient Nash equilibrium can minimize the
income gap for the followers and maximize the rewards earned by the leader, thus strategy
(7.5, 4, 5) is an efficient Nash equilibrium since Example 1 is just unique Nash equilibria.
During the calculation process, the number of iterations is small and the convergence of
the IPSO algorithm does not depend on the selection of the initial points. Furthermore, it
greatly reduces the calculation time of the algorithm, and it does not easily fall into the
local optimal solutions. As shown in Figure 3a,b, the off-line performance of the algorithm
indicates that the algorithm has a fast convergence speed and is effective.

Example 2. Suppose we have a SLMFG [33], where the leader strategy is x = (x1, x2, x3, x4) and
the strategies of the followers are y1 = (y11, y12) and y2 = (y21, y22). The leader’s payoff function
is ϕ(x, y1, y2), and the followers’ payoff functions are f1(y1) and f2(y2).

max
x

ϕ(x, y1, y2) = (200− y11 − y21)(y11 + y21) + (160− y12 − y22)(y12 + y22)

s.t.x1 + x2 + x3 + x4 ≤ 40,

0 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 5, 0 ≤ x3 ≤ 15, 0 ≤ x4 ≤ 20.

min
y1

f1(y1) = (y11 − 4)2 + (y12 − 13)2

s.t.0.4y11 + 0.7y12 ≤ x1,

0.6y11 + 0.3y12 ≤ x2,

0 ≤ y11, y12 ≤ 20.

min
y2

f2(y2) = (y21 − 35)2 + (y22 − 2)2

s.t.0.4y21 + 0.7y22 ≤ x3,

0.6y21 + 0.3y22 ≤ x4,

0 ≤ y21, y22 ≤ 40.

For the leader’s decision vector x0, the followers’ corresponding strategy is (y1, y2).
The optimal decision vector for the followers may not be unique when the strategy of the
leader fixed. Thus, the efficient Nash equilibrium is also not unique and may even be
multiple, but the number of Nash equilibria is greatly reduced, thus the Nash equilibria
are refined efficiently. The followers’ strategy y = (y1, y2) is solved by the IPSO algorithm,
and the leader’s strategy x∗ is solved by the IPSO algorithm. The numerical results are
shown in Table 3:

Table 3. The IPSO algorithm for solving the numerical result of Example 2.

x y1 y2 maxϕ(x, y1, y2) min f1(y1) min f2(y2)

(7, 3, 12, 18) (0, 10) (30, 0) 6600 25 29
(6.97, 3.03, 12.03, 17.97) (0.1, 9.9) (29.9, 0.1) 6600 24.82 29.62
(6.96, 3.04, 12.05, 17.95) (0.15, 9.85) (29.85, 0.15) 6600 24.745 29.945
(6.94, 3.06, 12.06, 17.94) (0.2, 9.8) (29.8, 0.2) 6600 24.68 30.28
(6.91, 3.09, 12.09, 17.91) (0.3, 9.7) (29.7, 0.3) 6600 24.58 30.98
(6.85, 3.15, 12.15, 17.85) (0.5, 9.5) (29.5, 0.5) 6600 24.5 32.50

(6.7, 3.3, 12.3, 17.7) (1, 9) (29, 1) 6600 25 37
(7.05, 3.13, 11.93, 17.89) (0.26, 9.92) (29.82, 0.00) 6599.99 23.47 30.83

· · · · · · · · · · · · · · · · · ·

A run of the IPSO algorithm with 178 iterations for the followers and 105 iterations
for the leader was executed. The calculation results are shown in Table 3. When the leader
has the greatest benefit, there is dynamic competition among followers, that is, when one
player’s income grows, the other player’s income is reduced. The total CPU time spent
was 41 s. By Definitions 1 and 2, the leader chooses the strategy that maximizes the total
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rewards and minimizes followers’ income gap, which means social welfare is maximized,
and further each player cannot obtain additional rewards by varying his/her present
strategy individually. In Table 3, the minimum total payoff min{min f1(y1) + min f2(y2)}
is equal to 54 for the followers, and the smallest income gap min{min f1(y1)−min f2(y2)}
is equal to 4. At this point, we can obtain that the efficient Nash equilibrium solution is
(7, 3, 12, 18; 0, 10; 30, 0) with the leader’s objective value ϕ(x∗, y∗) = 6600, and the objective
values of the two followers are f1(y∗1) = 25 and f2(y∗2) = 29, respectively. In [21], a run of
the genetic algorithm with 600 generations shows that a Stacklberg–Nash equilibrium is
(7.05, 3.13, 11.93, 17.89; 0.26, 9.92; 29.82, 0.00) with an objective value ϕ(x∗, y∗) = 6599.99,
and the objective values of two followers are f1(y∗1) = 23.47 and f2(y∗2) = 30.83, which
means the smallest income up for the two followers’ is 7.36 and the minimize total payoff is
54.30. As there is a greater income gap between followers and more total payoff than in this
paper, the results in [21] are inferior to the IPSO algorithm. In [33], the value of the leader’s
objective function is also 6600, but this traditional mathematical analysis method has high
computational complexity; the minimum total payoff is 119.42, the smallest income gap is
19.8, and the efficiency is inferior to that of the IPSO algorithm. The IPSO algorithm has
a fast convergence speed, saves time, and is effective. In summary, the IPSO algorithm
obtains the optimal efficient Nash equilibrium of (7, 3, 12, 18; 0, 10; 30, 0), which minimizes
the income gap among all followers and maximizes the incomes of the leader.

Example 3. Suppose we have a SLMFG, where the leader’s strategy is x = (x1, x2, x3) and the
strategies of the followers are y1 = (y11, y12), y2 = (y21, y22) and y3 = (y31, y32). The leader’s
payoff function is ϕ(x, y1, y2, y3), and the follower’s payoff functions are f1(y1), f2(y2) and f3(y3).

max
x

ϕ(x, y1, y2, y3) = y11y12 sin x1 + y21y22 sin x2 + y31y32 sin x3

s.t.x1 + x2 + x3 ≤ 10,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

max
y1

f1(y1) = y11 sin y12 + y12 sin y11

s.t.y11 + y12 ≤ x1,

y11 ≥ 0, y12 ≥ 0.

max
y2

f2(y2) = y21 sin y22 + y22 sin y21

s.t.y21 + y22 ≤ x2,

y21 ≥ 0, y22 ≥ 0.

max
y3

f3(y3) = y31 sin y32 + y32 sin y31

s.t.y31 + y32 ≤ x3,

y31 ≥ 0, y32 ≥ 0.

For the optimization problem of the SLMFG, the followers’ strategy is y = (y1, y2, y3)
and the leader’s strategy is x. We use the IPSO algorithm to search the optimal solutions.
A run of the IPSO algorithm with 254 iterations for the followers and 132 iterations for the
leader was executed. The computation results are shown in Table 4.

The followers’ strategy y∗ = (y∗1 , y∗2 , y∗3) is solved by the IPSO algorithm. y∗1 , y∗2 , and y∗3
are three identical objective function because their components are equivalent. The leader’s
strategy x∗ is solved by the IPSO algorithm. In Table 4, the efficient Nash equilibrium sets are:

• (0.000, 8.054, 1.946; 0.000, 0.000; 1.320, 6.734; 0.973, 0.973);
• (1.946, 0.000, 8.054; 0.973, 0.973; 0.000, 0.000; 1.320, 6.734); and
• (8.054, 1.946, 0.000; 6.734, 1.320; 0.973, 0.973; 0.000, 0.000).

The efficient Nash equilibrium solution of Example 3 is multiple. By Definitions 1 and 2,
to increase efficiency, each player chooses the strategy that minimizes the income gap among
the followers and maximizes the total payoffs of the leader. Furthermore, the leader’s
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objective value is 9.593, the followers’ objective values are one of {1.609, 7.094, 0.000},

and max
3
∑

i=1
fi(yi) = 18.300. Thus, when Example 3 obtains the efficient Nash equilib-

rium, the leader’s maximum benefit is 9.593, and the followers’ total maximum benefit is
18.300. The convergence speed of the IPSO algorithm is superior to that of the algorithm
in [21] with 300 generations. The calculation time of the IPSO algorithm is less than that
in [34]. The IPSO algorithm has a fast convergence speed, saves more time, and is effective. In
Example 3, the IPSO algorithm obtains the optimal efficient Nash equilibrium, which is also
the efficient Nash equilibrium set, thereby minimizing the income gap among all followers
and maximizing the reward of the leader.

Table 4. The IPSO algorithm for solving the numerical result of Example 3.

x y1 y2 y3 maxϕ(x, y1, y2, y3) max f1(y1) max f2(y2) max f3(y3)

(1.946, 8.054, 0.000) (0.973, 0.973) (1.317, 6.737) (0.000, 0.000) 9.577 1.609 7.099 0.000
(8.054, 1.946, 0.000) (1.316, 6.738) (0.973, 0.973) (0.000, 0.000) 9.577 7.099 1.609 0.000
(0.000, 1.946, 8.054) (0.000, 0.000) (0.973, 0.973) (6.319, 6.735) 9.587 0.000 1.609 7.098
(0.000, 8.054, 1.946) (0.000, 0.000) (1.320, 6.734) (0.973, 0.973) 9.593 0.000 7.098 1.609
(1.946, 0.000, 8.054) (0.973, 0.973) (0.000, 0.000) (1.320, 6.734) 9.593 1.609 0.000 7.098
(8.054, 1.946, 0.000) (6.734, 1.320) (0.973, 0.973) (0.000, 0.000) 9.593 7.098 1.609 0.000
(1.946, 8.054, 0.000) (0.973, 0.973) (1.314, 6.378) (0.000, 0.000) 9.558 1.609 7.094 0.000

· · · · · · · · · · · · · · · · · · · · · · · ·

6. Conclusions

This paper considers a single-leader–multi-follower game with a bilevel hierarchical
structure. We define the efficient Nash equilibrium by refining of the traditional Nash
equilibrium with efficiency; this efficient Nash equilibrium is beneficial to all followers and
greatly reduces the number of Nash equilibria, which means social welfare maximization.
Furthermore, the SLMFG is transformed into a nonlinear equation problem (NEP) through
the the Karush–Kuhn–Tucker (KKT) condition and complementarity function methods.
Furthermore, the IPSO algorithm is designed by combining the probability concentration
selection function and the PSO algorithm. In conclusion, it can be seen from the compar-
isons and analyses of the numerical experiments that the IPSO algorithm is effective for
solving the efficient Nash equilibrium of a SLMFG. The IPSO algorithm is not dependant
on the selection of the initial point, maintains the diversity of the population, and further
has the great advantages of global convergence and fast convergence speed. In brief, we
provide a swarm intelligence algorithm to solve the bilevel leader–follower game and
obtain the efficient Nash equilibrium solution by a refinement of the Nash equilibrium.
Solving the multi-leader–multi-follower game by using swarm intelligence algorithms
warrants further consideration.
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