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Abstract: Due to the complexity of many-objective optimization problems, the existing many-
objective optimization algorithms cannot solve all the problems well, especially those with complex
Pareto front. In order to solve the shortcomings of existing algorithms, this paper proposes a co-
evolutionary algorithm based on dynamic learning strategy. Evolution is realized mainly through
the use of Pareto criterion and non-Pareto criterion, respectively, for two populations, and informa-
tion exchange between two populations is used to better explore the whole objective space. The
dynamic learning strategy acts on the non-Pareto evolutionary to improve the convergence and
diversity. Besides, a dynamic convergence factor is proposed, which can be changed according to
the evolutionary state of the two populations. Through these effective heuristic strategies, the pro-
posed algorithm can maintain the convergence and diversity of the final solution set. The proposed
algorithm is compared with five state-of-the-art algorithms and two weight-sum based algorithms
on a many-objective test suite, and the results are measured by inverted generational distance and
hypervolume performance indicators. The experimental results show that, compared with the other
five state-of-the-art algorithms, the proposed algorithm achieved the optimal performance in 47 of
the 90 cases evaluated by the two indicators. When the proposed algorithm is compared with the
weight-sum based algorithms, 83 out of 90 examples achieve the optimal performance.

Keywords: evolutionary algorithms (EAs); many-objective optimization; coevolution; dynamic
learning; performance indicators

1. Introduction

In recent years, with the development of technology, more and more new problems
appear in the field of industry or control and so on. This problem is usually characterized by
containing more than one objective function to be optimized, and these objective functions
contradict each other. Such problems are generally called multi-objective optimization
problems (MOPs) or many-objective optimization problems (MaOPs). Generally, MOPs are
problems having two or three objectives, and MaOPs contain more than four objectives [1].
A MaOP is defined as follows:

minimize F(x) = { f1(x), f2(x), . . . , fM(x)}
subject to x ∈ X

(1)

where M is the objective number. x = (x1, x2, . . . , xn) is decision variable, and X ⊆ Rn is the
decision space of the n-dimensional real number field. F is a mapping from decision space
to objective space, and F(x) contains M different objective functions fi(x) (i = 1, 2, . . . , M).
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Generally, the optimal solutions of MaOPs are distributed on Pareto front (PF), and the
solutions on PF generally show the trade-off on all M objectives. Therefore, it is impossible
to obtain an optimal solution by an optimization method to make it optimal on all objectives.
What is needed to solve MaOPs is to obtain a set that has a finite number of solutions, so
that the solutions in this solution set can well represent the whole PF, no matter in terms of
convergence or diversity. The EAs had its unique advantages in solving MaOPs because of
its population-based characteristics. After years of development, scholars from all over the
world have proposed various many-objective optimization algorithms (MaOEAs) to solve
MaOPs. Because different MaOPs also have different characteristics, currently no general
algorithm can perfectly solve all MaOPs.

MaOPs usually have more than three objective numbers, so the objective space cannot
be visualized, and the high-dimension calculation equation can only be obtained through
derivation in solutions with fewer objectives. For example, grid-based evolutionary al-
gorithm (GrEA) [2] deduces the high-dimensional grid calculation equation through a
two-dimensional equation. Moreover, with the increasing of the objective number, the
number of non-dominated individuals in the population will also increase exponentially.
Studies have shown that almost all the solutions in the obtained population will be non-
dominated when M > 12 [3]. As a result, the selection pressure of the algorithm based on
non-dominated sorting is reduced, which makes the algorithm unable to solve the MaOPs
well. In addition, the shape and density of PF vary greatly for different problems, which
brings great challenges to obtaining a solution set with good convergence and diversity.

To overcome these difficulties with MaOPs, a number of MaOEAs have been pro-
posed. For example, on the basis of fast and elitist multi-objective genetic algorithm
(NAGA-II) [4], reference points are introduced to guide individual convergence and help
evolution through the concept of domination, called NSGA-III [5,6]. Knee point-driven
evolutionary algorithm (KnEA) [7] used knee points to guide individual convergence,
and GrEA introduced the concept of grid to choose the better of two non-dominated
individuals. In addition, some indicator-based algorithms are proposed, such as indicator-
based selection in multi-objective search (IBEA) [8] and fast hypervolume-based algorithm
(HypE) [9], which adopt Iε+ [10] and hypervolume (HV) [11,12] indicators as the criteria
for selecting individuals, respectively. The selection process is the evolution process of
the whole population or individuals towards the direction with better indicator values.
Finally, there is the evolutionary algorithm based on decomposition (MOEA/D) [13], which
adopts the idea of mathematical decomposition to decompose a MaOP into M subproblems
for simultaneous optimization. Common decomposition approaches include weighted
sum approach, Tchebycheff approach, and penalty-based boundary intersection approach.
There is a new way called MOEA/D-PaS [14] to combine the decomposition with Pareto
adaptive scalarizing methods to balance the selection pressure toward the Pareto optimal
and the algorithm robustness to PF.

At the same time, these MaOEAs also contain some disadvantages. The convergence
speed of the Pareto-based algorithm is slow, or even unable to converge to PF. Indicator-
based algorithms often tend to favor one or some of special regions of PF. Although the
convergence speed of an indicator-based algorithm is generally relatively fast, the diversity
of the solution set is usually poor. Besides, the decomposition-based MaOEAs are very
dependent on the selection of decomposition approaches, such as weighted sum method
in dealing with the non-convex problem (in the case of minimization) of PF shape, and
not all Pareto optimal vectors can surely be obtained [13]. In addition, when the shape
and density of PF are very complex and changeable, the traditional method to generate a
weight vector is not suitable for this environment.

Existing multi-objective optimization algorithms (MOEAs) will still be affected by the
increased number of objectives when dealing with MOPs, especially MAOPs. Moreover,
the complexity of the PF also brings great challenges to the MOEAs. However, the dynamic
learning strategy can pay more attention to the improvement of convergence when the
population has poor convergence in the early evolutionary stage, and pay more attention
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to the improvement of diversity in the late evolutionary stage. In addition, coevolution is a
promising idea to improve the quality of individuals in a population through the mode of
cooperation (or competition) between multiple populations (or subpopulations). Through
coevolution, some key information of the population (such as the evolutionary state of the
population) can be obtained in the process of algorithm iteration. The information of the
population can be fed back flexibly to change the dynamic level (this will be discussed in
Section 4) of dynamic learning strategies. In conclusion, the combination of a dynamic
learning strategy and a coevolution model is a promising way to improve the convergence
and diversity of the population.

The rest of this paper will be arranged as follows. Section 2 introduces the related
works of the coevolutionary algorithm, other background, and the motivation for a two-
population coevolution algorithm with dynamic learning strategy (DL-TPCEA). Section 3
will give the background of the MaOPs. The algorithm framework, process details, and
parameter settings will be introduced in Section 4. Sections 5 and 6 carry out the analysis
of experiments and the conclusion, respectively.

2. Related Works

In biology, the concept of coevolution is defined as follows: an adaptive coevolution
in which two interacting species develop in the course of evolution. An evolutionary type
of genetic evolution in which one species is influenced by another. At the biological level,
it has several major significances:

1. Promote the increase of biological diversity;
2. Promote the co-adaptation of species;
3. Maintain the stability of the biological community.

This idea was successfully introduced into computer algorithms. More and more
researchers begin to pay attention to the performance improvement brought by coevolu-
tion strategy to the EAs. In order to adapt to increasingly complex problems, Potter et al.
incorporated the idea of coevolution into EAs. It extended the evolutionary paradigm
of the time and described an architecture that evolved subcomponents into collections
of collaborative species [15]. Then they analyzed the robustness of cooperative coevolu-
tionary algorithms (CCEAs), which provided a theoretical basis for the effectiveness of
coevolutionary strategies [16]. Wiegand et al. also used evolutionary game theoretic (EGT)
models to help understand CCEAs and analyze whether CCEAs are really suitable for
optimization tasks [17]. One of the EGT models was the multi-population symmetric game,
which can be used to analyze and model the coevolutionary algorithm. In this context,
coevolution tended to decompose an evolving population into several small subpopula-
tions and ensured that each subpopulation did not interfere with each other. Then the
individual in the population was optimized continuously through the cooperation of each
subpopulation. The effectiveness of CCEAs is verified using CCEAs to solve complex
problems (or structure) [18,19].

The coevolution strategy of CCEAs can group the population, which is suitable for
large-scale optimization problems (LSOPs). The dimension of decision variables in LSOP
is too high, so grouping is a good solution at present. This is also the initial application
scenario of CCEAs. Yang et al. considered that traditional CCEAs can only deal with and
decompose separable LSOPs, but often cannot solve the inseparable LSOPs. Therefore,
a stochastic grouping scheme and adaptive weighting were introduced into problem
decomposition and coevolution, and a new differential evolutionary algorithm was used to
replace the traditional evolutionary algorithm. Through this improvement, the algorithm
can effectively optimize the 1000-dimensional indivisible problem [20]. In addition, a
multilevel coevolution (MLCC) [21] framework was proposed to solve LSOPs. MLCC was
a framework that determined the size of a group when the problem was decomposed.
MLCC constructed a set of problem decomposers based on random grouping strategies
with different group sizes, and used an adaptive mechanism to select decomposers based
on historical performance to self-adapt between different levels.
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CCEAs is also applied to optimization problems in other scenarios. Liu et al. used
cooperative coevolution (CC) to improve the speed of evolutionary programming (EP) [22].
However, this study showed that the time cost increased linearly as the dimension of the
problems was increased. CC was also used to deal with global optimization and find
global optimal solutions [23]. Chen et al. proposed a cooperative coevolution with variable
interaction learning (CCVIL) framework [24], which treated all variables as independent
and put them into separate groups, and then continuously merged groups when found the
relationship between them at the iteration.

In addition to the above optimization problems, many researchers in recent years
have begun to apply CC to MaOPs. Tan et al. combined SPEA2 and CC effectively and
proposed SPEA2-CC [25]. After experimental comparison, the performance of SPEA2-
CC was significantly better than that of the original SPEA2 as the number of objectives
increases. SPEA2-CC provided theoretical support for the scalability of performance of CC
in MaOPs.

A lot of researchers combined CC with the preference of the decision maker to deal
with MaOPs, which led to the preference-inspired coevolutionary algorithm (PICEA) [26].
Researchers have shown that PICEA can handle not only MOPs, but also MaOPs [27]. The
experiments showed that the preference-driven coevolution algorithm was superior to
some other methods under the measurement of a hypervolume indicator. One defect of
PICEA was the uneven distribution of the obtained solutions on PF, which means poor
diversity. In order to solve this problem, an improved fitness allocation method (PICEA-
g) [28] was proposed, which can consider the density information of solutions. In addition,
a new preference-inspired coevolutionary algorithm using weight vectors (PICEA-w) [29]
was proposed. The algorithm coevolved with the candidate solution during the search
process. Coevolution adaptively constructed the appropriate weights in the optimization
process, thus, effectively led the candidate solutions to the PF.

Liang et al. proposed a multi-objective coevolutionary algorithm based on a decompo-
sition method [30], which used subpopulations to enhance objectives. Running on multiple
subpopulations and external archive via the differential evolution (DE) operator to improve
each objective and diversify the trade-offs of external archiving solutions. In addition,
when an objective was not optimized, computing resources on that objective were allocated
to other objectives and external archive strengthens the tradeoffs on all objectives. In
addition, PF was approximated by parallel subpopulations [31]. Firstly, the MaOPs were
decomposed by using a uniformly distributed weight vector, and then each subpopulation
was associated with a weight vector. Using subpopulations to optimize each subproblem,
and elite individuals in subpopulations were used to produce offspring. This can not only
enhanced the diversity of the population, but also accelerated the convergence rate.

There were also studies that used new approaches to further improve CC perfor-
mance on MaOPs. Shu et al. proposed a preference-inspired coevolution algorithm
(PICEA-g/LPCA) with local principal component analysis (PCA) oriented goal vectors [32].
PICEA-g/LPCA was a further improvement on the basis of PICEA-g, and it used local
PCA to extend the ability of PICEA-g and improved the convergence. In addition, a co-
evolutionary particle swarm optimization algorithm with a bottleneck objective learning
(BOL) strategy [33] was proposed to meet the convergence and diversity challenges in
finite population size. In this algorithm, multiple subpopulations coevolved to maintain
diversity. The BOL strategy was also used to improve convergence across all objectives.
Elitist learning strategy (ELS) was also used to jump out of local PFs, and juncture learning
strategy (JLS) was used to develop areas that are missing in PF.

Coevolution strategies have now been applied to many problems. In addition to
general MaOPs, there are dynamic interval many-objective optimization problems
(IMaOPs) [34,35], large-scale multi-objective optimization problems (LSMOPs) [33,36],
and feature selection [37]. Finally, some recent work also uses coevolution or learning
techniques [38,39] to deal with MaOPs [40–42].
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As described in Section 1, the solution set obtained by Pareto-based MOEAs has
a good distribution on PF, but there is a general problem of slow convergence and the
performance will decline with the increase of the objective number. Non-Pareto MOEAs
shows good convergence performance, but not good diversity performance. The solution
set of non-Pareto MOEAs tends to converge to one or some special regions of PF, especially
in the case of extremely irregular PF. Li et al. proposed a bi-criterion evolution (BCE)
framework in 2015 [43], which performed well in many-objective optimization. In the BCE
framework, two populations evolved simultaneously. One used the Pareto criterion (PC)
and the other used the non-Pareto criterion (NPC). The aim was to take advantage of both
approaches and compensate for their shortcomings. These two parts work together to
promote evolution through the exchange of information between populations. Among
them, NPC population led PC population to converge, and PC population can make up for
the loss of NPC population in diversity. The two operations included in the framework,
population maintenance and individual exploration, were used to preserve good non-
dominated individuals and explore unexplored areas of NPC population respectively.
Although the framework of BCE did not use the method of subpopulation coevolution in
CC, the idea of cooperation between the two populations should also belong to CC.

Dynamic learning strategy (DLS) can consider the evolutionary state of solution set
during algorithm iteration. It is well known that the initial population of MOEAs is
randomly generated without specific requirements. The randomly generated solution is to
take the value of the solution in the domain [xmin, xmax] in the case of a normal (Gaussian)
distribution. The equation is as follows:

x = xmin + rand ∗ (xmax − xmin) (2)

where rand is a random number generated by a standard normal distribution. So, the
convergence of initial population is very poor, just random individuals in the solution
space. DLS can pay attention to this point, so that in the initial stage of population
evolution, it can ensure rapid convergence of solutions by using more computing resources
to the selection of convergence-related solutions. As the iteration goes on, the solutions
converge towards PF. At this time, it is necessary to keep the solution set more diversified.
Therefore, with the iteration of MaOEAs, computational resources will gradually incline to
diversity-related solutions to maintain a better distribution of the population on PF.

Therefore, an effective combination of BCE and DLS may yield relatively good results,
as confirmed by the experimental results in Section 5. This paper takes advantage of the
coevolution of information interaction between the two populations, and introduces DLS
into the environmental selection of NPC to better enable the evolution of NPC population.
The cost value (CV) [44] will be selected as indicator. This algorithm will be called DL-
TPCEA. The detailed algorithm will be described in Section 4.

3. The Background of MaOPs

At present, many single objective optimization problems in the optimization field have
become the focus of research, such as workshop scheduling problems [45–49] and numerical
optimization problems [50,51]. Most of these can be solved by classical algorithms and their
improved versions, such as artificial bee colony algorithm (ABC) [47,48,52,53], particle
swarm optimization (PSO) [51,54], monarch butterfly optimization (MBO) [55–58], ant
colony optimization (ACO) [59,60], krill herd algorithm (KH) [52,61–64], elephant herding
optimization (EHO) [65–67], and other metaheuristic algorithms [68–77]. However, there
are some problems in many-objective optimizations, which cannot be solved by single
objective techniques. Because of the conflicts between objectives, all objectives cannot be
optimized simultaneously using single objective techniques. MaOPs also have different
characteristics, which are described in more detail below. The current MaOPs in the field
of many-objective optimizations are mainly divided into the following categories:

(1) General MaOPs: As mentioned in Equation (1), general MaOPs are problems with
M conflicting objectives. The overall goal of solving MaOPs is to obtain a solution set that
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can characterize PF, but at the same time there are a variety of problems. For objective
numbers, MaOPs are more difficult to resolve than MOPs. Low dimensional optimization is
mainly solved by non-dominated sorting, such as NSGA-II [4] and improving the strength
of the Pareto evolutionary algorithm (SPEA2) [78]. The non-dominated sorting is described
as follows: for the minimization problem, taking two vectors x1 and x2 in Ω, if and only if
fi(x1) ≤ fi(x2) for each i in {1, 2, . . . , M} and fj(x1) < fj(x2) for at least one j in {1, 2, . . . , M}.
Let us call it F(x1) Pareto dominates F(x2), and the notation is F(x1) > F(x2), and if, and
only if, no point x in Ω to satisfy F(x) > F(x*), called F(x*) Pareto optimal solution and x* is
Pareto optimal point, and the set of all Pareto optimal solutions is PF mentioned above, the
set of all Pareto optimal points is called Pareto Set (PS).

(2) Large-scale MaOPs: these problems often involve high dimensional decision
variables. In general, MOPs are called large-scale MOPs (LSMOPs) [79] when its decision
variable dimension N > 100. The performance of the MaOEAs will decrease as the number
of decision variables increases. For example, when using a mutation operator to mutate
individuals, the probability of producing good individuals after mutation will also decrease
due to the large dimension of decision variables. There are some researches on LSMOPs.
At present, most of this work is based on classifying decision variables and dealing with
them separately.

Ma et al. proposed a many-objective evolutionary algorithm based on decision variable
analysis (MOEA/DVA) [80], which divided the whole population into convergence-related
variables and diversity-related variables through decision variable analysis strategy. More-
over, MOEA/DVA optimized the two parts respectively, so that the convergence and diver-
sity of the population were maintained well. Zhang et al. [81] proposed an evolutionary
algorithm based on decision variable clustering for large-scale many-objective optimization
problems (LMEA). LMEA used k-means clustering method and takes the angle between
solutions and the direction of convergence as the feature to carry out the clustering, and
divided the decision variables into convergence-related variables and diversity-related
variables. LMEA further classified the unclassified individuals in MOEA/DVA to promote
the convergence and diversity of the population. In addition, Chen et al. [1] proposed
an evolutionary algorithm based on covariance matrix adaptation evolution strategy and
scalable small subpopulation to solve large-scale many-objective optimization problems
(S3-CMA-ES).

The above work is based on the premise of grouping decision variables to deal with
large-scale many-objective optimization problems, which makes a great contribution to the
large-scale many-objective optimization.

(3) Dynamic MaOPs (DMaOPs): DMaOPs add time (environment) variation to the
general MaOPs. It is described as follows:

minimize F(x) = { f1(x, t), f2(x, t), . . . , fM(x, t)}
subject to x ∈ X

(3)

where t is time (environment) variation. When time (environment) changes, PF of the
MaOPs also changes, that is, the optimal solution set in the previous state is not necessarily
the optimal solution set in the current state. This means that the algorithm is not only
required to adapt to the many-objective environment to optimize multiple objectives,
but also needs the changes brought by the response time (environment). When the time
(environment) changes, the algorithm can respond quickly and get the optimal solution set
in the latest environment.

In the environment of DMaOPs, many excellent algorithms have been proposed.
Liu et al. proposed a dynamic multi-population particle swarm optimization algorithm
(DP-DMPPSO) based on decomposition and prediction [82]. Using the archive update
mechanism based on the objective space decomposition and the population prediction
mechanism to accelerate the convergence, the results show that the algorithm has a good
effect in DMaOPs processing. Finally, there are also many dynamic multi-objective evo-
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lutionary algorithms (DMOEAs) that use various optimization strategies [83–87] to deal
with DMaOPs.

The main purpose of this paper is to solve the general MaOPs with high dimensional
objective space, using the Pareto-based and non-Pareto-based methods for coevolution of
the two populations, respectively. The two populations make use of the advantages of each
other and make up for the disadvantages, which is very promising to solve the difficulty
of optimization in the high-dimensional objective space. The details will be introduced in
Section 4.

4. The Framework of DL-TPCEA

In this part, the specific process of the dynamic learning strategy will be introduced
first, and then the DL-TPCEA will be introduced. All algorithmic details such as parameter
control and algorithmic flow are given.

4.1. Dynamic Learning Strategy
4.1.1. The Description of DLS

Previous MOEAs generally used the immutable evolution strategy during iteration.
For example, NSGA-II used non-dominated sorting to select the non-dominated solutions
in population to control the convergence, and then used crowding distance to select among
the non-dominated solutions to improve the diversity of the population. This method
is very time-consuming because of Pareto sorting, and tends to have poor convergence
effect when the number of objectives is relatively large. However, DLS will make full use
of the advantages of fast running speed and good convergence effect of indicator-based
algorithm. Moreover, the enhancement of diversity is further strengthened to balance
the convergence and diversity of the solution set. This paper will take a two-objective
problem as an example to illustrate the advantages of DLS over traditional immutable
evolutionary strategies.

As shown in Figure 1a, after the population initialization, the distribution of these
individuals in the objective space is very chaotic. In other words, the convergence and
diversity of the population are poor. According to the current population, the priority
is to get these individuals to converge to PF as soon as possible. This will be guided by
indicator-based method. For example, in a practical engineering problem, the individuals
on PF are those who can minimize the cost. In this case, more computing resources should
be allocated to the process of convergence-related operations to achieve rapid convergence
of the population to PF. A small part of the computational resources are then allocated to
operations that increase the diversity of the population to ensure that the diversity of the
population is not particularly poor.

After the above operation, the distribution of individuals in the population in the
objective space will gradually move towards PF, as shown in Figure 1b. However, the
convergence level of the whole population is not enough at this time, so high selection
pressure is still needed to promote convergence. As the iteration goes on, the distribution of
individuals in population in the objective space will gradually become close to PF, as shown
in Figure 1c. As introduced in Section 1, the indicator-based algorithm converges quickly
but loses diversity easily. The example in Figure 1c shows that these individuals are close
to PF under the guidance of the indicator, but the convergence position is more inclined
to the central region of PF. At this point, more computing resources need to be tilted to
increase the diversity of the population, such as the preference to keep the individual A
and the individual B in Figure 1c into the next generation. By changing the computational
resource allocation according to the evolutionary state of the population, individuals in the
population can maintain good convergence and diversity. As in Figure 1d, the individuals
in the resulting solution set are uniformly distributed on PF.
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4.1.2. The Details of DLS

The above is only a brief description of the steps of DLS; the following is a detailed
explanation of the specific process of DLS. First, supposing the population size of MaOEAs
is N. In an iteration, N new individuals are generated by crossover and mutation oper-
ators, at which time the original individuals and newly generated individuals form a
new population, which is denoted as P2N here. What needs to be done next is to select
N individuals that are most conducive to maintain convergence and diversity through
environmental selection as the initial population Pnew of the next iteration. These operations
are accomplished through DLS.

As shown in Algorithm 1, the 2N individuals are first layered by non-dominated
sorting (Line 1, Algorithm 1). Here, FrontNo is the number of layers that each individual
resides in, and MaxFNo is the largest number of layers that are non-dominated. Where
MaxFNo satisfies:

MaxFNo−1

∑
i=1

Li ≤ N&&
MaxFNo

∑
i=1

Li > N (4)

where Li represents the number of individuals in the ith non-dominated layer (i = 1, 2, . . . ,
MaxFNo). Here, the non-dominated individuals in Layer 1 to layer MaxFNo-1 will prefer-
entially select into Pnew (Line 2, Algorithm 1), and then continue to select the remaining
individuals in Layer MaxFNo.

Although in the case of 2- or 3-objective problems (MOPs), it may be more clearly
layered. This makes the number of individuals in Layer MaxFNo smaller, which means
fewer individuals are selected through DLS. However, with the increase of the objective
number, the proportion of non-dominated individuals in the whole population also in-
creased, almost all individuals are non-dominated when the objective number is more than
12 which is described in Section 1. This leads to an increase in the number of individuals in
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Layer MaxFNo, even if all individuals in the population are in Layer MaxFNo. This also
makes the role of DLS greatly increased, and become more useful in solving MaOPs.

Algorithm 1 Dynamic Learning Strategy
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where gen represents the current number of iterations and maxgen represents the maximum
number of iterations. Rgen represents the total number of individuals that need to be
selected at Layer MaxFNo at generation gen. Moreover, α ε [0, 1] is a convergence factor
that controls the rate of convergence of the population. Through experimental research,
it is found that when α is about 0.9, the performance can reach the best. In this way, the
convergence speed can be achieved quickly at the same time; it will not fall into the local
optimal. The symbol d· e rounds the element to the nearest integer greater than or equal to
that element. Then the number of diversity-related individuals that needs to be preserved
will continue to be calculated. The calculation of Dn is as follows:

Dn = Rgen − Cn (6)

After Cn and Dn are calculated, two indicators of convergence and diversity will be
calculated for the individuals in population, and Rgen individuals in Layer MaxFNo will be
retained according to the rules of DLS. In this paper, cost value (CV) [44] will be selected
as the convergence-related indicator. Let F(xi) = (f 1(xi), f 2(xi), . . . , fM(xi)) be the objective
vector for individual xi (i = 1, 2, . . . , N). Then the mutual evaluation of individual xi by
individual xj is as follows:

cvij = max
m

{
fm(xj)/ fm(xi)

}
, m = 1, 2, . . . , M (7)

Then the mutual evaluation of each individual in the population is as follows:

CVi = min
j 6=i

cvij, j = 1, 2, . . . , N (8)
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This indicator will not be affected by the change of objective number, and the char-
acteristics of this indicator can be clearly understood according to Equations (7) and (8).
The first point is that xi is a non-dominated individual when CVi > 1, and the second is
that xi is a dominated individual when CVi ≤ 1. Therefore, we can use this indicator as
convergence-related indicator to select the individuals in Layer MaxFNo. The individuals
that have larger CV will be retained, in other words, retaining the individuals who have
better convergence.

As for the diversity-related indicators, the distance between individuals in the popula-
tion is generally used as the evaluation criterion. For example, Euclidean distance is used
to calculate the crowding distance in NSGA-II. In this paper, the Lp-norm-based distance
is selected to calculate the distance between individuals in the population. It has been
experimentally demonstrated that the Lp-norm-based distance is more efficient than the
Euclidean distance, Manhattan distance, etc., especially when dealing with MaOPs [88].
Parameter p of Lp-norm-based distance is recommended as 1/M. Therefore, Lp-norm-based
distance is selected as the diversity-related indicator in this paper.

After the calculation of two indicators for individuals in the population, the individu-
als in Layer MaxFNo were selected and saved to Pnew according to Cn and Dn, until the size
of Pnew reached N.

4.2. The Framework of BCE

There are two main populations in BCE, namely NPC population and PC population.
These two parts use the non-Pareto method and Pareto method to evolve the popula-
tion, respectively. For the NPC population, any non-Pareto evolutionary criterion can be
used directly. However, when the next generation is produced through competition, the
environmental selection needs to select individuals from both NPC population and PC
population (NPC selection). For PC population, non-dominated individuals from NPC and
PC population are reserved (PC selection). Since the number of non-dominated solutions is
unknown, population maintenance operation is carried out to eliminate some individuals
with poor diversity when the number of non-dominated individuals is greater than the
predefined threshold N.

Because of NPC population convergence speed is relatively fast, the individuals in
NPC population can accelerate the convergence of PC population in PC selection. Because
of the diversity of PC population is better, NPC population can explore the unexplored
areas on PF through individual exploration operation and use the individuals in NPC
population to enhance the diversity of PC population. In this way, the two populations
interact with each other to promote the evolution of each population so that the convergence
and diversity of the final solution set are good. The final output here is the PC population.

4.2.1. PC Selection and NPC Selection

The process of PC selection is to select non-dominated individuals from the mixed
set of PC population and the new individuals produced by PC and NPC evolutions. NPC
selection is based on the criteria of NPC evolution, which conducts environmental selection
on a mixture of NPC populations and new individuals generated by PC populations.
Assuming that the evolution of NPC populations uses indicator-based algorithms, then
NPC selection is the selection of individuals having better indicator values in the mixed
population for the next generation.

For the evolution of NPC populations, some algorithms rely on the information of the
parent generation to update the individual, which is not feasible here. So individuals in the
PC population are compared with individuals in the NPC population. If an individual in
the PC population is better than one or more individuals in the NPC population according
to the evolutionary criteria of the NPC population, then that individual (or a random one
of those individuals) in the NPC population will be replaced by that individual in the
PC population.
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4.2.2. Population Maintenance

In PC selection, all non-dominated individuals are selected from a hybrid population
of new individuals resulting from PC and NPC evolutions. Therefore, it is likely to make
the number of non-dominated individuals larger than the preset threshold N (population
size), especially when the objective number is large. Therefore, an effective means of
population maintenance should be added to ensure that the PC population maintains a
representative (with better convergence and diversity) group of individuals.

Population maintenance is to ensure the quality of individuals in a population through
niche techniques. This is also a popular technique in EAs to assess the crowding degree
of each individual in the population by the location and number of individuals in the
niche (objective space). The crowding degree of individual p in population P is defined
as follows:

D(p) = 1− ∏
q∈P,q 6=p

R(p, q) (9)

R(p, q) =
{

d(p, q)/r, i f d(p, q) ≤ r
1, otherwise

(10)

where d(p, q) is the Euclidian distance between individuals p and q, and r is the radius of
the niche. Due to the size of each objective is different, in order to prevent the influence
of problem size, the objective value of individuals in population will be normalized by
maximum and minimum normalized first when calculating the distance.

It means that each is in the other’s niche when the Euclidean distance between
individuals p and q is less than r. This point can be seen in Equations (9) and (10), and
the range of this crowding degree D(p) is [0, 1]. Otherwise, there would be no effect on
the crowding of these two individuals since R(p, q) = 1. When d(p, q) ≤ r, the larger the
Euclidean distance between the two individuals is, the smaller the calculated crowding
degree will be, which means that the two individuals have a good crowding degree. So, this
is a good way to eliminate the more crowded (poor diversity) individuals in the population.

Since the population is constantly evolving, it is not appropriate to set a fixed niche
radius r. The setting of r must be related to the evolutionary state of the population. The
radius r of the niche in BCE was set as the average Euclidian distance from each individual
to k closest individuals in the population. The aim is to include one or more individuals
in the niche of as many individuals as possible. Here, k is recommended to be set to 3
for better performance. Based on this crowding degree, the most congested individual in
the population (the population of non-dominated individuals selected by PC selection) is
eliminated each time and the crowding degree is recalculated. This process is repeated
until the number of remaining non-dominated individuals is N.

4.2.3. Individual Exploration

The evolution part of the NPC population in BCE usually has high selection pressure;
it converges quickly. However, the general NPC evolution tends to converge to one or more
regions of PF, rather than the entire PF. This leads to a lack of diversity, as there are areas
of PF that have never even been explored. It is through individual exploration that NPC
evolution explores unknown areas on PF to achieve the purpose of increasing the diversity
of NPC population. Individual exploration will explore some promising individuals in the
PC population rather than all individuals in the PC population, because some individuals
in the PC population have been well explored by NPC populations. These promising
individuals generally have been eliminated (by NPC evolution), are less developed, or
are not even visited in NPC evolution. From this point of view, the discussion is mainly
focused on two types of individuals in the PC population:

1. Individuals whose niche has no NPC individual;
2. Individuals whose niche has only one NPC individual.

First of all, for the first group of individuals, these individuals are not in the niche of
individuals in the NPC population. Such individuals are far away from the individuals in
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the NPC population in the objective space, obviously not the individuals favored by the
NPC criterion. However, it is such individuals that are in areas that NPC evolution has not
explored. While the second kind of individuals have an NPC individual in niche, which is
not a lot of individuals when considering that the k is set to 3. However, such individuals
are likely to be located in areas where NPC evolution is incomplete, and it is necessary to
explore such promising individuals.

During individual exploration, the above two kind of individuals contained in the PC
population are first marked and stored in set S (individual sets to be explored). Then, the
variation operation is carried out on the individuals in set S, and all the new individuals
generated by the variation operator are stored in set T (the new individuals set generated
by individual exploration) for the next PC selection. The variation operator here can be
selected arbitrarily, but it should be noted that the number of parent individuals required
by the selected variation operator should be changed accordingly.

The influence of the radius of the niche should also be considered here. A relatively
small radius may allow all individuals in the PC population to be explored, as there may
not be many NPC individuals in each individual’s niche. The reverse is also true, larger
radius may cause all individuals to remain unexplored. Therefore, a dynamically varying
radius is used here, which can vary with the size of the PC population.

With the continuous evolutions of PC and NPC, more and more non-dominated
individuals are produced, and the selection pressure of PC gradually decreases. This
slows down PC evolution when the number of newly created non-dominated individuals
exceeds the size of the remaining PC population that can be stored. This allows for less
individual exploration, allowing the high selection pressure of NPC to play a greater role.
The dynamic radius of the niche is set as follows:

r = (N′/N) ∗ r0 (11)

where N represents the PC population size, and N′ represents the size of the PC population
before population maintenance, and r0 represents the base niche radius calculated by
means of population maintenance.

In the case of fixed computational resources (functional evaluations), this process of
adaptive exploration is necessary according to the evolutionary state of the population. On
the one hand, individual exploration can make up for the lack of diversity in NPC popula-
tion. On the other hand, when there is a lack of convergence, more computing resources
can be given to NPC evolution to accelerate convergence under higher selection pressure.

As shown in Figure 2, individual exploration on a 3-objective optimization problem is
given. The triangle of coordinates in the figure represents the Pareto front of the problem,
and the points in the figure represent the distribution of individuals in the population
in the objective space. Suppose the NPC population is shown in Figure 2a, and the PC
population is shown in Figure 2b. Due to the characteristics of NPC population, the
obtained solution set may be distributed in some part of the Pareto front. For example,
the population in Figure 2a is concentrated to the left and to the top of the Pareto front,
while there is no individual distribution on the right. While PC population is relatively
evenly distributed around the Pareto front, but the convergence is not good (some points
do not converge to the Pareto front). Moreover, the role of individual exploration is to
explore the promising individuals in the PC population to promote the diversity of the
NPC population. It can be seen here that several individuals marked in red in Figure 2b
are still promising individuals although they have not converged to the Pareto front. By
exploring these solutions, it is possible to get some solutions that have never been explored
in the PC population but have a good diversity. After continuous individual exploration,
the diversity of PC population will also be improved and finally reach the state, as shown
in Figure 2c. The population in Figure 2c well balances convergence and diversity, thus,
achieving the purpose of individual exploration.
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Figure 2. The individual exploration process in bi-criterion evolution (BCE). (a) The optimal solution
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optimal solution set obtained by the individual exploration.

4.3. Two-Population Coevolutionary Algorithm with Dynamic Learning Strategy

From the above description, it can be seen that these strategies have great advantages
and far-reaching significance in solving many-objective optimization problems. Next, we
will introduce DL-TPCEA in the above context.

4.3.1. The Process of DL-TPCEA

Algorithm 2 gives the whole process of DL-TPCEA, from which it can be seen that
the input parameters of DL-TPCEA include population size N, objective number M, and
function evaluations (FEs). The final output is the population in which PC evolution. First,
a parameter setting (Line 1, Algorithm 2) will be performed, which is mainly set for the
current iteration number gen and the maximum iteration number maxgen in Equation (5).
In addition, Lp-norm-based distance is also used in DLS for diversity maintenance, where
the value p is also initialized. The inverse of the objective number (1/M) will be used here
as the value of p. The parameter settings (Line 5, Algorithm 2) in the later steps do the
same thing.

Before the proceeding of BCE, the populations (PC population and NPC population)
in both evolutionary approaches should first be initialized (Lines 2–3, Algorithm 2). The
NPC population randomly generates N decision vectors with dimension D in the domain
by satisfying the normal distribution, where D represents the dimension of the decision
variable. The PC population is generated by PC selection on the NPC population. This
ensures that the individuals stored in the PC population will always be non-dominated.
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When the algorithm begins to iterate, the individual exploration (Line 6, Algorithm 2)
described in Section 4.2.3 is first performed. Exploring whether there are individuals
in the PC population that the NPC population has not been (fully) explored. If these
individuals existed, it will be stored in set S as described above. Then, the new individuals
generated using variation operator to S was store in the set T. Finally, the returned NewPC
population is all individuals in the set T. The ExRatio is a ratio coefficient, which represents
the proportion of individuals to be explored. The ExRatio is calculated as follows:

ExRatio =
Length(S)

Length(PC)
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where Length(·) represents the size of the set or population. When ExRatio is greater than 0,
it indicates that there are individuals in the PC population that need to be explored. The
larger ExRatio means the more individuals in PC population need to be explored, and the
value range of ExRatio is in [0, 1).

The ExRatio is set to dynamically change the convergence factor (dynamic convergence
factor) of DLS later when using DLS for environment selection. As new individuals are
generated by individual exploration, most of these individuals are located in areas that have
not been explored or are not fully explored in NPC evolution. Therefore, the exploration at
this iteration should pay more attention to these individuals, which means more diversity-
related individuals should be appropriately selected to better explore these regions in
the evolution of NPC. In this case, the convergence factor is appropriately scaled down
according to the size of ExRatio at this iteration to achieve this purpose. The detailed
process is described in Section 4.3.2.

After individual exploration, the following is the evolution of NPC population (Lines
7–9, Algorithm 2) and PC population (Line 10, Algorithm 2), respectively. First of all, an
environment selection is carried out, and the individuals in mixed population of NewPC
population and NPC population is selected by using the non-Pareto criterion and stored
in NPC population. The variation operator is then applied to the NPC population to
generate a new NewNPC population. Then the individuals with better performance in non-
Pareto criterion are selected from the mixed population of NPC population and NewNPC
population. The evolution of PC population uses PC selection to select non-dominated
individuals in mixed population of original PC population, NPC population, and NewNPC
population. This will select all non-dominated individuals from the three populations to
archive in the PC population. Population maintenance operation is performed on the PC
population if necessary (when Length(PC) > N).
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4.3.2. Environmental Selection in NPC Evolution

The process of environmental selection in NPC evolution is shown in Algorithm 3. The
environmental selection mainly uses DLS to select NPC population. However, dynamic
convergence factors α’ should be set according to the evolutionary state of the current popu-
lation before selection. As the number of individuals explored by individual exploration is
different at each iteration, the value of ExRatio is also different. However, when individuals
need to be explored, the convergence factor α should be scaled down. In order to respond
to the information of the number of individuals to be explored, the dynamic convergence
factor α’ is calculated as follows:

α′ = α−ω ∗ sin(
ExRatio ∗ π

2
) (13)

where ω is a dynamic scaling factor and is set to 0.1. The main purpose of this setting is
to prevent the convergence factor from scaling too much, because a good convergence
performance can be maintained when the convergence factor is set at 0.9 or so. Since the
value interval of ExRatio is [0, 1), the value interval of dynamic convergence factor α’ is
[0.8, 0.9). This allows DLS to play a better role even in individual exploration.

After the predefined parameters are set, the next step is to select the individuals
in the candidate population using DLS as shown in Algorithm 1. The population, here,
is generated by the BCE process rather than a hybrid population with a parent–child
relationship. In addition, the convergence factors used are dynamic convergence factors α’
that are scaled according to the state of individual exploration.

Algorithm 3 Environmental Selection in NPC Evolution
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4.3.3. The Time Complexity Analysis of DL-TPCEA

The time complexity of DL-TPCEA is mainly determined by the party that consumes
more time during the evolution of PC and NPC. In PC selection, the time complexity of se-
lecting non- dominated individuals from the three-part population (Line 10 of Algorithm 2)
is O(MN2). The time complexity of population maintenance and individual exploration is
also O(MN2). So, the time complexity of PC evolution is O(MN2). In the NPC evolution,
the time complexity of first non-dominated sort is O(NlogM−2N). The time complexity of
calculating the number of convergence-related and diversity-related individuals is C (C
is a constant), while the time complexity of calculating the two indicators of candidate
solutions is O(MN2) and O(N2), respectively. The time complexity of using the indicators
to select the candidate solution is O(N). In conclusion, the time complexity of DL-TPCEA is
max{O(NlogM−2N), O(MN2)}.
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5. Experiments

This section will verify the performance of the DL-TPCEA through experiments. First
of all, the proposed dynamic convergence factor will be through a number of experiments to
get an optimal equation. In addition, this paper will conduct an experimental analysis of the
role of individual exploration in the whole evolutionary process. Finally, the performance
of the DL-TPCEA is validated against several state-of-the-art algorithms.

5.1. Parameter Setting

In order to give full play to the performance of MaOEAs on MaOPs with different
objective number, different FEs and population size N should be set for different objective
number M. Taking the WFG [89,90] test suite as an example, the number of dimensions D
needs to be dynamically changed. Here is set as recommended D = M + 9. In addition, the
number of objectives in the experiments conducted in this paper is divided into five groups,
and the number of objectives is 3, 5, 8, 10, and 15, respectively. In terms of population size
setting, since reference points are used in both MOEA/D-PaS and NSGA-III, the original
reference points need to be generated in a certain way. In this case, Das and Dennis’s
approach [91] is used to generate the original reference points on the hyperplane, while
the other algorithms should have the same initial population size to ensure fairness. In
addition, the number of generated reference points is the same with set in NSGA-III [5,6].
So, the corresponding population size N is set to 91, 210, 156, 275, and 135, respectively. The
corresponding number of FEs is 104–104 × 5. The detailed parameter settings are shown in
Table 1.

Table 1. The parameter settings of experiments.

M N D FEs

3 91 12 10000
5 210 14 20000
8 156 17 30000
10 275 19 40000
15 135 24 50000

In the experiments of dynamic convergence factor, α in the base DLS are set to the
recommended 0.9. In the setting of dynamic convergence factors, various functions mono-
tonically increasing in the interval [0, 1] are adopted for dynamic adjustment, which will
be described in detail in Section 5.2. For all comparative algorithms in experiments, the
parameter settings on each objective were also consistent with those in Table 1.

In addition, the running device is PC, the system version is Windows 10 enterprise
version, the processor is Intel(R) Core (TM) i3-8100 CPU 3.6 GHz, and the RAM is 8 GB.

5.2. Experiments on Dynamic Convergence Factors

This paper proposes the concept of dynamic convergence factor in Section 4.3.2. The
main approach is to determine the size of convergence factor dynamically based on the
basic DLS and the state of individual exploration. The purpose of dynamic convergence
factor is to make DLS adapt better to the evolutionary state of the population, so as to
achieve the optimal convergence factor setting. Since the optimal value range of the
convergence factor α is the interval [0.8, 0.9], we take the value of a monotone increasing
function in the interval [0, 1] as shown in Equation (13), multiply it by a dynamic scaling
factor ω by the function mapping of proportional coefficient ExRatio, and then subtract the
corrected value from the original. In this way, it is possible to dynamically change the value
of α’ according to the proportionality coefficient ExRatio. In addition, when the ExRatio is
relatively large (more diversity-related solutions need to be explored), the convergence
factor can be appropriately reduced to better satisfy the convergence and diversity balance
of the population.
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In order to give full play to the optimal performance of the DL-TPCEA, certain work
require to select the monotone increasing function in the interval [0, 1] of Equation (13).
Columns 3 through 11 of the first row in Table 2 show some common monotone increasing
functions in the interval [0, 1] as a comparative experiment. For example, the corresponding
formula of Tan in the fourth column is as follows:

α′ = α−ω ∗ tan(
ExRatio ∗ π

4
) (14)

Table 2. The results of various monotone increasing functions on the WFG test suite, and the inverted
generational distance (IGD) values of the results are tested by Friedman test.

M/Func Ori Sin Tan x1 x1/2 x1/3 x1/M x2 x3 xM Fix

3 5.56 4.44 6.22 6.22 5.67 6.78 6.78 5.22 7.33 6.67 5.11

5 5.44 5.56 6.44 6.89 7.33 4.22 5.67 6.67 7.22 4.11 6.44

8 7.22 5.22 6.44 5.11 4.72 4.89 5.78 6.50 6.44 8.22 5.44

10 4.78 4.89 5.33 5.89 6.56 6.17 6.28 7.44 6.00 6.67 6.00

15 6.00 5.00 6.33 6.00 6.44 6.33 5.89 5.67 6.00 6.11 6.22

Avg 5.80 5.02 6.16 6.02 6.14 5.68 6.08 6.30 6.60 6.36 5.84

In addition, column 2 corresponds to the original DLS that the value of α is set to 0.9.
The last column is a control group, and the method used here is that when ExRatio > 0,
the value of α is multiplied by a value less than 1 (set as 0.9 here). This is equivalent
to setting up a fixed set of transformations instead of making dynamic changes through
functional mapping and the proportional coefficient ExRatio. This group is designed to
analyze and compare the advantages and disadvantages of fixed transformations over
functional mappings.

According to the parameter settings in Table 1, the different algorithms were run
independently 30 times on each WFG test suite. The average inverted generational distance
(IGD) values of the 30 runs were performed using the Friedman test (the smaller the better)
and presented in Table 2. The last row is the average of the five sets of Friedman tests. Dark
gray represents the best result and light gray represents the second-best result. From the
results, the best performance is obtained when the monotone increasing function is taken
as the sine function, and the optimal value (minimum value) is obtained on the 3- and
15-objective WFG, respectively. The second-best result is obtained on the 10-objective WFG.
Although the results on 5- and 8-objective WFG are not so good, they are also relatively
small in terms of numerical values. At the same time, the sinusoidal results were also the
best among the average Friedman results of the five experiments. In addition, when the
monotone increasing function is x1/3, it performs second-best, and obtains second best
results on the 5- and 8-objective WFG, respectively, and also obtains second best results in
the average Friedman test.

When the monotone increasing function is selected as xM and x1/2, the optimal value
is obtained on 5- and 8-objective WFG, respectively. However, the average Friedman
test results for these two functions are not very good. It is worth noting that the original
DLS obtained the optimal result on 10-objective WFG, followed by the mapping of sine
function. In addition, the set of fixed transformations also showed the second-best result
on 3-objective WFG. The average Friedman test results of these two strategies are not much
different, but they are not as good as the average Friedman test results of the sine function.

Therefore, the sine function mapping of ExRatio is finally selected in dynamic conver-
gence factor. In the experiments in Section 5.3 below, the dynamic convergence factor in
DL-TPCEA is calculated in the form shown in Equation (13).
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5.3. Experiments on Comparative Algorithms

To verify the performance of the proposed DL-TPCEA, we compare it with five state-
of-the-art algorithms: MOEA/D-PaS [14], NSGA-III [5], CMOPSO [92], Two_Arch2 [88],
and DLEA. The brief introduction to these comparative algorithms is given below.

In MOEA/D-PaS, a Pareto adaptive scalarizing (PaS) approximation method was
proposed, which approximated the optimal p value of the commonly used scalarizing
method. This is the key to balancing Pareto optimal selection pressure and algorithm
robustness to PF geometries. It guarantees that any solution can be found along PF for
given some weight. PaS is combined with the decomposition-based algorithm (MOEA/D)
to increase the ability of balanced convergence and diversity.

NSGA-III is an improved version based on the framework of NSGA-II [4]. The
crowding distance operator that was used to balance diversity in NSGA-II is modified
into a diversity keeping strategy based on weight vector guidance. NSGA-III used a set
of pre-generated uniformly distributed weight vectors to simulate the distribution of PF.
When selecting solutions, the candidate solutions with the shortest vertical distance to
these weight vectors will be selected.

CMOPSO is an improved version of the multi-objective particle swarm optimization
(MOPSO [93]) by adding a competition mechanism. CMOPSO makes particles pairwise
competitions to select particles in each generation of population. This makes the per-
formance of CMOPSO less dependent on global and local optimal particles stored in an
external archive.

Two_Arch2 uses two external archives, where each archive promotes convergence
(CA) and diversity (DA). The two archives use different selection principles, where CA is
indicator-based and DA is Pareto-based. At the same time, Lp-norm-based diversity mainte-
nance scheme was also proposed in Two_Arch2 to improve the diversity of the population.

DLEA mainly uses the DLS mentioned in Section 4.1. The algorithm mainly used
DLS to enhance the balance of convergence and diversity in environmental selection. Two
different indicators are used to improve the performance by maintaining the convergence
and diversity, respectively. Meanwhile, the convergence factor α in DLEA was fixed at
0.9. Compared with DLEA, DL-TPCEA proposes the concept of dynamic convergence
factor. The comparison of these two algorithms is mainly to highlight the performance
improvement brought by the dynamic convergence factors and the coevolution of the
two populations.

The five comparative algorithms selected have their own characteristics, including
operators frequently used in the many-objective optimization field: decomposition-based
operator, Pareto-based operator, indicator-based operator, external-archive-based operator,
and weight-vector-based operator. Comparing these algorithms can show the performance
advantage of an algorithm more significantly.

For DL-TPCEA and other five comparative algorithms, Tables 3 and 4 give the mean
and standard deviation (in parentheses) of HV values run on five sets of WFG test suites,
and the results in Tables 5 and 6 are corresponding IGD values. Wilkerson Rank-Sum test
(α = 0.05) was used to test the significant difference between HV values and IGD values of
these six algorithms. The symbols −, +, and ≈ stand for that the indicator values of the
comparative algorithms were significantly worse than, better than, and similar to that of
DL-TPCEA, respectively. In addition, for each test instance, the best (maximum) HV value
and the best (minimum) IGD value were highlighted in gray.
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Table 3. HV results of six algorithms on benchmarks WFG1-WFG9 with 3, 5, and 8 objectives.

Problems M MOEA/D-PaS NSGA-III CMOPSO Two_Arch2 DLEA DL-TPCEA

WFG1

3 1.7315e+1 (6.80e−1) − 2.0767e+1 (1.14e+0) − 1.1761e+1 (1.64e+0) − 1.9660e+1 (9.47e−1) − 2.4915e+1 (1.85e+0) − 2.7839e+1 (1.96e+0)

5 7.8150e+2 (4.47e+2) − 2.8379e+3 (2.59e+2) ≈ 1.6437e+3 (4.05e+1) − 2.2898e+3 (1.67e+2) − 2.8062e+3 (3.01e+2) ≈ 2.6535e+3 (2.70e+2)

8 5.4564e+6 (3.92e+5) − 6.5768e+6 (5.24e+5) ≈ 5.2121e+6 (1.31e+5) − 6.4175e+6 (4.79e+5) ≈ 8.2665e+6 (6.57e+5) + 6.9852e+6 (1.19e+6)

WFG2

3 5.7446e+1 (3.91e−1) − 5.7559e+1 (3.20e−1) − 5.8959e+1 (1.26e−1) ≈ 5.7029e+1 (6.97e−1) − 5.8160e+1 (2.90e−1) − 5.8855e+1 (2.83e−1)

5 5.2927e+3 (3.37e+2) − 6.0271e+3 (3.39e+1) − 6.0413e+3 (3.69e+1) − 5.9674e+3 (4.52e+1) − 5.9873e+3 (1.95e+1) − 6.1122e+3 (1.83e+1)

8 1.0172e+7 (8.73e+6) ≈ 2.1759e+7 (2.38e+5) ≈ 2.1181e+7 (1.19e+5) − 2.1522e+7 (1.66e+5) − 2.1645e+7 (6.42e+4) − 2.1889e+7 (8.02e+4)

WFG3

3 6.0818e+0 (1.00e−1) + 5.5451e+0 (1.47e−1) − 5.7894e+0 (8.46e−2) − 5.5665e+0 (1.38e−1) − 6.1565e+0 (5.93e−2) + 5.9102e+0 (9.30e−2)

5 1.1540e+0 (6.16e−2) ≈ 1.2770e+0 (3.47e−1) ≈ 4.1522e−1 (2.29e−1) − 1.2222e+0 (2.80e−1) ≈ 1.8798e+0 (1.53e−1) + 1.1142e+0 (3.37e−1)

8 1.4804e−2 (1.05e−4) + 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0)

WFG4

3 3.1857e+1 (3.32e−1) − 3.3687e+1 (2.16e−1) − 3.2170e+1 (1.79e−1) − 3.3801e+1 (2.25e−1) − 3.4028e+1 (2.89e−1) − 3.5106e+1 (1.47e−1)

5 2.7725e+3 (2.50e+2) − 4.6140e+3 (2.49e+1) − 4.1442e+3 (4.18e+1) − 4.3112e+3 (3.61e+1) − 4.2991e+3 (5.25e+1) − 4.8905e+3 (2.30e+1)

8 1.7243e+7 (2.76e+5) − 1.8176e+7 (2.42e+5) − 1.6073e+7 (5.95e+5) − 1.5929e+7 (5.49e+4) − 1.7267e+7 (1.02e+5) − 2.0259e+7 (1.20e+5)

WFG5

3 3.2283e+1 (1.20e−1) − 3.2008e+1 (1.51e−1) − 3.2193e+1 (3.26e−1) − 3.1499e+1 (2.29e−1) − 3.2310e+1 (1.84e−1) − 3.3072e+1 (2.45e−1)

5 2.5150e+3 (2.93e+2) − 4.4522e+3 (2.15e+1) − 4.0531e+3 (1.17e+2) − 4.0890e+3 (3.42e+1) − 4.0815e+3 (5.67e+1) − 4.5798e+3 (1.63e+1)

8 1.6273e+7 (2.15e+5) − 1.7208e+7 (1.66e+5) − 1.4956e+7 (9.07e+5) − 1.4988e+7 (1.39e+5) − 1.6070e+7 (3.91e+5) − 1.8993e+7 (7.80e+4)

WFG6

3 2.8635e+1 (2.28e+0) − 3.0041e+1 (7.45e−1) − 3.3213e+1 (3.90e−1) + 2.9430e+1 (7.41e−1) − 3.0771e+1 (7.68e−1) − 3.1280e+1 (8.81e−1)

5 3.4025e+3 (3.89e+2) − 4.2268e+3 (1.19e+2) − 3.9875e+3 (1.69e+2) − 3.8312e+3 (9.55e+1) − 3.8672e+3 (1.54e+2) − 4.3856e+3 (8.73e+1)

8 1.6134e+7 (5.09e+5) − 1.6452e+7 (7.46e+5) − 1.3440e+7 (5.23e+5) − 1.3529e+7 (2.04e+5) − 1.5082e+7 (3.53e+5) − 1.8534e+7 (4.34e+5)

WFG7

3 3.3709e+1 (3.69e−1) − 3.4017e+1 (2.20e−1) − 3.4256e+1 (1.77e−1) − 3.4185e+1 (2.61e−1) − 3.4551e+1 (2.13e−1) − 3.5763e+1 (9.24e−2)

5 2.4688e+3 (3.46e+2) − 4.6163e+3 (3.97e+1) − 4.0731e+3 (8.89e+1) − 4.4358e+3 (4.30e+1) − 4.3903e+3 (4.88e+1) − 4.9534e+3 (8.29e+0)

8 1.4711e+7 (3.57e+6) − 1.7534e+7 (3.70e+5) − 1.5266e+7 (4.98e+5) − 1.5848e+7 (1.99e+5) − 1.7622e+7 (2.71e+4) − 2.0675e+7 (3.51e+4)

WFG8

3 2.7295e+1 (4.85e−1) − 2.8098e+1 (3.27e−1) − 2.7821e+1 (3.24e−1) − 2.7825e+1 (3.80e−1) − 2.8807e+1 (2.59e−1) − 2.9372e+1 (2.48e−1)

5 1.7367e+3 (1.64e+2) − 3.8951e+3 (3.91e+1) + 3.1389e+3 (7.11e+1) − 3.5199e+3 (5.54e+1) − 3.2468e+3 (7.93e+1) − 3.8241e+3 (4.35e+1)

8 5.7959e+6 (4.70e+6) − 1.4732e+7 (2.88e+5) − 1.1287e+7 (2.78e+5) − 1.1568e+7 (1.40e+5) − 1.1853e+7 (3.02e+5) − 1.6523e+7 (2.10e+5)

WFG9

3 3.1191e+1 (2.40e+0) − 3.2676e+1 (4.33e−1) − 3.3517e+1 (2.19e−1) − 3.2831e+1 (5.47e−1) − 3.3327e+1 (3.12e−1) − 3.4084e+1 (2.54e−1)

5 2.3419e+3 (4.40e+2) − 4.1754e+3 (1.73e+2) − 4.1393e+3 (2.07e+2) − 4.2066e+3 (6.28e+1) − 4.1163e+3 (6.78e+1) − 4.6044e+3 (4.08e+1)

8 1.0250e+7 (4.79e+6) − 1.5390e+7 (7.88e+5) − 1.5401e+7 (4.42e+5) − 1.5036e+7 (3.68e+5) − 1.5800e+7 (3.83e+5) − 1.8621e+7 (1.34e+5)

- 23 21 24 24 22

+ 2 1 1 0 3

≈ 2 5 2 3 2
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Table 4. HV results of six algorithms on benchmarks WFG1-WFG9 with 10 and 15 objectives.

Problems M MOEA/D-PaS NSGA-III CMOPSO Two_Arch2 DLEA DL-TPCEA

WFG1
10 2.4932e+9 (2.20e+8) − 2.9818e+9 (2.95e+8) ≈ 2.0618e+9 (3.09e+7) − 2.8738e+9 (2.57e+8) ≈ 4.3759e+9 (3.33e+8) + 3.0894e+9 (9.09e+7)

15 2.8183e+16 (1.31e+15) − 6.2299e+16 (1.10e+16) + 2.8367e+16 (4.81e+14) − 3.6933e+16 (4.35e+15) ≈ 7.6448e+16 (6.95e+15) + 3.9888e+16 (6.02e+15)

WFG2
10 3.1504e+9 (1.82e+9) − 9.5411e+9 (6.93e+7) ≈ 9.1557e+9 (2.83e+7) − 9.4642e+9 (5.10e+7) − 9.4695e+9 (2.51e+7) − 9.5531e+9 (2.77e+7)

15 3.5854e+16 (4.24e+16) − 1.7728e+17 (2.08e+14) − 1.5854e+17 (5.06e+15) − 1.7519e+17 (8.15e+14) − 1.7686e+17 (3.04e+14) − 1.7777e+17 (1.70e+14)

WFG3
10 4.9521e−5 (1.99e−7) + 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0)

15 6.1526e−16 (1.36e−16) + 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0)

WFG4
10 3.6386e+9 (3.33e+9) − 8.5986e+9 (9.17e+7) − 6.6569e+10 (8.20e+10) ≈ 6.8836e+9 (1.41e+8) − 7.5439e+9 (3.98e+7) − 9.1189e+9 (4.33e+7)

15 2.9135e+16 (8.76e+15) − 1.5641e+17 (3.18e+15) − 1.1607e+17 (6.92e+15) − 1.2252e+17 (3.15e+15) − 1.4496e+17 (3.45e+15) − 1.7439e+17 (6.93e+14)

WFG5
10 8.0298e+8 (3.32e+7) − 8.2007e+9 (5.81e+7) − 6.4771e+9 (3.09e+8) − 6.3213e+9 (1.22e+8) − 7.1212e+9 (1.27e+8) − 8.5253e+9 (2.97e+7)

15 1.4143e+16 (4.65e+7) − 1.4816e+17 (2.20e+15) − 1.1418e+17 (3.98e+15) − 1.0054e+17 (2.06e+15) − 1.2722e+17 (4.56e+15) − 1.6240e+17 (3.51e+14)

WFG6
10 2.2633e+9 (1.39e+9) − 7.7778e+9 (1.07e+8) − 5.8760e+9 (2.79e+8) − 6.0002e+9 (1.79e+8) − 6.6823e+9 (1.15e+8) − 8.1978e+9 (2.35e+8)

15 2.0445e+16 (6.61e+15) − 1.4394e+17 (6.05e+15) − 1.0594e+17 (5.08e+15) − 9.3182e+16 (4.88e+15) − 1.2253e+17 (4.59e+15) − 1.5706e+17 (2.76e+15)

WFG7
10 1.8488e+9 (1.04e+9) − 8.7612e+9 (1.81e+8) − 6.6536e+9 (1.85e+8) − 6.7900e+9 (1.34e+8) − 7.7372e+9 (8.78e+7) − 9.2994e+9 (7.01e+6)

15 1.6211e+16 (1.17e+14) − 1.5763e+17 (5.67e+15) − 1.2395e+17 (2.42e+15) − 1.0505e+17 (4.37e+15) − 1.4760e+17 (1.91e+15) − 1.7724e+17 (1.34e+14)

WFG8
10 8.6874e+8 (7.58e+6) − 7.5655e+9 (9.99e+7) − 4.4228e+9 (1.09e+8) − 4.8222e+9 (2.53e+8) − 5.3348e+9 (1.81e+8) − 7.8199e+9 (1.26e+8)

15 1.7958e+16 (2.63e+15) − 1.1199e+17 (1.40e+16) − 6.6492e+16 (1.16e+16) − 7.0410e+16 (1.53e+15) − 1.0321e+17 (4.76e+15) − 1.5825e+17 (3.19e+15)

WFG9
10 1.0134e+9 (7.09e+8) − 7.7585e+9 (2.95e+8) − 6.3588e+9 (2.16e+8) − 6.6188e+9 (1.90e+8) − 6.7972e+9 (1.06e+8) − 8.4373e+9 (7.94e+7)

15 1.2144e+16 (2.13e+15) − 1.4748e+17 (6.79e+15) ≈ 1.1051e+17 (5.64e+15) − 1.0634e+17 (3.16e+15) − 1.2065e+17 (1.51e+15) − 1.5617e+17 (1.04e+16)

− 16 12 15 14 14

+ 2 1 0 0 2

≈ 0 5 3 2 2



Mathematics 2021, 9, 420 21 of 34

Table 5. IGD results of six algorithms on benchmarks WFG1-WFG9 with 3, 5, and 8 objectives.

Problems M MOEA/D-PaS NSGA-III CMOPSO Two_Arch2 DLEA DL-TPCEA

WFG1

3 1.5489e+0 (2.29e−2) − 1.3950e+0 (5.27e−2) − 1.7560e+0 (7.19e−2) − 1.4184e+0 (4.49e−2) − 1.2451e+0 (8.23e−2) − 1.1443e+0 (7.65e−2)

5 2.7526e+0 (2.30e−1) − 1.4514e+0 (1.49e−1) ≈ 2.2035e+0 (5.35e−2) − 1.7185e+0 (8.59e−2) − 1.4791e+0 (1.27e−1) ≈ 1.5296e+0 (1.11e−1)

8 3.0437e+0 (1.83e−1) − 2.3897e+0 (1.09e−1) ≈ 2.8601e+0 (4.19e−2) − 2.3930e+0 (8.43e−2) ≈ 2.0988e+0 (1.13e−1) ≈ 2.2369e+0 (2.02e−1)

WFG2

3 2.3806e−1 (9.89e−3) − 1.7972e−1 (3.04e−2) − 1.1896e−1 (6.05e−3) − 1.7195e−1 (1.48e−2) − 2.5026e−1 (3.96e−2) − 1.1400e−1 (8.60e−3)

5 1.7359e+0 (1.66e−1) − 7.1980e−1 (5.74e−2) − 6.0869e−1 (7.43e−2) − 6.2619e−1 (7.94e−2) − 1.3129e+0 (4.11e−1) − 5.1156e−1 (6.59e−2)

8 6.3124e+0 (3.79e+0) − 3.1921e+0 (1.86e+0) − 1.1504e+0 (4.51e−2) − 1.1816e+0 (1.89e−1) ≈ 3.3268e+0 (2.23e−1) − 1.0066e+0 (2.18e−1)

WFG3

3 1.0249e−1 (1.37e−2) ≈ 1.6696e−1 (1.62e−2) − 1.2856e−1 (1.03e−2) − 1.5342e−1 (1.84e−2) − 8.6193e−2 (7.43e−3) + 1.1065e−1 (1.13e−2)

5 1.3530e+0 (1.41e−1) − 5.4731e−1 (1.05e−1) ≈ 7.7094e−1 (8.68e−2) − 4.1412e−1 (3.98e−2) + 3.6988e−1 (3.44e−2) + 5.6591e−1 (6.60e−2)

8 8.8861e+0 (8.66e−5) − 9.8482e−1 (3.15e−1) + 1.5545e+0 (8.06e−2) ≈ 9.4384e−1 (3.33e−2) + 7.3548e−1 (8.64e−2) + 1.6935e+0 (3.31e−1)

WFG4

3 2.6154e−1 (9.71e−3) − 1.8267e−1 (3.22e−3) − 2.1399e−1 (4.38e−3) − 1.9309e−1 (5.21e−3) − 2.2205e−1 (7.93e−3) − 1.7016e−1 (3.78e−3)

5 2.6627e+0 (1.28e−1) − 1.1634e+0 (2.87e−3) − 9.9623e−1 (1.00e−2) − 1.0020e+0 (9.97e−3) − 1.0731e+0 (2.04e−2) − 9.7239e−1 (9.44e−3)

8 3.4398e+0 (4.68e−2) − 2.7417e+0 (1.38e−2) − 2.6563e+0 (5.37e−2) − 2.8326e+0 (1.04e−2) − 2.7079e+0 (1.13e−2) − 2.5307e+0 (1.51e−2)

WFG5

3 2.1185e−1 (2.89e−3) − 1.9548e−1 (2.95e−3) − 1.8860e−1 (6.74e−3) ≈ 2.1768e−1 (4.96e−3) − 2.3407e−1 (8.23e−3) − 1.8664e−1 (3.07e−3)

5 2.7787e+0 (1.90e−1) − 1.1383e+0 (5.93e−3) − 9.8193e−1 (2.86e−2) + 9.8959e−1 (1.00e−2) ≈ 1.0962e+0 (1.72e−2) − 9.9293e−1 (9.04e−3)

8 3.3155e+0 (3.27e−2) − 2.7859e+0 (1.21e−2) − 2.8877e+0 (8.40e−2) − 2.8167e+0 (2.57e−2) − 2.8605e+0 (4.45e−2) − 2.6346e+0 (3.32e−2)

WFG6

3 3.0029e−1 (3.64e−2) − 2.5494e−1 (1.76e−2) − 1.9560e−1 (7.25e−3) + 2.8551e−1 (1.74e−2) − 2.7869e−1 (1.58e−2) − 2.4262e−1 (1.89e−2)

5 1.8877e+0 (3.93e−1) − 1.1613e+0 (3.45e−3) − 1.0374e+0 (3.02e−2) ≈ 1.0509e+0 (1.60e−2) ≈ 1.1386e+0 (2.54e−2) − 1.0488e+0 (1.30e−2)

8 3.2864e+0 (6.98e−2) − 2.8195e+0 (3.23e−2) ≈ 2.9362e+0 (2.23e−2) − 2.9558e+0 (4.11e−2) − 2.9154e+0 (3.73e−2) − 2.8073e+0 (4.48e−2)

WFG7

3 2.2119e−1 (8.24e−3) − 1.8009e−1 (3.35e−3) ≈ 1.7571e−1 (3.71e−3) ≈ 1.9406e−1 (9.73e−3) − 2.2983e−1 (1.11e−2) − 1.7794e−1 (5.79e−3)

5 2.9302e+0 (2.47e−1) − 1.1637e+0 (4.06e−3) − 1.0208e+0 (1.51e−2) + 9.8399e−1 (8.08e−3) + 1.1237e+0 (3.00e−2) − 1.0808e+0 (2.16e−2)

8 4.7379e+0 (3.07e+0) − 2.7927e+0 (1.71e−2) − 2.6952e+0 (2.84e−2) + 2.8153e+0 (3.58e−2) − 2.8150e+0 (3.02e−2) − 2.7405e+0 (2.75e−2)

WFG8

3 3.3340e−1 (1.38e−2) − 3.0618e−1 (6.91e−3) − 3.1422e−1 (8.61e−3) − 3.2821e−1 (1.06e−2) − 3.2300e−1 (9.59e−3) − 2.9003e−1 (5.52e−3)

5 2.9656e+0 (1.37e−1) − 1.1706e+0 (1.15e−2) − 1.2719e+0 (3.13e−2) − 1.1570e+0 (1.48e−2) − 1.2426e+0 (2.15e−2) − 1.1148e+0 (1.25e−2)

8 1.1416e+1 (3.81e+0) − 3.1538e+0 (1.14e−2) − 3.3418e+0 (5.20e−2) − 3.4145e+0 (2.80e−2) − 3.2563e+0 (5.28e−2) − 2.9559e+0 (4.04e−2)

WFG9

3 2.5049e−1 (4.26e−2) − 1.8430e−1 (9.41e−3) − 1.6713e−1 (3.72e−3) − 1.8655e−1 (1.19e−2) − 2.0949e−1 (7.53e−3) − 1.6080e−1 (3.23e−3)

5 2.5243e+0 (1.81e−1) − 1.1054e+0 (1.22e−2) − 9.8803e−1 (3.72e−2) − 9.7439e−1 (1.19e−2) − 1.0773e+0 (2.72e−2) − 9.5847e−1 (1.16e−2)

8 6.4301e+0 (4.24e+0) − 2.8681e+0 (5.07e−2) − 2.9972e+0 (2.68e−2) − 2.9064e+0 (2.25e−2) − 2.9369e+0 (5.78e−2) − 2.6905e+0 (4.47e−2)

- 26 21 19 20 22

+ 0 1 4 3 3

≈ 1 5 4 4 2
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Table 6. IGD results of six algorithms on benchmarks WFG1-WFG9 with 10 and 15 objectives.

Problems M MOEA/D-PaS NSGA-III CMOPSO Two_Arch2 DLEA DL-TPCEA

WFG1
10 3.4752e+0 (2.18e−1) − 2.5247e+0 (1.47e−1) ≈ 3.1837e+0 (3.94e−2) − 2.5480e+0 (8.68e−2) ≈ 2.0295e+0 (1.02e−1) + 2.3727e+0 (1.48e−1)

15 4.4269e+0 (1.80e−1) − 2.8567e+0 (2.36e−1) + 3.9681e+0 (6.38e−2) − 3.5058e+0 (1.05e−1) ≈ 2.4277e+0 (1.43e−1) + 3.2972e+0 (2.62e−1)

WFG2
10 8.0643e+0 (1.55e+0) − 5.5784e+0 (3.05e+0) − 1.6248e+0 (1.81e−1) ≈ 2.4826e+0 (3.88e−1) − 5.7470e+0 (1.74e+0) − 1.7920e+0 (3.61e−1)

15 1.7357e+1 (5.54e+0) − 1.1222e+1 (1.89e+0) − 1.5628e+0 (3.78e−1) ≈ 1.2642e+0 (2.13e−1) + 1.2789e+1 (1.38e+0) − 2.3050e+0 (7.98e−1)

WFG3
10 1.1189e+1 (1.28e−4) − 9.1908e−1 (6.98e−2) + 2.1021e+0 (1.88e−1) + 1.1879e+0 (8.56e−2) + 1.1060e+0 (1.36e−1) + 2.4613e+0 (2.26e−1)

15 1.6953e+1 (3.81e−5) − 2.2492e+0 (1.82e−1) + 4.0070e+0 (3.24e−1) ≈ 2.1674e+0 (2.62e−1) + 1.6673e+0 (3.86e−1) + 4.2693e+0 (1.23e+0)

WFG4
10 1.3196e+1 (6.43e+0) − 4.4372e+0 (8.31e−2) − 4.7969e+0 (9.82e−1) ≈ 4.2424e+0 (5.27e−2) ≈ 4.1316e+0 (4.22e−2) ≈ 4.2136e+0 (1.04e−1)

15 2.8206e+1 (9.78e−1) − 8.3714e+0 (4.08e−1) − 7.6517e+0 (8.31e−2) ≈ 8.1285e+0 (9.26e−2) − 7.4599e+0 (5.49e−2) + 7.7824e+0 (1.11e−1)

WFG5
10 1.8727e+1 (1.34e−1) − 4.4440e+0 (3.06e−2) − 4.1452e+0 (7.06e−2) − 4.1626e+0 (2.03e−2) − 4.2241e+0 (3.41e−2) − 4.0344e+0 (3.86e−2)

15 3.0024e+1 (6.03e−8) − 7.8352e+0 (2.05e−1) ≈ 7.4354e+0 (4.90e−2) ≈ 7.7203e+0 (4.80e−2) − 7.1981e+0 (1.28e−1) + 7.5313e+0 (6.01e−2)

WFG6
10 1.4944e+1 (4.03e+0) − 4.5720e+0 (2.87e−2) ≈ 4.2313e+0 (3.21e−2) ≈ 4.2511e+0 (3.52e−2) ≈ 4.4157e+0 (6.37e−2) ≈ 4.3695e+0 (2.07e−1)

15 2.8561e+1 (2.44e+0) − 1.0013e+1 (1.75e+0) ≈ 7.4634e+0 (1.60e−1) + 7.7827e+0 (7.71e−2) ≈ 7.3120e+0 (1.30e−1) + 8.0243e+0 (1.90e−1)

WFG7
10 1.6823e+1 (1.73e+0) − 4.5121e+0 (1.30e−1) − 4.0027e+0 (2.17e−2) + 4.1460e+0 (1.77e−2) ≈ 4.2551e+0 (5.57e−2) ≈ 4.1518e+0 (6.56e−2)

15 3.0346e+1 (1.61e−3) − 8.8360e+0 (3.39e−1) − 7.2612e+0 (7.48e−2) + 8.2064e+0 (1.16e−1) − 7.1798e+0 (1.01e−1) + 7.6130e+0 (8.70e−2)

WFG8
10 1.9093e+1 (1.36e−1) − 5.1188e+0 (5.07e−1) − 4.6629e+0 (2.17e−2) − 4.8276e+0 (3.38e−2) − 4.6012e+0 (3.56e−2) − 4.2410e+0 (4.91e−2)

15 2.8903e+1 (1.53e+0) − 9.5721e+0 (7.98e−1) − 7.9078e+0 (6.22e−2) − 8.6835e+0 (1.83e−1) − 7.7107e+0 (6.01e−2) − 7.3664e+0 (2.52e−1)

WFG9
10 1.7540e+1 (2.19e+0) − 4.1996e+0 (7.49e−2) ≈ 4.3883e+0 (3.91e−2) − 4.2512e+0 (3.14e−2) − 4.3247e+0 (2.94e−2) − 4.1677e+0 (2.88e−2)

15 2.9935e+1 (1.05e−1) − 8.1123e+0 (2.73e−1) − 7.7758e+0 (5.19e−2) − 8.0385e+0 (1.01e−1) − 7.7769e+0 (1.58e−1) − 7.2405e+0 (1.43e−1)

− 18 10 7 9 7

+ 0 3 4 3 8

≈ 0 5 7 6 3
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As shown in Tables 3 and 4, in terms of HV, the proposed DL-TPCEA was significantly
better than the other five algorithms on 26 out of 45 test instances, and performed similarly
to them on two test instances. Specifically, DL-TPCEA generated higher HV values than
MOEA/D-PaS, NSGA-III, CMOPSO, Two_Arch2, and DLEA on 39, 33, 39, 38, and 36 out
of the 45 test instances, respectively. As shown in Tables 5 and 6, in terms of IGD, the
proposed DL-TPCEA was significantly better than the other five algorithms on 21 out
of 45 test instances, and performed similarly to them on one test instance. DL-TPCEA
generated smaller IGD values than MOEA/D-PaS, NSGA-III, CMOPSO, Two_Arch2, and
DLEA on 44, 31, 26, 29, and 29 out of the 45 test instances, respectively. The results
demonstrated that it was a promising way to approximate the PFs of WFGs via coevolution
and dynamic learning strategy in the proposed DL-TPCEA. CMOPSO and DLEA showed
better results for IGD values than for HV values, indicating that these two algorithms also
had a good ability to maintain the trade-off between convergence and diversity. In addition,
from the comprehensive results of HV values and IGD values, NSGA-III was also a good
algorithm. However, compared with these three MaOEAs, the proposed DL-TPCEA also
showed much better performance with respect to both convergence and diversity.

The superiority of DL-TPCEA can be explained as follows. The other five comparative
algorithms, with the exception of Two_Ach2, attempted to simulate PFs of WFGs through
balanced convergence and diversity using a single population. However, as the number
of objectives increases, the balance between convergence and diversity became more diffi-
cult. This was because the increasing number of objectives led to more serious conflicts
on multiple objectives, so that the selection pressure of the MOEAs was not as good as
when there were fewer objectives. When the number of objectives kept increasing, the
solutions generated by these algorithms may only be single convergence-related solutions
or diversity-related solutions, but there was no compromise between convergence and
diversity over the whole PF. In addition, Two_Arch2 used two different external archives to
store convergence-related solutions or diversity-related solutions, respectively. Moreover,
Two_Arch2 promoted the evolution between the two archives so that the population main-
tained a compromise between convergence and diversity. However, these two external
archiving methods had poor performance in dealing with MaOPs, especially the objective
conflicts were serious. The proposed DL-TPCEA used two populations for coevolution
and the shortcomings of each population will be compensated by BCE. It kept a good
balance between convergence and diversity, and used dynamic learning strategy to fur-
ther strengthen the balance. As a result, the proposed DL-TPCEA did not degrade the
performance because of the conflicts caused by the number of objectives increased.

From the HV values in Tables 3 and 4, we can see that the HV value obtained by
other related algorithms except MOEA/D-PaS on 8-, 10-, and 15-objective WFG3 was zero.
This was caused by the calculation of the HV results using a set of reference points set on
the corresponding test instance. When the corresponding algorithms failed to obtain any
candidate solution dominating the reference point on those test instances, the value of the
hypervolume (HV value) formed by the non-dominated population and the reference point
was zero. In these three test instances, only MOEA/D-PaS obtained HV results, which also
indicates that MOEA/D-PaS had its own advantages in dealing with WFG3. In addition
to the three test instances, all the algorithms obtained HV values (non-zero) on the other
test instances.

It can also be concluded from the results that DL-TPCEA mainly showed poor perfor-
mance on WFG1 and WFG3. In terms of the characteristics of the problem, WFG1 is convex
and mixed, while WFG3 is linear and degenerate. DL-TPCEA may not be able to find
boundary individuals well on such problems like WFG1 or WFG3, thus, resulting in poor
performance. In addition, WFG2 is convex and disconnected. However, DL-TPCEA was
still able to obtain the optimal HV results, indicating that the two-population coevolution
of DL-TPCEA is capable of dealing with disconnected MaOPs. Finally, WFG4-9 is concave,
and DL-TPCEA also has the best performance. The performance of DL-TPCEA on 10- and
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15-objective WFG4-9 was lower than DLEA, indicating that dynamic learning strategies
played a significant role in dealing with concave MaOPs.

In order to more intuitively observe the ability of the six algorithms to balance con-
vergence and diversity on the WFG test suite, the parallel coordinates of the solution set
obtained by the six algorithms on the 5-objective WFG2 and 10-objective WFG9 were given
in Figures 3 and 4, respectively. In parallel coordinates, the ordinate represents the objective
value, and the convergence information can be obtained. An algorithm has good conver-
gence if it can converge to the range of PF. At the same time, the vertical height can also
reflect the performance in the diversity. The horizontal axis corresponds to each objective,
which can reflect the diversity information of MaOEAs. It is an algorithm that maintains
solutions for every objective, and the denser the lines, the better the diversity. Therefore,
using the parallel coordinates of the solution set can better compare the performance
of MaOEAs.

For 5-objective WFG2, the range of PF on each objective dimension m is from 0 to
m * 2 (m = 1, . . . , M). As shown in Figure 3, although the solution sets obtained by all
the six algorithms can successfully converged to the range of the corresponding objective
dimension on PF, their diversity was significantly different. Among the six algorithms,
MOEA/D-PaS and DLEA had the worst performance in diversity. MOEA/D-PaS had a
poor diversity in the second objective, while DLEA had a poor diversity in the second to
fourth objectives. By contrast, NSGA-III, CMOPSO, and Two_Arch2 algorithms performed
better in diversity. However, the diversity of the solution sets obtained by these three
algorithms was not as good as that of DL-TPCEA. It can be seen from in Figure 3f that the
diversity of the solution set obtained by DL-TPCEA was good in each objective dimension.
This indicated that the output solution set of the proposed DL-TPCEA was better than the
other five comparative algorithms in terms of convergence and diversity. This result was
also consistent with the maximum HV value and minimum IGD value of DL-TPCEA on
5-objective WFG2, as shown in Tables 3 and 5.
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As shown in Figure 4, the solution set obtained by DL-TPCEA was superior to the five
comparative algorithms in terms of convergence and diversity. For 10-objective WFG9, the
range of PF on each objective dimension m is from 0 to m * 2 (m = 1, . . . , M). Among the six
algorithms, MOEA/D-PaS converged to few solutions on PF of 10-objective WFG9, so it
cannot approach PF well. As shown in Figure 4c,e, the solution set obtained by CMOPSO
had a relatively poor diversity on the sixth objective, while DLEA had a relatively poor
diversity on the seventh and ninth objectives. NSGA-III and Two_Arch2 algorithms
performed well, second only to the convergence and diversity of the solution set obtained
by DL-TPCEA on 10-objective WFG9. This was consistent with the HV values and IGD
values in Tables 4 and 6.

Figure 5 showed the IGD value trajectories obtained by running six algorithms on the
5-objective WFG test suite. The algorithm for each trajectory was identified in the bottom
legend, and DL-TPCEA was specifically highlighted in red. Each subgraph was marked
with a different problem, and its abscissa was the number of evaluations during algorithm
iteration, and its ordinate was the IGD value. As can be seen from Figure 5, the IGD value
trajectory of DL-TPCEA generally declines fastest (except for WFG1 and WFG3), which
indicated that DLEA converged very quickly. In addition, from the final result, the IGD
value obtained by DL-TPCEA is usually the minimum or not far from the minimum. On
5-objective WFG1, the final IGD value obtained by DL-TPCEA was second only to DLEA.
And DLEA obtained the best IGD values on WFG3, while DL-TPCEA performed only at
the mid-range level on this issue. Except for WFG1 and WFG3, DL-TPCEA performed very
well on the other seven 5-objective WFGs. In general, DL-TPCEA had the best performance
among the six algorithms.
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Figure 5. The IGD values convergence trajectories obtained by the six MOEAs on 5-objectives WFG test suite.

Combined with results of HV values and IGD values in Tables 3–6, convergence and
diversity effects of solution sets in Figures 3 and 4, as well as IGD value trajectory shown
in Figure 5, DL-TPCEA had the best performance in these six algorithms. DL-TPCEA had
great advantages in many-objective optimization, both in terms of the convergence and
diversity of the final solution set and the convergence speed.

Table 7 shows the average running time of the six comparative algorithms on 3-, 5-,
8-, 10-, and 15-objective WFG1. The last one is the results of Wilcoxon test (the smaller the
value is, the shorter the corresponding running time is). The shortest time is NSGA-III,
which is due to the simple structure. However, DL-TPCEA is only ranked fourth, which is
also a shortcoming. However, given the performance gains, it is worth it, especially for
problems that require a lot of accuracy.

Table 7. Comparison of runtime (s) among the six algorithms on 3-, 5-, 8-, 10-, and 15-objective WFG1.

Problem M MOEA/D-PaS NSGA-III CMOPSO Two_Arch2 DLEA DL-TPCEA

WFG1

3 1.7368e+1 (1.75e−1) 6.5904e−1 (3.59e−2) 3.0853e+0 (5.20e−1) 1.1769e+1 (4.49e−1) 1.2042e+1 (8.84e−2) 5.0030e+0 (2.58e−1)
5 3.5334e+1 (3.27e−1) 1.5763e+0 (6.25e−2) 1.7703e+1 (2.45e+0) 3.8577e+1 (1.06e+0) 2.5697e+1 (1.80e−1) 1.9692e+1 (1.46e+0)
8 7.2000e+1 (3.02e−1) 2.9553e+0 (5.70e−2) 3.3330e+1 (5.32e+0) 1.0961e+2 (2.00e+0) 6.1095e+1 (5.83e−1) 7.5986e+1 (3.63e+0)
10 6.7838e+1 (6.60e−1) 3.1321e+0 (2.52e−1) 3.0180e+1 (7.89e+0) 1.1603e+2 (2.26e+0) 5.8485e+1 (2.66e−1) 8.3710e+1 (3.01e+0)
15 1.0624e+2 (4.48e+0) 4.4098e+0 (1.35e−1) 1.2978e+2 (2.33e+1) 2.4883e+2 (4.10e+0) 1.0903e+2 (7.38e−1) 2.2197e+2 (6.09e+0)

rank 4.20 1.00 2.40 5.60 3.60 4.20

5.4. Comparison Experiments of DL-TPCEA and Two Weight-Sum Based Algorithms

In this section, we compared DL-TPCEA with two weight-sum based algorithms. The
weighted sum method is characterized by fast running speed, simple structure, and easy
operation. MaOPs in industrial production tend to have more complex PF, so it may be
very limited to solve such problems only by weighted sum method. For this purpose,
DL-TPCEA is compared with the weight-sum based approach to verify the advantages of
the proposed algorithm.

This paper provides two weight-sum based algorithms for comparison. The first
algorithm is a modification of the classic NSGA-II framework, which is called WSEA. The



Mathematics 2021, 9, 420 27 of 34

environment selection of the WSEA starts with a non-dominated sort, and then the rest of
the solutions are selected by using weight-sum method in the layer MaxFNo mentioned in
Section 4.1.2. The environment selection of the second algorithm only selects individuals by
weight-sum method, which is called WSEA2. From the point of minimizing the problem,
the way to select individuals here is to pick out the N individuals with smallest weighted
sum to the next generation. In addition, both algorithms use crossover and mutation
operators to generate offspring. Finally, since there is no preference for an objective, the
weights of the two algorithms on each objective are set to the same value of 1/M. However,
in order to consider the impact of each objective size on the algorithm, a normalization
operation should be carried out for each objective before calculating the weighted sum.
DL-TPCEA is compared with the two weight-sum based algorithms mentioned above, and
the results are shown in Tables 8–11.

Table 8. HV results of DL-TPCEA and two weight-sum based algorithms on benchmarks WFG1-WFG9 with 3, 5, and
8 objectives.

Problems M WSEA WSEA2 DL-TPCEA

WFG1

3 2.5940e+1 (3.02e+0) 6.9900e+0 (5.88e+0) 2.7839e+1 (1.96e+0)

5 4.3534e+3 (2.87e+2) 1.5758e+3 (9.81e+2) 2.6535e+3 (2.70e+2)

8 1.8437e+7 (1.20e+6) 1.1020e+7 (7.58e+6) 6.9852e+6 (1.19e+6)

WFG2

3 4.4022e+1 (1.02e+0) 1.0113e+1 (4.37e+0) 5.8855e+1 (2.83e−1)

5 4.2104e+3 (9.81e+2) 2.2314e+3 (1.04e+3) 6.1122e+3 (1.83e+1)

8 1.6107e+7 (2.25e+6) 1.6424e+7 (2.47e+6) 2.1889e+7 (8.02e+4)

WFG3

3 4.7170e+0 (3.09e−1) 1.4324e+0 (1.07e−2) 5.9102e+0 (9.30e−2)

5 1.2563e+0 (9.19e−2) 1.0850e+0 (6.56e−3) 1.1142e+0 (3.37e−1)

8 1.6284e−2 (2.65e−3) 1.3718e−2 (1.29e−3) 0.0000e+0 (0.00e+0)

WFG4

3 2.1540e+1 (2.61e−1) 5.8596e+0 (1.05e−1) 3.5106e+1 (1.47e−1)

5 1.5536e+3 (1.18e+2) 7.4547e+2 (1.23e+2) 4.8905e+3 (2.30e+1)

8 5.1626e+6 (1.10e+6) 4.0105e+6 (8.00e+5) 2.0259e+7 (1.20e+5)

WFG5

3 5.6176e+0 (3.55e−1) 4.9062e+0 (2.20e−4) 3.3072e+1 (2.45e−1)

5 4.8517e+2 (7.18e−4) 4.8516e+2 (2.96e−6) 4.5798e+3 (1.63e+1)

8 1.7489e+6 (4.13e+0) 1.7489e+6 (4.42e+0) 1.8993e+7 (7.80e+4)

WFG6

3 1.9143e+1 (8.51e−1) 5.2439e+0 (9.21e−1) 3.1280e+1 (8.81e−1)

5 1.4861e+3 (4.26e+2) 8.3328e+2 (4.21e+2) 4.3856e+3 (8.73e+1)

8 4.0300e+6 (1.18e+6) 2.3463e+6 (1.30e+5) 1.8534e+7 (4.34e+5)

WFG7

3 1.7538e+1 (1.22e+0) 9.4479e+0 (3.78e+0) 3.5763e+1 (9.24e−2)

5 1.5602e+3 (3.41e+2) 8.5188e+2 (3.01e+2) 4.9534e+3 (8.29e+0)

8 6.0797e+6 (7.26e+5) 4.7256e+6 (1.71e+6) 2.0675e+7 (3.51e+4)

WFG8

3 1.6581e+1 (2.50e+0) 5.6755e+0 (1.60e−1) 2.9372e+1 (2.48e−1)

5 6.8821e+2 (6.54e+1) 6.1305e+2 (7.08e+1) 3.8241e+3 (4.35e+1)

8 2.2857e+6 (6.42e+5) 2.0356e+6 (3.05e+5) 1.6523e+7 (2.10e+5)

WFG9

3 8.3332e+0 (1.99e+0) 3.4207e+0 (4.40e−5) 3.4084e+1 (2.54e−1)

5 6.5479e+2 (9.07e+1) 4.4075e+2 (9.90e+1) 4.6044e+3 (4.08e+1)

8 3.0759e+6 (7.92e+5) 2.8697e+6 (5.56e+5) 1.8621e+7 (1.34e+5)
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Table 9. HV results of DL-TPCEA and two weight-sum based algorithms on benchmarks WFG1-WFG9 with 10 and
15 objectives.

Problems M WSEA WSEA2 DL-TPCEA

WFG1
10 8.3451e+9 (3.40e+8) 8.0823e+9 (8.38e+8) 3.0894e+9 (9.09e+7)

15 1.3885e+17 (1.57e+14) 1.3151e+17 (7.93e+15) 3.9888e+16 (6.02e+15)

WFG2
10 7.7232e+9 (5.92e+8) 5.1805e+9 (1.83e+9) 9.5531e+9 (2.77e+7)

15 1.2874e+17 (2.49e+16) 1.0902e+17 (2.21e+16) 1.7777e+17 (1.70e+14)

WFG3
10 3.8860e−5 (5.32e−6) 3.8105e−5 (5.43e−6) 0.0000e+0 (0.00e+0)

15 0.0000e+0 (0.00e+0) 0.0000e+0 (0.00e+0) 0.0000e+0 (0.00e+0)

WFG4
10 2.0785e+9 (6.77e+8) 2.5030e+9 (7.61e+8) 9.1189e+9 (4.33e+7)

15 4.9360e+16 (2.12e+16) 3.1410e+16 (1.15e+16) 1.7439e+17 (6.93e+14)

WFG5
10 7.6254e+8 (9.65e−1) 7.6254e+8 (4.37e+1) 8.5253e+9 (2.97e+7)

15 1.4147e+16 (1.75e+12) 1.4146e+16 (1.83e+12) 1.6240e+17 (3.51e+14)

WFG6
10 1.8340e+9 (5.01e+8) 1.7364e+9 (7.30e+8) 8.1978e+9 (2.35e+8)

15 4.5548e+16 (1.85e+16) 3.2527e+16 (1.02e+16) 1.5706e+17 (2.76e+15)

WFG7
10 2.8722e+9 (6.09e+8) 2.2976e+9 (9.57e+8) 9.2994e+9 (7.01e+6)

15 4.9910e+16 (1.06e+16) 3.4728e+16 (9.38e+15) 1.7724e+17 (1.34e+14)

WFG8
10 8.7211e+8 (9.80e+7) 8.6477e+8 (2.00e+8) 7.8199e+9 (1.26e+8)

15 3.6695e+16 (2.82e+16) 4.2377e+16 (9.52e+15) 1.5825e+17 (3.19e+15)

WFG9
10 1.6703e+9 (9.25e+8) 1.4451e+9 (5.64e+8) 8.4373e+9 (7.94e+7)

15 5.4094e+16 (7.47e+15) 4.6128e+16 (2.02e+16) 1.5617e+17 (1.04e+16)

As can be seen from the results in Tables 8–11, DL-TPCEA obtained the optimal
results in all the other instances except for the HV results of seven instances on WFG1
and WFG3. Regardless of HV or IGD indicator, DL-TPCEA has the best performance
among the three algorithms. It also reflects that the complexity of MaOPs cannot be well
adapted to only relying on a single weighted sum method. The reasons are as follows:
without considering the objective preference, it is not guaranteed that the solution in the
population will converge to PF only by the magnitude of the weighted sum. A smaller
weighted sum may just be that the individual retains a smaller objective value for some
objective, but whether the individual is a non-dominated solution is unknown. In addition,
the method based on the weighted sum is linearly convergent. However, different MaOPs
have different characteristics, making it difficult to apply this method to all problems.

From the point of the feature of the problem, WFG1 is convex and mixed, while
WFG3 is linear and degenerate. WSEA has just obtained the optimal HV results in several
examples of these two problems, indicating the weighted sum method is promising to
deal with these problems. However, the IGD values obtained by WSEA and WSEA2 on
these examples are very poor, which also indicates that the convergence ability is not
strong. The calculation of HV will consider some boundary individuals in the population,
so DL-TPCEA may not get good HV results because of the boundary individuals in the
population. However, combining the results of the two indicators, DL-TPCEA performed
best in 83 out of 90 instances, which is an overwhelming advantage. These results reflect the
limitations of using the weighted sum method to solve MaOPs, and show that DL-TPCEA
has good advantages.
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Table 10. IGD results of DL-TPCEA and two weight-sum based algorithms on benchmarks WFG1-WFG9 with 3, 5, and
8 objectives.

Problems M WSEA WSEA2 DL-TPCEA

WFG1

3 1.2881e+0 (1.35e−1) 3.4165e+0 (9.29e−1) 1.1443e+0 (7.65e−2)

5 2.0015e+0 (1.18e−1) 5.0632e+0 (1.85e+0) 1.5296e+0 (1.11e−1)

8 2.4999e+0 (2.12e−1) 7.6394e+0 (4.79e+0) 2.2369e+0 (2.02e−1)

WFG2

3 7.7414e−1 (4.59e−2) 3.1113e+0 (3.99e−1) 1.1400e−1 (8.60e−3)

5 1.6495e+0 (4.13e−1) 2.7955e+0 (9.76e−1) 5.1156e−1 (6.59e−2)

8 3.8914e+0 (6.35e−1) 3.5795e+0 (5.84e−1) 1.0066e+0 (2.18e−1)

WFG3

3 1.4793e+0 (1.96e−1) 3.2014e+0 (2.81e−3) 1.1065e−1 (1.13e−2)

5 5.2586e+0 (1.01e−1) 5.4443e+0 (4.88e−4) 5.6591e−1 (6.60e−2)

8 8.5239e+0 (3.90e−1) 8.8671e+0 (3.27e−2) 1.6935e+0 (3.31e−1)

WFG4

3 1.4651e+0 (1.51e−2) 3.9049e+0 (7.37e−2) 1.7016e−1 (3.78e−3)

5 5.7459e+0 (2.93e−1) 7.4360e+0 (3.14e−1) 9.7239e−1 (9.44e−3)

8 1.1621e+1 (1.03e+0) 1.2737e+1 (4.56e−1) 2.5307e+0 (1.51e−2)

WFG5

3 3.6430e+0 (9.53e−2) 3.8534e+0 (6.71e−5) 1.8664e−1 (3.07e−3)

5 7.9990e+0 (5.15e−6) 7.9990e+0 (2.13e−8) 9.9293e−1 (9.04e−3)

8 1.4670e+1 (9.68e−6) 1.4670e+1 (1.06e−5) 2.6346e+0 (3.32e−2)

WFG6

3 1.5039e+0 (7.48e−2) 3.7653e+0 (2.26e−1) 2.4262e−1 (1.89e−2)

5 5.3476e+0 (8.43e−1) 7.0610e+0 (9.93e−1) 1.0488e+0 (1.30e−2)

8 1.2326e+1 (1.24e+0) 1.3945e+1 (1.32e−1) 2.8073e+0 (4.48e−2)

WFG7

3 1.8260e+0 (1.95e−1) 3.1263e+0 (6.97e−1) 1.7794e−1 (5.79e−3)

5 5.1307e+0 (5.05e−1) 7.2260e+0 (7.30e−1) 1.0808e+0 (2.16e−2)

8 1.1043e+1 (4.85e−1) 1.1873e+1 (1.83e+0) 2.7405e+0 (2.75e−2)

WFG8

3 1.5861e+0 (3.63e−1) 3.8409e+0 (2.16e−1) 2.9003e−1 (5.52e−3)

5 5.5266e+0 (1.98e−1) 6.6281e+0 (8.22e−1) 1.1148e+0 (1.25e−2)

8 1.1010e+1 (1.07e+0) 1.3450e+1 (1.43e+0) 2.9559e+0 (4.04e−2)

WFG9

3 3.1525e+0 (2.30e−1) 3.8736e+0 (1.04e−6) 1.6080e−1 (3.23e−3)

5 7.5318e+0 (2.87e−1) 7.9566e+0 (6.88e−2) 9.5847e−1 (1.16e−2)

8 1.3446e+1 (6.85e−1) 1.3468e+1 (5.75e−1) 2.6905e+0 (4.47e−2)

Table 11. IGD results of DL-TPCEA and two weight-sum based algorithms on benchmarks WFG1-WFG9 with 10 and
15 objectives.

Problems M WSEA WSEA2 DL-TPCEA

WFG1
10 2.7506e+0 (4.24e−1) 3.2357e+0 (1.43e+0) 2.3727e+0 (1.48e−1)

15 3.3141e+0 (1.74e−1) 3.5682e+0 (7.23e−1) 3.2972e+0 (2.62e−1)

WFG2
10 5.1728e+0 (6.06e−1) 6.3742e+0 (1.88e+0) 1.7920e+0 (3.61e−1)

15 1.2806e+1 (1.47e+0) 1.3168e+1 (2.04e+0) 2.3050e+0 (7.98e−1)

WFG3
10 1.1169e+1 (2.14e−2) 1.1187e+1 (2.10e−3) 2.4613e+0 (2.26e−1)

15 1.5948e+1 (1.23e+0) 1.6847e+1 (1.76e−1) 4.2693e+0 (1.23e+0)
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Table 11. Cont.

Problems M WSEA WSEA2 DL-TPCEA

WFG4
10 1.5880e+1 (1.63e+0) 1.5367e+1 (1.51e+0) 4.2136e+0 (1.04e−1)
15 2.5245e+1 (2.83e+0) 2.7162e+1 (1.53e+0) 7.7824e+0 (1.11e−1)

WFG5
10 1.8913e+1 (6.20e−9) 1.8913e+1 (6.95e−8) 4.0344e+0 (3.86e−2)
15 3.0022e+1 (6.26e−4) 3.0023e+1 (6.52e−4) 7.5313e+0 (6.01e−2)

WFG6
10 1.5554e+1 (1.64e+0) 1.6302e+1 (1.94e+0) 4.3695e+0 (2.07e−1)
15 2.4092e+1 (2.70e+0) 2.5533e+1 (2.47e+0) 8.0243e+0 (1.90e−1)

WFG7
10 1.3849e+1 (1.58e+0) 1.4887e+1 (2.41e+0) 4.1518e+0 (6.56e−2)
15 2.2743e+1 (2.69e+0) 2.6167e+1 (2.09e+0) 7.6130e+0 (8.70e−2)

WFG8
10 1.4975e+1 (1.68e+0) 1.5039e+1 (1.52e+0) 4.2410e+0 (4.91e−2)
15 2.4219e+1 (4.49e+0) 2.1602e+1 (2.28e+0) 7.3664e+0 (2.52e−1)

WFG9
10 1.6810e+1 (2.26e+0) 1.7056e+1 (1.58e+0) 4.1677e+0 (2.88e−2)
15 2.3731e+1 (1.25e+0) 2.5088e+1 (3.06e+0) 7.2405e+0 (1.43e−1)

6. Conclusions

In recent years, in order to enable MOEAs to handle MaOPs with various character-
istics, various MOEAs have been proposed. However, these MOEAs also had their own
disadvantages. For example, MOEAs that rely on reference vectors cannot well represent
the characteristics of the whole PF when generating reference vectors, which results in
the performance degradation of MOEAs. This paper made full use of the advantages of
DLS in many-objective optimization (better to maintain convergence and diversity), and
proposed DL-TPCEA in combination with the BCE framework. The effective combination
of the two strategies can further explore the entire decision space. At the same time, the
convergence factor in DLS is further improved according to the evolutionary state of the
population in BCE, and then the dynamic convergence factor is proposed to better use the
important element of the evolutionary state of the population. This effective combination
greatly improves the performance of DL-TPCEA. When compared with five state-of-the-art
MOEAs, DL-TPCEA has significant advantages. Finally, in order to verify the performance
advantage of DL-TPCEA over the weight-sum based algorithm, DL-TPCEA was compared
with the two weight-sum based algorithms, and the results showed that DL-TPCEA still
had significant advantages.

In addition, the original DLS used Iε+ to maintain individual convergence and a
diversity maintenance mechanism based on Lp-norm distance to maintain diversity. In this
paper, the CV indicator is used to maintain individual convergence, and the comparison
between CV and Iε+ should be the future research direction. In addition, there are still
many excellent strategies that can be used to maintain convergence and diversity, and this
paper does not compare these strategies. The future direction of work can start from this
point and be improved under the framework of DL-TPCEA to achieve better results. We
used dynamic learning factors to combine DLS and BCE more effectively, but there are
more ways to combine them more effectively in the future. In terms of the selection of the
initial value of the dynamic convergence factor, suggestions in relevant paper [94] can also
be referred to get a better initial value.
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