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Abstract: The exact solution of the movement equation of the Coriolis vibratory gyroscope (CVG)
with a linear law of variation of the angular rate of rotation of the base is given. The solution is
expressed in terms of the Weber functions (the parabolic cylinder functions) and their asymptotic
representations. On the basis of the obtained solution, an analytical solution to the equation of the
ring dynamics in the case of piecewise linear approximation of an arbitrary angular velocity profile
on a time grid is derived. The piecewise linear solution is compared with the more rough piecewise
constant solution and the dependence of the error of such approximations on the sampling step
in time is estimated numerically. The results obtained make it possible to significantly reduce the
number of operations when it is necessary to study long-range dynamics of oscillations of the system,
as well as quantitatively and qualitatively control the convergence of finite-difference schemes for
solving the movement equations of the Coriolis vibratory gyroscope.

Keywords: Coriolis vibratory gyroscope; angular rate; circumferential force; piecewise approximation;
B-splines; Weber functions

1. Introduction

The functioning of Coriolis vibratory gyroscopes (CVG) is based on the effect of the
precession of elastic waves excited in axisymmetric shells [1–3]. Taking into account the
fact that the main part of the vibration energy of the elastic shell corresponds to the region
adjacent to its edge, the ring-shaped model is the basic one for studying the dynamics of
the CVG of any configuration.

It is especially simple to analyze the dynamics of a ring-shaped CVG resonator in
the case of a constant angular rate. With certain dependencies, by reducing to the known
second-order differential equations with variable coefficients, the solutions of the equations
of dynamics can also be found analytically [4]. However, firstly, the form of these solutions
can be quite cumbersome (expressed in terms of special functions). Secondly, not every
law of rotation of the base allows one to obtain well-studied analytically differential
equations. In particular, this applies to such practically important cases when the analytical
dependence changes smoothly or abruptly with time, as well as if it is specified not in
analytical but in tabular form.

Therefore, the numerical methods of solution are the most universal [5]. One of the
most significant drawbacks of numerical methods is the need to find a compromise between
the speed and accuracy of difference schemes. It is not possible to obtain a solution at
some time moment without evaluation of the solutions at all previous time grid knots. To
construct a continuous solution by the discrete set of values, additional approximation is
required. Finally, it is almost impossible to get physical interpretation of the numerical
solutions obtained by means of the finite difference method.

To preserve the advantages of analytical methods, which make it possible to quickly
calculate the parameters of motion at any predetermined moment of time according to
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given initial conditions, and at the same time use the universality of numerical methods,
the following numerical–analytical approach is proposed in this work. Its essence lies
in the piecewise approximation of an arbitrary dependence with the subsequent exact
solution of problems on each elementary segment. In this case, it is enough just to calculate
the values of the linear displacement and acceleration of the points of the ring at the
end of a subinterval, which are at the same time the initial conditions for the subsequent
segment. In this paper, we first consider the simplest piecewise constant approximation
of the angular rate. Then we move on to consider the piecewise linear approximation of
an arbitrary angular rate, based on the analytical solution for a linear angular velocity on
each subinterval, taking into account situations requiring the use of asymptotic expansions.
The latter are important in the case of high-intensity dynamics of CVG [6,7]. In the
experimental section, we compare both types of solution and show the benefits of the
piecewise linear approximation.

2. Statement of the Problem

Unlike the variety of microelectromechanical systems (MEMS) designs based on
lumped masses for sensing Coriolis acceleration [3], the ring-shaped CVG [8–10], as well
as the hemispherical resonator gyroscope (HRG) [2] or the cylindrical resonator gyroscope
(CRG) [11], are examples of devices using sensitive elements with distributed masses. An
in-plane standing wave is excited in an elastic ring-shaped resonator oscillating along
axes X and Y with primary displacement x1 (Figure 1). In the absence of external rotation
applied to the resonator, the primary wave has four nodes with zero ring displacement,

which are located at 45 deg between axes X and Y. After applying a rotation
→
Ω around

the sensitive axis, perpendicular to the plane of the ring, the primary wave begins to
move around the ring due to the effect of the Coriolis inertia forces. As a result of this
movement, secondary oscillations appear at the node points, thus making it possible to
measure external angular rate projection to the sensitivity axis Ω. This phenomenon of
standing wave inertia in rotating axisymmetrical solid bodies was first observed by G.
Bryan [12] and sometimes is called the Bryan effect.

In dimensionless form, the system of motion equations for free oscillations of such
perfect ring-shaped CVG without dissipation can be written as [3]

..
x1 +

(
ω2 −Ω2)x1 + 2KΩ

.
x2 + K

.
Ωx2 = 0,

..
x2 +

(
ω2 −Ω2)x2 − 2KΩ

.
x1 − K

.
Ωx1 = 0,

(1)

where x1 and x2 are the primary and secondary displacements; ω is the natural frequency;
Ω is the angular rate projection; and K is the CVG’s coupling factor (the Bryan coefficient)
corresponding to the excited mode of oscillations.

To obtain the unique solution to Equation (1), the initial conditions at time moment t0
must be given:

x1(t0) = α1,
.
x1(t0) = β1;

x2(t0) = α2,
.
x2(t0) = β2.

(2)

Unlike a number of other works, in Equation (1) we do not assume that Ω2 ≈ 0 and/or
.

Ω ≈ 0. Instead, we will solve Equation (1) taking into account both the centrifugal forces
corresponding to terms Ω2xi and the variable angular rate Ω = Ω(t).

In the matrix form, Equation (1) can be written as

..
x +

(
ω2 −Ω2

)
x + 2KΩJ

.
x + K

.
ΩJx = 0, (3)

where

x =

(
x1
x2

)
, J =

(
0 −1
1 0

)
. (4)



Mathematics 2021, 9, 292 3 of 9

According to [13], we introduce a variable phase γ(t) and change the variables as

x1 = y1 cos 2γ− y2 sin 2γ,
x2 = y1 sin 2γ + y2 cos 2γ,

or

x = Ay, A =

(
cos 2γ − sin 2γ
sin 2γ cos 2γ

)
. (5)

Obviously,
dA
dγ

= −2
(

sin 2γ cos 2γ
− cos 2γ sin 2γ

)
(6)

and
d2A
dγ2 = −4A, AT dA

dγ
= 2J, ATJ

dA
dγ

= −2I, (7)

where I is the identity matrix.
Differentiation gives us

.
x = A

.
y +

.
γ

dA
dγ

y,
..
x = A

..
y + 2

.
γ

dA
dγ

.
y +

..
γ

dA
dγ

y− 4
.
γ

2Ay. (8)

Substituting Equation (8) in Equation (3), after left multiplication by matrix AT, we get

..
y +

(
4

.
γ− 2KΩ

)
J

.
y +

(
2

..
γ− K

.
Ω
)

Jy +
(

4KΩ
.
γ− 4

.
γ

2
+ ω2 −Ω2

)
y = 0. (9)

Assuming

γ(t) =
K
2

t∫
t0

Ω(τ)dτ, (10)

we obtain the system of ordinary differential equations (ODEs)

..
y + ω2

[
1−

(
1− K2

)Ω2

ω2

]
y = 0, (11)

which can be solved independently for each scalar function y1, y2.
In previous works, researchers usually supposed that Ω2/ω2 << 1 and neglect the

second term in square brackets in Equation (11) even if the angular rate is not constant [3].
In this case, the solution of Equation (11) is simple and obtained in the form of trigonometric
functions. However, if we need to study high-intensive dynamic processes with variable
angular rates [5,6], we cannot omit the term

(
1− K2)Ω2/ω2 and must solve ODE (11) with

a variable coefficient.
Considering that

.
γ(t) =

K
2

Ω(t), (12)

initial conditions for the new variables will take the form

y1(t0) = α1,
.
y1(t0) = β1 − KΩ(t0)α1;

y2(t0) = α2,
.
y2(t0) = β2 − KΩ(t0)α2.

(13)

In particular, for the most important second form of in-plane oscillations with four
nodes and four antinodes (Figure 1), the angle between the axes of secondary displacements,
x1 and x2, is equal to π/4, and we have K = −0.8, ω = 6/

√
5.
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Figure 1. The second form of CVG (Coriolis vibratory gyroscopes) in-plane oscillations.

Each ODE of system (11) takes the form

..
y +

36
5

(
1− 1

20
Ω2
)

y = 0. (14)

It should be noted that for the HRG, CRG, or other CVG models it is possible to obtain
movement equations analogous to Equation (11), but with corresponding coefficients before
the term Ω2/ω2.

The ODE (14) can be easily solved exactly for the case of a constant angular rate. If
the angular rate is variable, it is possible to make its rough piecewise constant (stepwise)
approximation with recurrent redefinition of initial conditions (13). This idea is explained
in the next section.

3. Stepwise Approximation

In the case of Ω(t) = Ω0, Equation (14) has two linearly independent solutions

y(1)(t) = cos
(

3
5

t
√

20−Ω2
0

)
, y(2)(t) = sin

(
3
5

t
√

20−Ω2
0

)
. (15)

The variable phase (10) is equal to

γ(t) = −2
5

Ω0 · (t− t0). (16)

The solution to Equation (14) has the form

y(t) = C1y(1)(t) + C2y(2)(t), (17)

with undetermined coefficients C1, C2 found from initial conditions (13).
Let the angular rate Ω = Ω(t) be defined on interval t ∈ [t0, T]. Introduce the

uniform mesh

j = 0, 1, . . . , N, h =
T − t0

N
, tj = t0 + jh, Ωj = Ω(tj). (18)

The stepwise approximation of Ω(t) is expressed in the following way:

Ω̃(t) =
N−1

∑
j=0

ΩjB0

(
t
h
− j
)

. (19)
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where

B0(t) =

{
1, t ∈ [0, 1),
0, t /∈ [0, 1)

(20)

are the zero-order B-splines [14].
On each interval t ∈ [tj, tj+1], we have

Ω̃(t) = Ωj (j = 0, 1, . . . , N − 1). (21)

The general algorithm is to recursively obtain a solution of ODE (14) with constant
angular rate (21) on each of subintervals [tj, tj+1]. On the start subinterval [t0, t1], the
initial conditions (13) are used, and to determine the initial conditions on each subinterval
[tj, tj+1], j = 1, 2, . . . , N − 2, it is necessary to use the values calculated on the previous
subinterval [tj−1, tj].

Instead of coefficients Ωj in Equation (19), one can take other values providing slightly
better accuracy in different metrics, for example, (Ωj + Ωj+1)/2. However, the order of
approximation accuracy here remains the same, i.e., O(h).

4. Piecewise Linear Approximation

Unfortunately, the stepwise approximation (19) having the 1st order of accuracy with
respect to the time step h is not sufficient for precise and fast measurements. Therefore,
the high-order representations of Ω(t) should be used, for example, the piecewise linear
approximation having the 2nd order of accuracy with respect to h.

The main difficulty in using the piecewise linear approximation is in the fact that in
previous works researchers did not study analytically the case of linear angular rate. In
addition to the trivial case of the constant angular rate considered in Section 3, one can
also find the analytical solutions for the cases of angular rate changing according to the
parabolic law (in the form of the Bessel functions) and the harmonic and poly-harmonic
laws (in the form of Mathieu functions) [4].

In this regard, we will further consider in more detail the solution for the case of a
linear angular rate

Ω(t) = ct + b. (22)

Substituting Equation (22) in Equation (14), we obtain

..
y +

36
5

[
1− 1

20
(ct + b)2

]
y = 0. (23)

Using a linear change of variable, we reduce Equation (23) to the standard form of the
Weber equation for parabolic cylinder functions with respect to the new variable z [15]:

d2y
dz2 −

(
1
4

z2 + µ

)
y = 0, (24)

where

z =

√
6c
5

(
t +

b
c

)
, µ = −6

c
.

Even and odd linearly independent solutions to Equation (24) have the form

y(1)(µ, z) =
∞

∑
k=0

a(µ)2k
z2k

(2k)!
, y(2)(µ, z) =

∞

∑
k=0

a(µ)2k+1
z2k+1

(2k + 1)!
, (25)

where

a(µ)0 = a(µ)1 = 1, a(µ)n+2 = µa(µ)n +
1
4

n(n− 1)a(µ)n−2 (n = 2, 3, . . .)
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At large times ( t→ ∞ ) or at small angular rate values (|c|→ 0), it is necessary to
keep a sufficiently large number of terms of strongly oscillating infinite power series (25).
In this regard, a variety of asymptotic representations should be used. In most cases of
practical importance, the Darwin expansions [15] are suitable fast enough representations.
For example, if µ is large and negative and z is moderate, we can take

y(1)(µ, z) =
2
√

Γ( 1
2−µ)

(2π)1/4 evr(µ,z) cos
[

1
4 π + 1

2 πµ + θ(µ, z) + vi(µ, z)
]
,

y(2)(µ, z) = 2
(2π)1/4

√
Γ( 1

2−µ)
evr(µ,z) sin

[
1
4 π + 1

2 πµ + θ(µ, z) + vi(µ, z)
]
,

(26)

where
Z =

√
4|µ|−z2 , θ(µ, z) = 1

4 zZ + |µ|arcsin z
2
√
|µ|

,

vr(µ, z) = − 1
2 ln Z− δ6

Z6 +
δ12
Z12 − . . . , vi(µ, z) = δ3

Z3 − δ9
Z9 + . . .

Some of the first coefficients δ3k are given by

δ3 = 1
µ

(
z2

48 + 1
2 µz

)
, δ6 = 3

4 z2 − 2µ,

δ9 = 1
µ3

(
− 7

5760 z9 − 7
320 µz7 − 49

320 µ2z5 + 31
12 µ3z3 − 19µ4z

)
,

δ12 = 153
8 z4 − 186µz2 + 80µ2.

The variable phase (10) is equal to

γ(t) = −2
5
(t− t0)

[ c
2
(t + t0) + b

]
. (27)

Now we apply the piecewise linear approximation of arbitrary Ω(t) on the regular
mesh (18):

Ω̃(t) =
N

∑
j=0

ΩjB1

(
t
h
− j
)

, (28)

where the linear B-splines are [13]

B1(t) =

{
1−|t|, |t|≤ 1,
0, |t|≥ 1.

(29)

It can be seen that for t ∈ [tj, tj+1]

Ω̃(t) = cjt + bj (j = 0, 1, . . . , N − 1), (30)

where
cj =

1
h
(Ωj+1 −Ωj), bj =

1
h
(Ωjtj+1 −Ωj+1tj). (31)

The common piecewise linear approximation algorithm is analogous to that for the
stepwise approximation considered in Section 3.

Obviously, if the dependence of the angular rate is initially piecewise linear, then it is
possible to obtain an exact solution through the Weber functions by appropriately choosing
a non-uniform approximation grid. In this case, on subintervals [tj, tj+1] with Ωj = Ωj+1,
we use the simplest analytical solutions (17) expressed in terms of trigonometric functions
(15) and on subintervals with nonzero angular acceleration we apply the representation
(17) expressed, depending on the sign of the acceleration and its absolute value as well as
the length of the time interval, in terms of power series (25), Darwin expansions (26), or
other asymptotic expansions [15].
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5. Numerical Experiment

As an example we will find the solution to Equation (1) on interval t ∈ [0, 5], with an
angular rate increasing according to the law [7]:

Ω(t) = 1− e−0.5t.

We take the following boundary conditions (2):

x1(0) = 1, x2(0) =
.
x1(0) =

.
x2(0) = 0.

Two types of approximations on the grid with N = 5 (grid width h = 1) are shown
on Figure 2.
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Figure 2. (a) Stepwise and (b) linear piecewise approximations of the model angular rate.

On Figure 3 the dynamics of the primary displacement x1 is shown, evaluated by
different approaches. The results were compared with solution x̃1 (bold line) obtained by
the high-order finite-difference procedure on the dense grid with width ∆ = 1 · 10−3 [7].
Relative errors were computed according to the formula

ε =

√√√√∫ 5
0 [x1(τ)− x̃1(τ)]

2dτ∫ 5
0 x̃2

1(τ)dτ

It is seen that the piecewise linear approximation with Darwin representation pro-
vides much better accuracy (ε = 0.013) in comparison with the stepwise representation
(ε = 0.316). In turn, it should be noted that the piecewise representation in the form of
power series (25) is accurate only on relatively short time intervals and demonstrates
instability at t >> 1. Moreover, the latter approach is also much more computationally
expensive (the number of terms in time series was 40) in comparison with the Darwin
asymptotic expressions (26).

This example demonstrates the benefits of the novel approach based on linear piece-
wise approximation of an angular rate in comparison with rough method of stepwise
approximation. We must mention that although analytical solutions obtained earlier for
angular rates changing according to parabolic and harmonic laws [4] can also be applied
for constructing the solution for arbitrary angular rate profiles, they require the use of more
complicated approximation tools: parabolic B-splines and Fourier series, respectively. In
the latter case it is difficult to approximate the non-smooth angular rate dynamics due to the
necessity to take a large number of terms and the Gibbs effect. Taking these considerations
into account we can conclude that the best way to arbitrary CVG’s dynamics simulation is
the combination of both approaches proposed in our work (stepwise and linear piecewise),
depending on the behavior of the angular rate.
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Figure 3. The displacement x1 dynamics: (a) piecewise approximation (dash line); (b) linear stepwise approximation based
on the Darwin expansion (dash line is the solution based on power series).

6. Conclusions

For the first time, an analytical solution for the perfect CVG motion equations with
linear angular rate of rotation is obtained. It complements the class of already known
analytical solutions obtained for constant, parabolic law and harmonic and poly-harmonic
angular rates [4]. On the base of this solution, an original approach using a piecewise
approximation of an arbitrary angular rate is proposed, allowing one to obtain a simple
recurrent sequence of analytical solutions on each linear segment by recurrent recalculation
of initial conditions. Thus, due to such semi-analytical solutions, we can significantly
expand the class of analytical solutions of CVG motion equations. In comparison to
numerical solutions, the new approach has a high speed of computations, which makes
it possible to accurately simulate the dynamics of oscillations over long time intervals
without accumulating an error. Using the method of piecewise-linear approximation, it is
also possible to study the accuracy and convergence of various finite-difference schemes.
Applying suitable asymptotic expansions, one can study dynamic processes of both low
and high intensity. The algorithm will be especially effective when approximating on an
irregular grid with small width h on intervals with strong change in angular velocity (large
angular accelerations) and great h on relatively “smooth” intervals. Our approach can
easily be applied to solve analogous motion equations for other CVG models, for example,
HRG or CRG.
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