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Abstract: The paper is devoted to an emerging trend in control—a machine learning control. Despite
the popularity of the idea of machine learning, there are various interpretations of this concept, and
there is an urgent need for its strict mathematical formalization. An attempt to formalize the concept
of machine learning is presented in this paper. The concepts of an unknown function, work area,
training set are introduced, and a mathematical formulation of the machine learning problem is
presented. Based on the presented formulation, the concept of machine learning control is considered.
One of the problems of machine learning control is the general synthesis of control. It implies finding
a control function that depends on the state of the object, which ensures the achievement of the
control goal with the optimal value of the quality criterion from any initial state of some admissible
region. Supervised and unsupervised approaches to solving a problem based on symbolic regression
methods are considered. As a computational example, a problem of general synthesis of optimal
control for a spacecraft landing on the surface of the Moon is considered as supervised machine
learning control with a training set.

Keywords: machine learning control; general synthesis problem; symbolic regression; optimal
control; evolutionary algorithm

1. Introduction

Complexity of the control synthesis problems for autonomous robots which must
perform the assigned tasks and achieve the set goal, led to new ideas in the control
theory. Now, to create a control system for an autonomous robot, this system needs to be
trained [1,2], instead of obtaining it by solving some known optimization problems.

To formulate the real problem of mobile robot control, it is needed to describe a large
number of different phase constraints. These can be walls, doors between the rooms,
windows, columns and other obstacles. For example, a robot has to avoid a column, not to
hit on a wall and to get in a door. Now, when control systems for mobile robots are being
created, programmers imagine the problems that this robot must face and decide how it
should overcome them. Quite a laborious process, but it is quite justified in conditions
when control systems were developed on an individual basis for single technical objects,
such as spacecraft. However, modern automation and robotization is reaching a broader
level and becoming ubiquitous. This trend requires the development of new universal and
even automatic approaches to the development of control systems.

Application of symbolic regression methods allows to automatically receive mathe-
matical expressions for control functions. Such mathematical expressions describe how the
robot should optimally reach the goal avoiding the obstacles.

Only symbolic regression methods can search structure and parameters of mathemati-
cal expression. Other methods, and even artificial neural networks, search only parameters.
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The searching of control function structure in the control synthesis problem is called ma-
chine learning control [1]. This is a new technology in the development of control systems
and it has not yet been proposed a rigorous mathematical formulation that defines this
approach. In this paper, we propose some mathematical formalization of the machine
learning problem (Section 2) and, on the basis of the proposed definitions, we single out a
special area of machine learning—machine learning control (Section 3).

One of the main problems of machine learning control is the problem of control synthe-
sis. The paper first presents the general mathematical formulation of the control synthesis
problem, and then proposes its numerical formulation, since according to the methodology
of machine learning control, the synthesis problem must be solved numerically using
symbolic regression methods.

Further in the work in Section 4, we present our approach to solving the problem of
machine learning control based on approximation of optimal trajectories. According to
the technique of learning firstly it is necessary to create a training set in order to show to
learning object what we want of it. For this purpose initially the optimal control problem is
solved with the same quality criterion as for the synthesis problem from some different
initial conditions. Obtained optimal trajectories are templates for learning. They show
what forms of plots for variables must be obtained in the result of control synthesis problem
solution and what values of functional must give these solutions. Then, obtained optimal
trajectories for different initial conditions are approximated by a numerical method of
symbolic regression. The proposed approach of machine learning based on approximation
of optimal trajectories is demonstrated in the computational example of general synthesis
of optimal control for a spacecraft landing on the surface of the Moon (Section 5).

2. Problem Statement of Machine Learning

Definition 1. A set of computational procedures, that transforms a vector x from an input space X
to a vector y from an output space Y, and there is not any algebraic equation y = f(x) for them, is
called an unknown function.

For example, the system of ordinary differential equations ẋ = f(x) is an unknown
function for a vector of initial conditions x(0) and a vector of solutions as functions of time
x(t, x(0)), if a general solution is unknown for this differential equation.

The unknown function between input vector x and output vector y is defined as

y = α(x). (1)

Then for differential equations without general solutions, an unknown function has
a form

x(t, x0) = α(x0). (2)

Definition 2. A work area is a subset of input vector space, where the input vectors exist surely
and that is used for solving the problem.

The unknown function can be realized by a physical equipment or an experiment.
Then unknown function will be called black box, but will be described as (1).

Let a set of input vectors be determined in the work area

X̃ = {x1, . . . , xN} ⊆ X. (3)

For every input vector, output vector is determined by the unknown function (1)

Ỹ = {y1 = α(x1), . . . , yN = α(xN)} ⊆ Y. (4)

Definition 3. A pair of sets,
(X̃, Ỹ), (5)
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is called a training set.

It is known that there are supervised and unsupervised machine learning methods.
An unsupervised machine learning problem can be formulated as follows: for some

unknown function (1) and a positive small value δ it is necessary to find a function

y = β(x, q), (6)

where q is a vector of parameters, q = [q1 . . . qp]T , such that ∀x ∈ X

‖y− β(x, q)‖ ≤ δ. (7)

A supervised machine learning problem consequently can be formulated as follows:
for some unknown function (1) and a positive small value δ, it is necessary to determine a
positive value ε, to build a training set (5) and to find a function (6) such that if the total
error for the training sample is less than the given value ε

N

∑
i=1
‖yi − β(xi, q)‖ ≤ ε, (8)

then for ∀x∗ from work area, but not included in the training set x∗ ∈ X and x∗ /∈ X̃ the
following inequation is performed

‖y∗ − β(x∗, q)‖ ≤ δ, (9)

where y∗ = α(x∗).
Here the function β(x, q) includes a parameter vector q. In many approaches a

structure of function is defined beforehand on the basis of experience or intuitively, and
it is necessary to find only values of some parameters. For example, an artificial neural
network [3–5], which is often used for solving of the machine learning problems, has a
set structure and large number of unknown parameters. In contrast, symbolic regression
methods [6–8] allow you to search for both function structure and parameters.

3. The Problem of General Control Synthesis as Machine Learning Control

In the field of control there are also problems that require machine learning. One of
the main machine learning control problems is a search for a control function in the general
control synthesis problem.

The problem of control general synthesis was formulated in the middle of the last
century by Boltyanskii [9] after studying the Pontryagin’s maximum principle for the
optimal control problem.

The problem has the following description.
The mathematical model of the control object is given in the form of the system of

ordinary differential equations
ẋ = f(x, u), (10)

where x is a vector of state, x ∈ Rn, u is a vector of control, u ∈ U ⊆ Rm, U is a compact
set, m ≤ n.

The domain of initial conditions is given

X0 ⊆ Rn. (11)

Existence of the initial condition domain is a main feature of the control general
synthesis problem. Initially Boltyanskii defined the domain of initial conditions as a whole
space of states X0 = Rn, because he tried to solve this problem analytically. In this case we
assume to solve this problem numerically. Therefore the domain X0 is a restricted set in the
space of states.
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The terminal condition is given

x(t f ) = x f ∈ Rn, (12)

where t f is unassigned time of getting from any initial condition x0 ∈ X0 to the terminal
state (12).

The finishing time is bounded
t f ≤ t+, (13)

where t+ is a given positive value.
The phase constraints are given

ϕi(x) ≤ 0, i = 1, . . . , r. (14)

The quality criterion is given

J =
∫
· · ·

∫
X0

t f∫
t0

f0(x(t, x0), u(t))dt→ min
u∈U

, (15)

where x(t, x0) is a partial solution of differential Equation (10) with control u(t) ∈ U from
initial condition x0 ∈ X0.

It is necessary to find a control function in the form

u = h(x) ∈ U, (16)

where h(x) : Rn → Rm.
If one inserts the control function (16) in the right part of differential Equation (10),

then the system of stationary differential equations is received

ẋ = f(x, h(x)), (17)

which does not have a free control vector in the right part.
Any partial solution of the differential Equation (17) from initial conditions (11)

achieves terminal condition (12), performing all conditions on phase constraints (14) with
optimal value of the quality criterion (15).

Note, that the control function (16) can have simple discontinuities, therefore in many
cases analytical methods could not be applied. The majority of analytical methods such as
integrator backstepping [10,11] and analytical design of aggregated regulators [12,13] pro-
vides stability on Lyapunov by nonlinear smooth feedback control. The main drawback of
all analytical methods of control synthesis solution is that they are bounded with the specific
form of the mathematical model of control object. The control synthesis problem (10)–(17)
under consideration is complicated by the arbitrary form of the mathematical model of the
control object and sub-integral function of quality criterion, as well as the phase constraints
and a wide class of control functions, which can have simple discontinuities.

In general case, this control general synthesis problem can be solved numerically by
symbolic regression methods as machine learning control problem.

For application of the numerical methods it is necessary to reformulate the problem
statement. The domain of initial conditions is changed onto finite set of initial state points

X̃0 = {x0,1, . . . , x0,K}. (18)
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The terminal condition (12) and the phase constraints are added into quality
criterion (15), and the integral of the domain of initial conditions is changed onto sum of
all initial state points.

J1 =
K

∑
i=1

(
a1‖x f − x(t f ,i, x0,i)‖ +

t f ,i∫
0

(
f0(x(t, x0,i), u(t))+

ϑ(ϕ(x(t, x0,i)))p(x(t, x0,i))
)

dt
)
→ min

u∈U
, (19)

where a1 is a weight coefficient, ϑ(A) is a Heaviside step function

ϑ(A) =

{
1, if A > 0
0, otherwise

, (20)

p(B) is a penalty function, t f ,i is a time of terminal state (12) achievement from initial
condition x0,i,

t f ,i =

{
t, if t ≤ t+and ‖x f − x(t, x0,i)‖ ≤ ε0
t+, otherwise

, i = 1, . . . , K, (21)

ε0 is a small positive value, that determines accuracy of terminal state achievement.
Within the framework of the formulation of the machine learning problem, the solution

to the synthesis problem based on symbolic regression methods is machine learning control.

3.1. Control Synthesis as Unsupervised Machine Learning Control

The first approach is a direct search of the control function on basis of a quality cri-
terion minimization. In this case we receive unsupervised machine learning control. The
stated general control synthesis problem (10), (12), (18)–(21) can be solved in the concept of
unsupervised machine learning control by different symbolic regression methods. Such
approach is demonstrated by genetic programming [2], network operator method [14],
variational genetic programming [15], variational analytic programming [16], multi-layer
network operator [17], binary variational genetic programming [18], modified Cartesian
genetic programming [19]. All mentioned symbolic regression methods search for mathe-
matical expressions of control functions, that provide for the received solutions achievement
of the terminal condition (12) from all the initial conditions (18) with optimal value of
the quality criterion (19), describing the time and accuracy of terminal state hitting, and
including phase constraints in the form of penalty functions.

Symbolic regression methods use evolutionary algorithms to search for functions and
can achieve a certain level of accuracy when minimizing the functional, but it still remains
unknown how the values of the criterion (19) for these solutions are far from real optimal
values. To correct this problem it is possible to use a supervised machine learning with a
training set received by the solution of the optimal control problem.

3.2. Control Synthesis as Supervised Machine Learning Control

The second approach is a learning with application of a training set. This is a super-
vised machine learning control. In this case firstly it is necessary to obtain the training set.
For this purpose solutions of the optimal control problem can be used.

The statement of optimal control problem includes a mathematical model of control
object (10), an initial condition given in one point

x0 ∈ Rn, (22)



Mathematics 2021, 9, 265 6 of 17

terminal condition (12), (13) the phase constraints (14), and a quality criterion

J2 = a1‖x f − x(t f )‖+
t f∫

0

( f0(x(t), u(t)) + ϑ(ϕ(x(t))p(x(t)))dt→ min
u∈U

, (23)

where

t f =

{
t, if t ≤ t+and ‖x f − x(t)‖ ≤ ε0
t+, otherwise

. (24)

It is necessary to find a control in the form

ũ = v(t, x0) ∈ U. (25)

When inserting the function (25) into the right part of the mathematical model of the
control object (10), the following system of non-stationary differential equations is received

ẋ = f(x, v(t, x0,i)). (26)

To create a training set for the control synthesis problem it is necessary to solve the
optimal control problem on criterion (23) for each particular initial condition from (18) and
to receive sets of optimal controls

U0 = {v(t, x0,1), . . . , v(t, x0,K)} (27)

and optimal trajectories
X̃ = {x̃(t, x0,1), . . . , x̃(t, x0,K)}. (28)

Now we define the time interval Deltat and calculate the value of the state vector
on each optimal trajectory at the interval boundaries. As a result, get a training set of
optimal trajectories

X̃ = {X̃1, . . . , X̃K}, (29)

where
X̃i = {x̃(0, x0,i) = x0,i, x̃i(t1, x0,i), . . . , x̃i(tMi , x0,i)}, i = 1, . . . , K, (30)

tj = tj−1 + ∆t, j = 1, . . . , Mi, i = 1, . . . , K, ∆t is a given time interval.
Now in order to solve the control synthesis problem (10), (12), (18)–(21), and to find

the control function in the form (16) it is enough to approximate the training set (29) on
a criterion

J3 =
K

∑
i=1

Mi

∑
j=0
‖x(tj, x0,i)− x̃(tj, x0,i)‖ → min

h(x)∈U
, (31)

where t0 = 0, x(t, x0,i) is a partial solution of the Equation (17) with the initial conditions
x0,i, x̃(t, x0,i) is a partial solution of the Equation (28), i ∈ {1, . . . , K}.

To ensure the fulfillment of phase constraints, both criteria (31) and (19) are applied.
In result, the following combined criterion is used

J4 = J1 + γJ3 → min
h(x)∈U

, (32)

where γ is a weight coefficient.
To solve the approximation problem, a symbolic regression is also used. The con-

trol synthesis on the base of optimal trajectories approximation allows to find a control
function (16) that provides receiving optimal control with accuracy to approximation of
the training set. The solution closest to the optimal one is determined by the accuracy of
the optimal control problem.
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4. Computational Algorithms

In order to solve the control synthesis problem as machine learning control on the
base of optimal trajectories set approximation it is required to solve two complex problems,
the optimal control problem in order to form a training set, and the approximation of
optimal trajectories by some symbolic regression method. For both problems evolutionary
computations are used.

4.1. Algorithms for the Optimal Control Problem

The optimal control problem with phase constraints is not uni-modal [20], there-
fore evolutionary algorithms are applied, which can solve a global optimization problem.
Recently, it is popular to use hybrid evolutionary algorithms that combine different evo-
lutionary algorithms. Studies of evolutionary algorithms for numerical solution of the
optimal control problem show [21], that the most successful in solving this problem are
genetic algorithm (GA) [22], Particle swarm optimization algorithm (PSO) [23] and Grey
wolf optimizer algorithm (GWO) [24].

All evolutionary algorithms include evolution of possible solutions. It implies such
changes in possible solutions that some of new possible solutions ensure obtaining the
value of the goal functional not worse than the old possible solutions before the change.
At evolution of possible solutions information about the values of the goal functional for
other possible solutions is used.

PSO-algorithm uses the best current possible solution, and the best of solutions from
some random selected ones as well as information about historical changes for this possible
solution. An evolution is performed for each component of possible solution

q̃i
j = qi

j + σvi
j, j = 1, . . . , p, (33)

where q̃i
j is a new value of the component j of the possible solution i, q̃i = [q̃1 . . . q̃p]T , qi

j

is the component j of the old possible solution i, qi = [qi
1 . . . qp]T , p is a dimension of the

vector, vi
j is the component j of a historical vector for possible solution i, vi = [vi

1 . . . vi
p],

this historical vector is changed one time in one cycle of generation

vi
j ← αvi

j + ξβ(qi
j(k)− qi

j) + ξγ(q0
j − qi

j), j = 1, . . . , p, (34)

q̄i
j is the component j of the best solution from k randomly selected ones, q̄i = [q̄1 . . . q̄p]T ,

qj(0) is the component j of the best current possible solution, q(0) = [q1(0) . . . qp(0)]T , ξ is
a random value in the interval from 0 to 1, at each call this function gives a new random
number, α, β, γ are constant parameters of the algorithm, vector v has zero initial value.

The GWO-algorithm performs the following changes of possible solution on the base
of some best current solutions

q̃i
j =

1
N

N−1

∑
k=0

(qj(k)− r(2ξ − 1)|2ξqj(k)− qi
j|), j = 1, . . . , p, (35)

where qj(0) . . . qj(N − 1) are j components of N best possible solutions,

r = 2
(

1− g
G

)
, (36)

r is calculated one time in a generation, g is a number of generation, G is a quantity
of generations.

The GA considers vectors in the form of Grey code and performs evolution for two
selected possible solutions as operations of crossover and mutation. For crossover two
possible solutions are selected

zi = [zi
1 . . . zi

c+d]
T , zj = [zj

1 . . . zj
c+d]

T , (37)
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where zi
k, zj

k ∈ {0, 1}, c is a number of bit for integer part, d is a number of bits for fractional
part of Grey code.

Then the point of crossover s is determined. As a result two new possible solutions
are received

z̃i = [zi
1 . . . zi

s zj
s+1 . . . zj

c+d]
T , z̃j = [zj

1 . . . zj
s zi

s+1 . . . zi
c+d]

T . (38)

In hybrid algorithms in each cycle of evolution for each possible solution one of three
ways (33), (34) or (35), (36), or (37), (38) of obtaining new possible solutions is selected
randomly. The algorithm stops calculation after all cycles of evolution are performed.

4.2. Numerical Methods of Symbolic Regression for the Control Synthesis Problem

For solution of the control synthesis problem numerical methods of symbolic re-
gression are used. Now more than fourteen methods are know. The methods code a
mathematical expression and search for optimal solution on the code space. All methods
differ in the form of code.

For example, consider the following mathematical expression

y = sin(x1) + exp(−q1x1) cos(q2x2 + q1). (39)

To code this mathematical expression the following basic sets are used:
the set of arguments

F0 = { f0,1 = x1, f0,2 = x2, f0,3 = q1, f0,4 = q2}, (40)

the set of elementary functions

F = { f1,1(z) = z, f1,2(z) = −z, f1,3(z) = sin(z), f1,4(z) = cos(z),

f1,5(z) = exp(z), f2,6(z1, z2) = z1 + z2, f2,7(z1, z2) = z1z2}, (41)

where indexes of elements point the number of arguments and a function number, if the
first index is equal to zero, then this is an argument of the mathematical expression.

The most popular and the earliest symbolic regression method is the genetic pro-
gramming by J.Koza [6]. This method presents a mathematical expression in the form
of computational tree. In the Figure 1 the computational tree for the mathematical
expression (39) is presented.

In the Figure 1 the nodes of the tree contain numbers of functions, the leaves contain
arguments of the mathematical expression.

Figure 1. Computational tree of genetic programming.

A code of genetic programming for the mathematical expression (39) has the follow-
ing form
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([
2
6

]
,
[

1
3

]
,
[

0
1

]
,
[

2
7

]
,
[

1
5

]
,
[

2
7

]
,
[

1
2

]
,
[

0
3

]
,
[

0
1

]
,

[
1
4

]
,
[

2
6

]
,
[

2
7

]
,
[

0
2

]
,
[

0
4

]
,
[

0
3

])
. (42)

The code of genetic programming consists of indexes of elements of the computational
tree on all branches from the top to the leaves. The code of genetic programming is used
for presentation of the computational tree in the computer memory.

A code of genetic programming is not very comfortable, as codes of different mathe-
matical expressions have different length that also changes after crossover operation. If in
the mathematical expression one argument enters several times, then it has to be on leaves
of the computational tree the same number of times.

Another method of symbolic regression—the network operator method [14]—codes
mathematical expression in the form of oriented graph. In the Figure 2 the network operator
graph for the mathematical expression (39) is presented.

Figure 2. The network operator graph of the mathematical expression.

On the network operator graph the nodes contain the numbers of functions with two
arguments, the source-nodes contain the arguments of the mathematical expression, the
arcs are marked with the numbers of functions with one argument.

In the computer memory the network operator graph is presented as an integer matrix.

Ψ =



0 0 0 0 0 0 2 0 3
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 1 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 7 1 0 0 0
0 0 0 0 0 6 0 4 0
0 0 0 0 0 0 7 5 0
0 0 0 0 0 0 0 7 1
0 0 0 0 0 0 0 0 6


. (43)

Each row of the matrix corresponds to a graph node. The numbers of nodes are located
at the top of the nodes (see Figure 2). The nodes are numbered in such a way that the
number of the node from which the arc exits must be less than the number of the node
where the arc enters. Then a network operator matrix has an upper triangular form. In the
network operator matrix the numbers of functions with two arguments are located on the
main diagonal. Zero element on the main diagonal shows that the row corresponds to a
source-node. Other non-zero non-diagonal elements are the numbers of functions with
one argument.

Consider one more symbolic regression method. In Cartesian genetic program-
ming [25] the code of the mathematical expression (39) has the following form 7

1
3

,

 2
5
1

,

 5
6
2

,

 3
1
3

,

 7
2
4

,

 6
9
3

,

 4
10
1

,

 7
11
7

,

 6
8

12

. (44)
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Here, every integer vector corresponds to one elementary function. The first element
of vector is the function number, other elements are element numbers from the set of
arguments (40). If a function has one argument, then the second argument is not used.
The result of calculation according to each vector is added to the argument set, so a
number of arguments increases in one every time after calculation of functions according
to the vectors.

Due to redundancy, Cartesian genetic programming code has the same length for
all mathematical expressions. A crossover operation for Cartesian genetic programming
are performed by exchange of vectors after crossover point, so the length of codes does
not change.

Studies of symbolic regression methods for the control synthesis problems show that it
is effective to use in these methods the principle of small variations of the basic solution [26].
According to this principle only one basic solution is encoded by a method of symbolic
regression. Other possible solutions are encoded by sets of variation vectors. Each variation
vector makes one small change of basic solution code. After some generations the basic
solution is changed on the best current found solution. This approach makes it possible to
speed up the search process by narrowing the search space and avoiding additional checks
for the correctness of the codes of possible solutions.

5. Computational Experiment

In a computational experiment a problem of general synthesis of optimal control for a
spacecraft landing on the surface of the Moon is considered [27]. The differential equations
of spacecraft state are the following

ẋ1 =
gE(Pc + u2) cos(u1 − x2)

x5
− gMh cos(x2),

ẋ2 =
gE(Pc + u2) sin(u1 − x2)

x5
+

gMh sin(x2)

x1
,

ẋ3 =
x1 cos(x2)

1000
,

ẋ4 =
x1 sin(x2)

1000
,

ẋ5 = −Pc + u2

Ps
,

(45)

where x = [x1 x2 x3 x4 x5]
T is a state vector, namely x1 is the current speed of the spacecraft

(m/s), x2 is a trajectory inclination angle (rad), x3 is the current flight altitude relative to
the lunar surface (km), x4 is a flight distance (km), x5 is the mass of spacecraft including
fuel (kg). u = [u1 u2]

T is a control vector, values of which are constrained

− π

2
≤ u1 ≤

π

2
, − 80 ≤ u2 ≤ 80. (46)

Parameters of model have the following values: gravitational acceleration at the
certain altitude above the lunar surface

gMh = gM

(
rM

rM + x3

)2
, (47)

the Moon gravitational acceleration gM = 1.623 m/s2, the Earth gravitational acceleration
gE = 9.80665 m/s2, the Moon radius rM = 1737 km, nominal thrust of the spacecraft
engine Pc = 720 kg, spacecraft engine thrust Ps = 319 s.

A domain of initial states is

X0 = {x0,1 = 1689, − 1.65 ≤ x0,2 ≤ −1.55, 17 ≤ x0,3 ≤ 20, x0,4 = 0, x0,5 = 1500}. (48)
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A terminal state is
x f =

[
x f

1 = 10, x f
3 = 0.2

]T
. (49)

Phase constraints are determined by the mechanics of spacecraft flight. Obviously the
speed x1, altitude x3 and fuel level x5 cannot be negative, reaching a zero altitude x3 or
zero fuel level x5 at a significant speed x1 means that the spacecraft has crashed. Consider
the following phase constraints

hk(x) = −xj ≤ 0, k = 1, 2, 3, j = 1, 3, 5,
hk(x) = ϑ(0.001− xj)(x1 −Vmax) ≤ 0, k = 4, 5, j = 3, 5,

(50)

where Vmax is the maximum landing speed, Vmax = 1, ϑ(A) is the Heaviside function.
According to the proposed method at the first step the training set is to be formed.

We determine the finite set of initial states within the domain (48) and solve the optimal
control problem for each initial state from this set.

Let us replace the domain of initial states (48) with a set of M = 21 elements uniformly
distributed on this domain

X̃0 =
{

x0,j+7(i−1) = [1689 − 1.65 + 0.05(i− 1) 17 + 0.5(j− 1) 0 1500]T
}

, i = 1, 3, j = 1, 7. (51)

Quality criterion considers the proximity of reaching terminal state and the case of
phase constraints violation

Jj = α1

√(
x1

(
t f (x0,j)

)
− x f

1

)2
+
(

x3

(
t f (x0,j)

)
− x f

3

)2
+

α2

∫ t f (x0,j)

0

(
K

∑
k=1

ϑ
(

hk(x(t, x0,j))
)

hk(x(t, x0,j))

)
dt→ min,

(52)

where αi, i = 1, 2 are given penalty factors, K = 5 is a number of phase constraints, j = 1, M.
To search for solution to the optimal control problem the direct approach was used.

The original problem was reduced to a nonlinear programming problem by introducing
the time interval ∆t. The solution of each optimal control problem in form of control
vector at discrete moments of time was searched independently by hybrid evolutionary
algorithm combining modern Grey Wolf Optimizer (GWO), which does not require problem
specific tuning of additional parameter, and well-known Particle swarm optimization (PSO).
Separately these algorithms showed a high efficiency in solving optimal control problems.
A hybrid realization is to increase their effectiveness.

In a computational experiment the size of the set of possible solutions was 100, number
of search iterations was 5000. Modeling parameters were the following: maximum control
time tmax = 300, discretization time interval ∆t = 30, penalty factors α1 = 10, α2 = 10.

At the second step of proposed approach we use obtained optimal trajectories to
synthesize a multidimensional control function of object state space. The search for a
control function is conducted by a symbolic regression method that search for the most
suitable expression that approximates provided optimal trajectories best.

We used the network operator method to synthesize a control function. NOP allows
to search for the structure of mathematical expression simultaneously with the search for
optimal values of parameter vector. In the computational experiment we used the following
parameters of NOP: size of NOP matrix was 40, size of the set of input variables was 3,
size of the set of input parameters was 12, number of outputs was 2, number of candidate
solutions in the initial set was 256, maximum number of search iteration was 25,000.

As a result of computational experiment, a control function in the form of NOP matrix
and a parameter vector was obtained. The mathematical expression for the found control
function is as follows
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u1 =


π/2, if ũ1 > π/2
−π/2, if ũ1 < −π/2
ũ1, otherwise

, u2 =


80, if ũ2 > 80
−80, if ũ2 < −80
ũ2, otherwise

, (53)

where
ũ1 = χ6(−z34, tanh(z35), z37),

ũ2 = sgn(u1)
√
|u1| − z36 + arctan(z35) + sgn(z34)

√
|z34|+ log(|z33|)+

z−1
32 + z31 + z28 − z3

28 + log(|z26|)− z25 + arctan(z21) + sgn((z17))
√
|z17|+

exp(q12) + tanh(q10) + q9 + log(q5) + tanh(q1),

z37 = min{z36 − z3
36, log(|z35|), z34 − z3

34, z−1
32 , sgn(z28)

√
|z28|, tanh(z27), exp(z25), z−1

20 , 3
√

x2},

z36 = min{exp(z29), tanh(z28), sgn(z27)
√
|z27|, arctan(z26), 3

√
z22, z3

20, tanh(q6), 3
√

q1, x3
3},

z35 = arctan(z23) + tanh(z22) + tanh(q12) + log(|x3|),

z34 = max{sgn(z33)
√
|z33|, log(|z30|), z−1

29 , z−1
22 , z−1

20 },

z33 = min{z−1
32 , arctan(z29), tanh(z24), z3

22, z19,−z16, z−1
11 , tanh(q3), tanh(q2), exp(x2)},

z32 = min{z3
31, z26, log(|z25|), z−1

18 ,
√

q10, arctan(q6), 3
√

q2},

z31 = log(|z27|) + z2
26 + z2

24 + arctan(z22) + 3
√

z21 + exp(z20) + exp(z17)+

z−1
16 + q3

12 − q5 + 3
√

q2 + 3
√

x1,

z30 = max{z29,−z26, tanh(z25), arctan(z18), sgn(z16)
√
|z16|, q11},

z29 = χ6(z28, z−1
27 , z3

26, log(|z24|),−z3
22,−z20, 3

√
z17, q7, q−1

2 ,
√

q1),

z28 = max{z27, z−1
23 ,−z20, log(|z19|), z18 − z3

18,−z17, log(|z16|), q7, log(q5)},

z27 = χ6(z24, arctan(z20),
√

q11, q8 − q3
8, q3

6,−q5, log(q4)),

z26 = χ5( 3
√

z23,−z20, z19 − z3
19,−z18, sgn(z15)

√
|z15|, q12, 3

√
x3),

z25 = max{z2
23, z22, z21 − z3

21, arctan(z17), q11, q9,
√

q5},

z24 = max{tanh(z21), z20 − z3
20, z3

15, q12 − q3
12, q10, q3

8, 3
√

q5, q3
4, exp(x2)},

z23 = z20z18z16q9
√

q7sgn(x1)
√
|x1|,

z22 = χ6(z19, z−1
17 , exp(z16), 3

√
q10, arctan(q9), q−1

8 ,
√

q2),

z21 = max{tanh(z18), q2
8, q7,−q6,

√
q3},

z20 = χ6(−z19, z17, arctan(z10), q6,−q2, x−1
3 ),

z19 = z16 + arctan(q11) + q−1
8 + q5 + arctan(x3),

z18 = χ5(z15, q−1
12 , q−1

7 , q4, x1 − x3
1),

z17 = q3 + x3 − q3x3,

z16 = q2x2 tanh(q5),

z15 = sgn(
√

q10 + q5 − q3
5 + q−1

3 + q1 + x1)
√

q10 + (q5 − q3)2 + q−2
3 + q2

1 + x2
1,

χ5(a1, a2) = a1 + a2 − a1a2,

χ5(a1, . . . , as) = χ5(χ5(a1, χ5(. . . , χ5(as−1, as) . . .),
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χ6(a1, . . . , as) = sgn

(
s

∑
i=1

ai

)√
s

∑
i=1

a2
i ,

q1 = 2.3474, q2 = 10.5066, q3 = 9.9106, q4 = 13.1419, q5 = 9.6631, q6 = 4.4541,

q7 = 2.1899, q8 = 4.8552, q9 = 3.1116, q10 = 6.6172, q11 = 12.6812, q12 = 15.6148.

Functions χ5 and χ6 are commutative, associative, and have a unit element, zero.
To check the solution we used the found control function to obtain optimal control

and corresponding trajectories for various initial states from (48). Among considered
initial states were both those that were present in the training set (51) and those that were
not present.

Table 1 shows the values of quality criterion J∗ obtained using the found control
function (53) for 21 initial states from the finite set (51). The optimal trajectories known
for these initial states were previously used as a training set. This test is to show the
quality of approximation. The value of the quality criterion Jocp obtained by solving the
optimal control problem for the same initial state is showed in the table as a reference value.
The average deviation of the quality criterion values from the reference ones is 0.0591,
maximum deviation is 0.2514, the standard deviation is 0.0648.

Table 1. Results of the computational experiment using initial states from the training set.

Initial State x0 J∗ Jocp Initial State x0 J∗ Jocp

[1689 − 1.65 17 0 1500]T 0.1777 0.0018 [1689 − 1.55 18.5 0 1500]T 0.2525 0.0011
[1689 − 1.6 17 0 1500]T 0.0295 0.0056 [1689 − 1.65 19 0 1500]T 0.0240 0.0012
[1689 − 1.55 17 0 1500]T 0.0049 0.0029 [1689 − 1.6 19 0 1500]T 0.0501 0.0024
[1689 − 1.65 17.5 0 1500]T 0.1433 0.0060 [1689 − 1.55 19 0 1500]T 0.0030 0.0009
[1689 − 1.6 17.5 0 1500]T 0.0264 0.0044 [1689 − 1.65 19.5 0 1500]T 0.1035 0.0036
[1689 − 1.55 17.5 0 1500]T 0.0127 0.0024 [1689 − 1.6 19.5 0 1500]T 0.0822 0.0027
[1689 − 1.65 18 0 1500]T 0.0780 0.0033 [1689 − 1.55 19.5 0 1500]T 0.0045 0.0045
[1689 − 1.6 18 0 1500]T 0.0439 0.0084 [1689 − 1.65 20 0 1500]T 0.0954 0.0036
[1689 − 1.55 18 0 1500]T 0.0061 0.0023 [1689 − 1.6 20 0 1500]T 0.0635 0.0052
[1689 − 1.65 18.5 0 1500]T 0.0703 0.0019 [1689 − 1.55 20 0 1500]T 0.0334 0.0099
[1689 − 1.6 18.5 0 1500]T 0.0111 0.0019

Table 2 shows the values of quality criterion J∗ obtained using the found control
function (53) for 10 initial states generated randomly within the domain (48). This test is to
show the suitability of the found control function for any initial state from the domain (48).
The value of the quality criterion Jocp obtained by solving the optimal control problem for
the same initial state is showed in the table as a reference value. The average deviation of
the quality criterion values from the reference ones is 0.0366, maximum deviation is 0.1122,
the standard deviation is 0.0341.

Table 2. Results of the computational experiment for random initial states.

Initial State x0 J∗ Jocp Initial State x0 J∗ Jocp

[1689 − 1.565 18.92 0 1500]T 0.0176 0.0034 [1689 − 1.628 18.2 0 1500]T 0.0398 0.0016
[1689 − 1.571 17.21 0 1500]T 0.0048 0.0018 [1689 − 1.614 19.24 0 1500]T 0.0508 0.0022
[1689 − 1.63 19.39 0 1500]T 0.1136 0.0014 [1689 − 1.644 18.57 0 1500]T 0.0613 0.0052
[1689 − 1.558 19.91 0 1500]T 0.0567 0.0083 [1689 − 1.563 18.33 0 1500]T 0.0032 0.0023
[1689 − 1.582 17.62 0 1500]T 0.0042 0.0016 [1689 − 1.589 18.9 0 1500]T 0.0464 0.0043

Figures 3 and 4 illustrate the results of computational experiment for initial state
x0 = [1689 −1.565 18.92 0 1500]T . Graphs of the trajectories obtained using the found
control function are shown by black solid lines. For comparison the trajectories obtained
by solving the optimal control problem are shown by grey dashed lines. Figure 5 shows
the found control function values over time.
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Figure 3. The graphs of trajectories: (a) spacecraft speed over time x1(t); (b) spacecraft altitude over time x3(t). Found
solution—black solid line; reference solution—grey dashed line.

Figure 4. The graphs of trajectories: (a) spacecraft speed over distance x1(x4); (b) spacecraft altitude over distance x3(x4).
Found solution—black solid line; reference solution—grey dashed line.

The computational experiment showed that the found multidimensional control
function allows one to obtain a close to optimal solution for any initial states from the given
domain (48) even for those initial states that were not in the training set (51).

According to the analysis of the standard deviation, the training set contained a
sufficient number of optimal trajectories. A better value of the standard deviation for the
experiment with randomly distributed in (48) initial states can be explained by the fact that
the set (51) had a large number of initial states on the boundaries of the set (48).
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Figure 5. The graphs of control values over time: (a) control u1(t); (b) control u2(t). Found solution—black solid line;
reference solution—grey dashed line.

6. Conclusions and Perspectives

The paper provides mathematical formulations of the machine learning problem,
supervised and unsupervised, defines the basic concepts, such as the work area and the
training set. Based on the presented formulations, it is shown that the main task of machine
learning is to find a function that determines the correspondence between the input data
and the resulting data. It is shown that today this problem can be solved numerically
using symbolic regression methods. The problem of obtaining a mathematical expression
arises in various situations—approximation of experimental data to determine a physical
law or a trend model; efficiently analyze and predict variables or indicators based on
previous observations; identification of a mathematical model of a process or a dynamic
object; generalization of the control law based on the current state of the control object. The
application of machine learning based on symbolic regression methods to control opens
up the possibility of solving such a complex problem in control theory as the problem of
general control synthesis. The paper presents a mathematical formulation of the control
synthesis problem and provides methods for its solution using machine learning both
directly and based on a training set. An important result of the article is the methodology
for solving the problem of general control synthesis as machine learning control based on a
training set. An approach to constructing a training sample based on multiple solutions
to the optimal control problem is proposed. An example of solving a specific problem of
synthesis of control of a complex technical object based on the approximation of optimal
trajectories is given. It is shown that such a control, obtained on the basis of machine
learning, gives good results not only for the input data from the training set, but also not
from it.

The concept of machine learning is widely known, but very often limited by its associ-
ation with neural network technology. We are expanding the concept of machine learning
to include a description of an unknown function in its formulation. Thus, a function can
be specified and training is aimed only at finding parameters, as in neural networks, but
you can also search for the structure of the function and its parameters. This became
possible with the advent of symbolic regression methods. The complexity of these methods
lies in the need to organize search in a space in which there is no metric. This greatly
complicates the solution of the problem of finding the required structure of the function.
This complexity opens up a wide field of research. One of the ways to solve this problem is
to use the principle of small variations of the basic solution indicated in the article. This
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approach allows you to concentrate the search for a solution around a basic solution based
on the developer’s experience or intuition. This approach also requires further study.
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