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Abstract: Computer-Supported Collaborative Learning tools are exhibiting an increased popularity
in education, as they allow multiple participants to easily communicate, share knowledge, solve
problems collaboratively, or seek advice. Nevertheless, multi-participant conversation logs are often
hard to follow by teachers due to the mixture of multiple and many times concurrent discussion
threads, with different interaction patterns between participants. Automated guidance can be
provided with the help of Natural Language Processing techniques that target the identification of
topic mixtures and of semantic links between utterances in order to adequately observe the debate
and continuation of ideas. This paper introduces a method for discovering such semantic links
embedded within chat conversations using string kernels, word embeddings, and neural networks.
Our approach was validated on two datasets and obtained state-of-the-art results on both. Trained
on a relatively small set of conversations, our models relying on string kernels are very effective
for detecting such semantic links with a matching accuracy larger than 50% and represent a better
alternative to complex deep neural networks, frequently employed in various Natural Language
Processing tasks where large datasets are available.

Keywords: Natural Language Processing; educational technology; neural networks; CSCL
conversations; string kernels

1. Introduction

With an increased prevalence of online presence, accelerated by the current COVID-19
pandemic [1], online messaging applications are gaining an increased popularity. Online
social networks make a significant percentage of these platforms, but standalone chat
applications are also widely adopted. These platforms are not used only for entertainment
purposes, but their applications cover various activities, including and even promoting
collaborative learning and creative thinking [2].

Artificial Intelligence techniques have been widely employed in various educational
settings [3,4], ranging from classifying learning styles [5,6], to finding active collabora-
tors within a group [7], to providing personalized feedback [8,9], and even customizing
curriculum content [10]. Student learning styles (Diverger, Assimilator, Converger or Ac-
commodator using Kolb’s Learning Style Inventory [11]) can be precisely classified based
on learner’s EEG waves and further correlated with IQ and stress levels [5,6]. In collabo-
rative learning settings, automated systems classify students based on their implication
and collaboration activity, and provide information to support and enhance students’
involvement in key moments [7]. Moreover, online interaction patterns changed in the cur-
rent pandemic context, both in online learning environments [12] and in general, with an
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increased online participation, whose traces can be effectively used to create even more
advanced predictive models.

Education leans on online communication to enhance the learning process by integrat-
ing facilities, such as discussion forums or chat conversations, to stimulate collaboration
among peers and with course tutors [13]. Nevertheless, group size has a major impact
on delivery time, level of satisfaction, and overall quality of the result [14]. Usually,
these conversations occur between more than two participants, which leads to numerous
context changes and development of multiple discussion threads within the same conversa-
tion [15,16]. As the number of participants increases, the conversation may become harder
to follow, as the mix of different discussion threads becomes more frequent. Moreover,
divergences and convergences appear between these threads, which may be compared to
dissonances and consonances among counterpointed voices in polyphonic music, which
have a major role in knowledge construction [15,16].

Focusing on multi-participant chat conversations in particular, ambiguities derived
from the inner structure of a conversation are frequent due to the mixture of topics and of
messages on multiple discussion threads, that may overlap in short time spans. As such,
establishing links between utterances greatly facilitates the understanding of the conver-
sation and improves its readability, while also ensuring coherence per discussion thread.
Applications that allow users to manually annotate the utterances they are referring to,
when writing their reply, have long existed [17], whereas popular conversation applica-
tions (e.g., WhatsApp) successfully integrated such functionalities. Although users are
allowed to explicitly add references to previous utterances when issuing a reply, they do
not always annotate their utterances, as this process feels tedious and interrupts the flow
of the conversation.

Our research objective is to automatically discover semantic links between utterances
from multi-participant chat conversations using a supervised approach that integrates
neural networks and string kernels [18]. In terms of theoretical grounding, we establish an
analogy to the sentence selection task for automated question answering—in a nutshell,
detecting semantic links in chat conversations is similar, but more complex. In question
answering, most approaches [19–22] consider that the candidate sentence most similar
to the question is selected as the suitable answer. In our approach, the user reply is
semantically compared to the previous utterances in the conversation, and the most similar
contribution is selected while considering a sliding window of previous utterances (i.e.,
a predefined time-frame or using a preset number of prior utterances). It is worth noting
that we simplified the problem of identifying links between two utterances by reducing
the context of the conversation to a window of adjacent utterances. Nevertheless, we
emphasize the huge discrepancy in terms of dataset sizes between the question answering
task and the small collections of conversations currently available for our task.

We summarize our core contributions as follows:

• Employing a method grounded in string kernels used in conjunction with state of
the art NLP features to detect semantic links in conversations; in contrast to previous
studies [23,24], we also impose a threshold for practical usage scenarios, thus ensuring
the ease of integration of our model within chat environments;

• Providing extensive quantitative and qualitative results to validate that the lexical
information provided by string kernels is highly relevant for detecting semantic links
across multiple datasets and multiple learning frameworks (i.e., classification and
regression tasks);

• Obtaining state of the art results on two different datasets by relying on string kernels
and handcrafted conversation-specific features. Our method surpasses the results of
Gutu et al. [25,26] obtained using statistical semantic similarity models and semantic
distances extracted from the WordNet [27] ontology. In addition, our experimental
results argue that simpler supervised models, fine-tuned on relatively small datasets,
such as those used in Computer-Supported Collaborative Learning (CSCL) research,
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may perform better on specific tasks than more complex deep learning approaches
frequently employed on large datasets.

In the following subsections we present state-of-the-art methods for computing text
similarity and for detecting semantic links.

1.1. Lexical and Semantic Models for Text Similarity

Early models to compute semantic similarity consider semantic distances (e.g., path
length, Wu-Palmer [28], or Leackock-Chodorow [29]) in lexicalized ontologies, namely
WordNet [27], as well as Latent Semantic Analysis (LSA) [30]. LSA uses a term-document
matrix which stores the number of occurrences of each term in every document. Singular
Value Decomposition followed by a projection on the most representative dimensions is
then performed to transform the matrix into a latent semantic space. Semantic similarity
scores between words are calculated using cosine similarity scores within this semantic
vector space.

1.1.1. Word Embeddings

Word embeddings represent words in a vector space using their context of occurrence
within a corpus. Among existing models, word2vec is one of the most frequently used
embeddings methods. Word2vec uses distributed word embeddings computed using a
simple neural network that considers the context of words as n-gram co-occurrences [31];
the similarity between two texts is determined using cosine similarity. Word2vec, in the
skip-gram framework, is in fact a generative neural model [32] trained to predict the
words that appear in the context of a given word. Another popular model, Glove [33],
computes word embeddings using an approach based on a count-based approach, using
the number of occurrences of any two words within a text. Both models rely on word
level representations for texts. Another approach is offered by FastText [34] which uses
character n-grams as an extension of word2vec and thus is able to compute character
n-grams embeddings. This method is very useful for determining embeddings for out-of-
vocabulary words, e.g., words that do not appear or are not very frequent in the corpora
used for training the embeddings space.

1.1.2. String Kernels

String kernels [35] are functions used at the character level. The underlying assump-
tion is that a satisfactory similarity measure between two documents can be associated with
the number of shared sub-strings of a predefined size. Instead of representing texts in this
sub-string induced space, string kernels use a function which replicates the dot-product
of two texts in this high-dimensional space. The higher the value of the kernel function,
the more similar the texts are.

Variations in the size of n-grams (commonly between 2 and 10 characters) enable
the generation of different string kernels. String kernels also vary depending on the
function used for computing the overlap between two texts. The most common string
kernels are spectrum, intersection, and presence [36]. Spectrum is calculated as the dot-
product between the frequencies of n-grams (Equation (1)). Intersection kernel relies on the
minimum of the two frequencies (Equation (2)). The presence kernel encodes whether an n-
gram is present or not in a string by using presence bits (Equation (3)). In our experiments,
normalized versions of these kernels were used.

ks
p(a, b) = ∑

v∈Σp
numv(a) · numv(b) (1)

k∩p (a, b) = ∑
v∈Σp

min{numv(a), numv(b)} (2)

k0/1
p (a, b) = ∑

v∈Σp
inv(a) · inv(b) (3)
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where:

• Σp = all p-grams of a given size p,
• numv(s) = number of occurrences of string (n-gram) v in document s,
• inv(s) = 1 if string (n-gram) v occurs in document s, 0 otherwise.

String kernels can also be used as features for different classifiers to solve tasks such
as native language identification [37], protein fold prediction, or digit recognition [38].
Beck and Cohn [39] use the Gaussian Process framework on string kernels with the goal of
optimizing the weights related to each n-gram size, as well as decay parameters responsible
for gaps and matches. Their results show that such a model outperforms linear baselines
on the task of sentiment analysis. Another important result is that, while string kernels
are better than other linear baselines, non-linear methods outperform string kernels; thus,
non-linearly combining string kernels may further improve their performance. One such
extension was proposed by Masala et al. [18] for the task of question answering. The authors
show that a shallow neural network based on string kernels and word embeddings yielded
good results, comparable to the ones obtained by much more complex neural networks.
The main advantage of the approach is that a small number of parameters needs to be
learned, which allows the model to be also trained and used on small datasets, while
concurrently ensuring a very fast training process. We rely on a similar approach for
detecting semantic links in chat conversations, a task with significantly smaller datasets
than question answering.

1.1.3. Neural Models for Text Similarity

Neural-based models have been widely used for computing similarity between para-
graphs for question answering tasks [21,40,41]. Given a question and a list of candidate
answers, the task of selecting the most reasonable answer is also known as answer selection
(a sub-task of question answering). The general approach for computing the similarity
between two text sequences is the following: compute an inner representation for both
text segments using a neural network and then apply a similarity function (which, in turn,
can be modelled with a neural network). Common neural models used for answer se-
lection include Bidirectional Long Short-Term Memory (Bi-LSTM) [42] or Convolutional
Neural Networks (CNN) [43]. Because there is no restriction on the length of the analyzed
sentences, the dynamic number of outputs of the Bi-LSTM must be converted into a fixed-
length representation. This transformation can be performed by simple average or max
pooling, concatenation of the first and the last output, or by more complex methods such
as applying another CNN layer on top of these inner representations [41].

In addition, attention mechanisms are frequently employed in neural network models
as they enable long-range dependencies between parts of the input [44,45]. In the context of
question answering, the attention mechanism allows the model to also take into account the
question, when computing the representation of a candidate answer. Intuitively, attention
allows the model to peek at the question when computing the representation of the answer,
thus providing the ability to better focus on the relevant parts of the answer (with regards
to the question). Dos Santos et al. [21] proposed the usage of an attention mechanism
that allows both the question and the answer to influence each others’ representation.
After computing the inner representations of the question and answer using either a Bi-
LSTM or a CNN, the authors combined the representations into a single fixed-size matrix
from which attention weights are extracted, and afterwards used to compute the final
representations of the question and answer.

Bachrach et al. [40] proposed the usage of a global view of the question together with
its inner representation, when computing the attention weights. One way of obtaining
such global information from the question is to use a multi-layer perceptron (MLP) on
the bag-of-words representation of the question. Wang et al. [46] explored the use of
comparison functions (e.g., element-wise subtraction and multiplication, a simple MLP) for
combining the attention-weighted representation of the question with the representation of
the answer, followed by a CNN for the final classification step.
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Transformer-based architectures [47] have become popular in the NLP domain because
of their state-of-the-art performance on a wide range of tasks [48–53]. The idea behind the
Transformer architecture was to replace the classical models used for processing sequences
(e.g., RNNs or CNNs) with self-attention mechanisms that allow global and complex
interactions between any two words in the input sequence. For example, BERT [48] used
multiple layers of Transformers trained in a semi-supervised manner. The training of BERT
is based on two tasks: Masked LM (MLM)—in which a random token (word) is masked and
the model is asked to predict the correct word—and Next Sentence Prediction (NSP)—in
which the model is given two sentences A and B and is trained to predict whether sentence
B follows sentence A. In our experiments, we consider the NSP pretrained classifier.

1.2. Detection of Semantic Links

The manual annotation of semantic links is a time consuming and difficult task.
Although many chat applications provide the possibility to explicitly introduce such links,
participants frequently forget or do not think it is necessary to add links to the referred
contribution, as the process breaks the conversation flow. Techniques for automated
annotation of such links were previously developed and were referred to as implicit links
detection [54] or chat disentanglement [55–58].

1.2.1. Semantic Distances and Semantic Models

Previous experiments by Gutu et al. [25,26] considered semantic distances between
utterances in a floating window and statistical semantic similarity models trained on
large corpora of documents. The authors explored the optimal window sizes in terms
of the distance (expressed as count of intermediary utterances) and time spent between
two utterances in order to search for semantic links. For a given reply, the contribution
with the highest semantic score from the window was chosen as the referred utterance.
The performance of this approach in detecting semantic links was evaluated based on the
explicitly referred links added by participants from a conversation [25]. A corpus of 55
CSCL chats with multiple participants was used for this experiment. The same corpus was
used in the current study and is detailed later on in Section 2.1.1.

1.2.2. Neural Networks

Long Short-Term Memory (LSTM) [59] networks have been used to capture the
message-level and context-level semantics of chat utterances with the end goal of dis-
entanglement [57]. Jiang et al. [56] proposed a two stage method with a NN backbone
for chat disentanglement. In the first stage, a Siamese Hierarchical Convolutional Neural
Network (SHCNN) is used for estimating the similarity of two utterances that was further
used to establish the disentangled conversations. Li et al. [58] used Transformer-based
architectures [47] to detect semantic links. Their model considered Bidirectional LSTM
networks on top of a BERT model to capture the intricate interactions between multiple
utterances and, finally, to identify pairs of related utterances. We emphasize that, especially
in the case of state-of-the art NLP architectures, a significant amount of data is required to
properly train the aforementioned models.

Besides the textual content of a contribution, previous experiments by Masala
et al. [23,24] used additional meta-information to discover semantic links using NN classi-
fiers. Such conversation-specific meta information included the time spent between two
utterances, the distance between them, or whether the two utterances belonged to the
same author [23,24]. Mehri et al. [60] also employed Recurrent Neural Networks (RNNs)
for modelling semantic relationships between chat utterances. Semantic information was
used together with meta-information (such as distance between utterances) for thread
partitioning and the detection of direct replies in conversations.
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1.2.3. Other Computational Approaches

Previous work by Trausan-Matu and Rebedea [54] considered speech acts [61] for identi-
fying continuations or question answering patterns between utterances. Moldovan et al. [62]
argued that speech acts can be determined with a high accuracy by only using the first
few words in the contribution. Moreover, the dialogue between participants can highlight
patterns that may be automatically identified. In an educational context [63], student
profiles were created by analyzing the interactions between the teacher and the student,
as well as the posts in the discussion forums.

2. Method
2.1. Datasets
2.1.1. Corpus of CSCL Chat Conversations

Our experiments were performed on a collection of 55 chat conversations (ChatLinks
dataset, available online at https://huggingface.co/datasets/readerbench/ChatLinks, ac-
cessed on 10 November 2021) held by Computer Science undergraduate students [15,25].
Participants had to discuss on software technologies that support collaborative work in
a business environment (e.g., blog, forum, chat, wiki). Each student had to uphold one
preferred technology in the first part of the conversation, introducing benefits or disad-
vantages for each CSCL technology, followed by a joint effort to define a custom solution
most suitable for their virtual company in the second part of the chat. The discussions
were conducted using ConcertChat [17], a software application which allows participants
to annotate the utterance they refer to, when writing a reply. The vision behind these inter-
actions was grounded in Stahl’s vision of group cognition [64] in which difficult problems
can be solved easier by multiple participants using a collaborative learning environment.

Two evaluations were considered. The first one relies on the exact matching between
two utterances, which checks whether the links are identical with the references manually
added by participants while discussing. The second approach considers in-turn matching
which checks whether the detected links belong to the same block of continuous utterances
written by the same participant, as defined in the manually annotated references. The auto-
mated approach computes similarity scores between each given contribution and multiple
previous utterances, within a pre-imposed window size. The highest matching score is
used to establish the semantic link. A conversation excerpt depicting an exact matching
between the reference and semantic link is shown in Table 1. An in-turn matching example
is shown in Table 2. In both cases, the emphasized text shows the utterance which denotes
the semantic link. The Ref ID column shows the explicit manual annotations added by
the participants.

Table 1. Fragments extracted from conversations showing exact matching (Semantic link is high-
lighted in bold).

Utt. ID Ref. ID Speaker Content

257 Razvan High-activity forum threads can be automatically
taken to chat if sufficient users are online

258 Bogdan I think it’s a good ideea let the user post their pictures,
their favorite books, movies

259 257 Andreea and if the time between posts is very short
260 258 Andreea a user profile, of course
261 Bogdan that way big communities will be created

262 258 Razvan personal, social blogs, chatrooms and forums
besides educational ones

https://huggingface.co/datasets/readerbench/ChatLinks
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Table 1. Cont.

Utt. ID Ref. ID Speaker Content

177 Oana i belive that on forums, you can also show that
“human” part :)

178 177 Tibi yes ...but you cannot build a relationship
179 Tibi a long term relationship
180 Oana With who?
181 Oana With other people?
182 Oana Why’s that?
183 Oana You can interact with anybody.
184 Oana You post a message, about a topic

185 Oana Furthermore, other people can answer to that message
or say an opinion...

186 180 Tibi as i said before...people became attached of your
writing...they want to descover more of you...

187 Oana It’s a kind of conversation
188 Oana Furthermore, any conversation can lead to a relation
189 188 Tibi yes...but on a certain topic only...
190 Oana Yes, well, I have my own kind of writting :)
191 189 Oana yes, but if you want, you can go and change that topic

Table 2. Fragments extracted from conversations showing in-turn matching (Semantic link is high-
lighted in bold).

Utt. ID Ref. ID Speaker Content

107 Lucian They do not require any complicate client application, central me-
diation

108 Lucian Actually, all this arguments are pure technical
109 Lucian The single and best reason for which chats are the best way of

communication in this age of technology is that
110 Lucian Chat emulate the natural way in which people interact. By talking,

be argumenting ideas, by shares by natural speech
111 Lucian Hence,chat is the best way to transform this habit in a digital era.
112 Lucian We can start debating now? :D
113 111 Florin I would like to contradict you on some aspects

379 Alina No, curs.cs is an implementation of moodle
380 Alina Moodle is jus a platform
381 Alina You install it on a servere
382 Alina and use it
383 Alina Furthermore, populate it wih information.
384 Andreea and students are envolved too in development of moodle?
385 Alina It has the possibility of wikis, forums, blogs. I’m not sure with the

chat, though.
386 379 Stefan Yes that is right

The manually added links were subsequently used for determining accuracy scores for
different similarity metrics, using the previous strategies (e.g., exact and in-turn matching).
The 55 conversations from the corpus made up to 17,600 utterances, while 4500 reference
links were added by participants (e.g., about 29% of utterances had a corresponding
reference link). Out of the 55 total conversations, 11 of them were set aside and used as a
test set.

A previous study by Gutu et al. [25] showed that 82% of explicit links in the dataset
were covered by a distance window of 5 utterances; 95% of annotations were covered by
enlarging the window to 10 utterances, while a window of 20 utterances covered more
than 98% of annotated links, while considering time-frames, a 1 min window contained
only 61% of annotations, compared to the 2 min window which contains about 77% of
all annotated links. A wider time-frame of 3 min included about 93% of all links, while a
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5 min window covered more than 97% of them. As our aim was to keep the majority of
links and to remove outliers, a 95% coverage was considered ideal. Smaller coverages were
included in our comparative experiments. Thus, distances of 5 and 10 utterances were
considered, while time-frames of 1, 2, and 3 min were used in the current experiments.

2.1.2. Linux IRC Reply Dataset

Besides the previous collection of chat conversations, we also used the chat conversa-
tions dataset proposed by Mehri et al. [60] for classifying pairs of utterances. This dataset
was specifically built to capture direct reply relationships between utterances. The data
consists of a subset of ‘#Linux IRC log data’ [55], manually annotated with direct reply
relationships. Volunteers, familiar with Linux, were instructed to go through the chat
messages and select the immediate parents for every message. A message might have no
parents (e.g., when starting a new conversation thread) or it might have multiple parents
(e.g., an answer to a multi-participant thread). On average, a message had 1.22 direct
parents and 1.70 direct children in this dataset, while this dataset is not related to formal
education, it is a great example of using chats in communities of practice in the real world
(e.g., specialists working on Linux).

2.2. Neural Model for Semantic Links Detection

One of our key insights is that answers connect to questions in a similar manner to
how semantic links connect utterances, in the sense of information flow or continuation of
ideas. Therefore, we theorize that answer selection methods can be effective in detecting
semantic links. We adapt the model introduced by Masala et al. [18] for answer selection to
our task. Figure 1 presents the processing flow. The goal of our model is to combine lexical
features (in the form of string kernels) with semantic and conversation-specific information
to better capture semantic links between utterances.

Figure 1. Conceptual diagram of our approach.

Moreover, we establish strong supervised and unsupervised baselines for evaluating
our approach, namely:

• Path Length [25]: Previous best results for detecting semantic links were achieved
on the same dataset in an unsupervised manner by using WordNet Path Length as
similarity distance. Path Length is based on the shortest length path between two
concepts in the WordNet ontology.

• String Kernels: We use string kernels as a measure of similarity; we experiment with
intersection, presence and spectrum kernels [36], on a 3–7 g range .

• AP-BiLSTM [21]: A supervised method which achieves top results on the answer
selection task. Both utterances are passed through a Bidirectional LSTM network.
Attention vectors are extracted from the hidden states (at each time step), leading to
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attention-based representations for both utterances. Cosine similarity is then used on
the attention-weighted utterances for computing the similarity between them.

• BERT [48]: We use a pretrained BERT-base model to compute the probability that
two utterances follow one another, as a continuation of ideas. For this task, we fine-
tune BERT, following the approach proposed by Devlin et al. [48]. Therefore we
optimize the binary cross-entropy loss with Adam optimizer [65] with a learning rate
of 1 × 10−5, using batches of size 32 for 7 epochs. All hyperparameters were selected
using 10-fold cross-validation.

Three different types of string kernels (spectrum, presence and intersection) were
considered in the proposed supervised neural model, each with five character n-gram
ranges: 1–2, 3–4, 5–6, 7–8, and 9–10. Hence, we compute 15 similarity scores for each pair
of utterances, and we combine the above-mentioned features using a simple feed-forward
multilayer perceptron (MLP) with one hidden layer. The MLP computes a single number
for each pair of utterances, namely a similarity score. The hidden layer size was set to 8 for
all follow-up experiments, while the batch size was fixed at 100. Hinge loss (Equation (4))
was used as objective function, similar to the loss proposed by Hu and Lu [66] for finding
similarities between two sentences. The margin M was set to 0.1 and minimized using the
Adam optimizer [65]. The previous utterance most similar to the current one is selected as
the semantic link by our model, as well as for the baselines.

e(ur, u+, u−) = max(0, M + sim(ur, u−)− sim(ur, u+)) (4)

where:

• ur refers to the utterance for which the link is computed,
• u+ refers to the manually annotated utterance,
• u− is an incorrect utterance contained within the current window,
• sim(ur, u) refers to the semantic similarity score calculated by the MLP between the

two utterances representations,
• M is the desired margin among positive and negative samples.

Furthermore, we enhance the lexical information with conversation-specific infor-
mation, including details regarding the chat structure, as well as semantic information.
The conversation-specific features are computed for each candidate contribution (for a link)
as follows: we check whether the contribution contains a question, or the candidate and
the link share the same author, while referring to the chat structure, we use the number
of in-between utterances and the time between any two given utterances. Two methods
for computing semantic information were considered. Given two utterances, the first
method computes the embedding of each utterance as the average over the embeddings
(e.g., pretrained word2vec, FastText and GloVe models) of all words from the given ut-
terance, followed by cosine similarity. The second method relies on BERT, namely the
Next Sentence Prediction classifier, which is used to compute the probability that the two
utterances follow one another.

2.3. Detecting Direct Replies in Linux IRC Chats

To further validate the effectiveness of string kernels in modeling chat conversations,
we investigate the use of string kernels as a feature extraction method on a different
dataset and on a slightly different task. Instead of framing the explicit link detection
problem as regression (e.g., given an utterance, find its semantic link by computing a
score), we treat it as a classification (e.g., a binary classification to establish whether two
utterances are connected or not). Starting from the approach proposed by Mehri et al. [60],
we train a classifier which outputs, for two given utterances, the probability of the first
one being a reply to the second message. Features extracted from string kernels are also
considered, resulting in three categories of features (see Table 3): conversation-specific
features, semantic information, and lexical information. We further note that for this task,
we aim to replicate as accurately as possible the Mehri’s et al. [60] approach by using the
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same model architecture, features, and training methods, the only difference being that we
investigate the usage of string kernels and BERT-based features.

Table 3. Features used in the reply classifier.

Conversation

Time Time difference between the two utterances
(in seconds)

Distance The number of messages between the two
utterances

Same author Whether two utterances have the same author

Mention child Whether the parent message mentions the
author of the child message

Mention parent Whether the child message mentions the author
of the parent message

Semantic
RNN output Probability outputted by the RNN

BERT Probability outputted by BERT NSP

Lexical String Kernels Similarities given by string kernels

We consider two approaches for capturing semantic information. The first model
considers an RNN trained on the Ubuntu Dialogue Corpus, as proposed by Lowe et al. [67].
The purpose of this network is to model semantic relationships between utterances and
it is trained on a large dataset of chat conversations. We use a siamese Long Short-Term
Memory (LSTM) [59] network to model the probability of a message following a given
context. Both the context and the utterance are processed first using a word embedding
layer with pre-trained GloVe [33] embeddings, which are further fine-tuned. After the
embedding layer, the representations of context and utterance are processed by the LSTM
network. Let c and r be the final hidden representation of the context and of the utterance,
respectively. These representations, alongside a learned matrix M, are used to compute the
probability of a reply (see Equation (5)).

P(reply|context) = σ(cT Mr) (5)

The same training procedure introduced by Lowe et al. [67] is applied, namely mini-
mizing the cross-entropy of all labeled (context, contribution) pairs by considering a hidden
layer size of 300, an Adam optimizer with gradients clipped to 10, and a 1:1 ratio between
positive examples and negative examples (that are randomly sampled from the dataset).
In our implementation, a dropout layer was also added after the embedding layer and after
the LSTM layer for fine-tuning the embeddings, with the probability of dropping inputs
set to 0.2.

The second method is more straightforward and it is based on BERT [48]. We use
a pretrained BERT-base model and we query the model for whether two utterances are
connected, using the Next Sentence Prediction classifier.

Furthermore, we employ string kernels as a feature extraction method for lexical
information. Given a pair of utterances, we compute their lexical similarity with three
string kernels (spectrum, presence and intersection) at different granularity (n-gram ranges):
1–2, 3–4, 5–6, 7–8 and 9–10. Thus, a lexical feature vector v ∈ R15 is computed for each pair
of messages.

Mehri’s et al. [60] training methodology was used, namely the Linux IRC reply dataset
was split into a set of positive examples (annotated replies) and a set of negative exam-
ples (the complement of the annotated replies). This leads to a very imbalanced dataset,
with most pairs being non-replies. One method to alleviate this problem is to only consider
pairs of message within a time frame of 129 s [60] one from another. Different classifiers
relying on the features described in Table 3 were trained using 10-fold cross-validation. De-
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cision trees, a simple Multi-Layer Perceptron (MLP) with a hidden size of 20, and random
forest [68] were considered in our experiments, each with their benefits and drawbacks.

3. Results

The following subsections provide the results on the two tasks, namely semantic links
and direct reply detection, arguing their strong resemblance in terms of both models and
features. Subsequently, we present a qualitative interpretation of the results.

3.1. Semantic Links Detection in the CSCL Chat Conversations

We first evaluate our approach on the CSCL chats dataset described in Section 2.1.1.
Our supervised neural network is compared with state-of-the-art methods for answer
selection and semantic links detection. We also compare our model with an unsupervised
method based only on string kernels. For this baseline, the considered n-gram range (3–7)
was selected to maximize the accuracy on a small evaluation set. All supervised methods
are trained and evaluated using 10-fold cross-validation. Note that results are reported on
the test set.

The following pretrained embeddings were used in our experiments: word2vec,
FastText, and GloVe. The word2vec [32] embeddings were pretrained on the Google
News Dataset. The FastText embeddings [34] were pretrained on Wikipedia, whereas
the GloVe embeddings [33] were pretrained on a Wikipedia 2014 dump and Gigaword 5
(https://catalog.ldc.upenn.edu/LDC2011T07 accessed on 10 November 2021). All these
pretrained models are publicly available and widely used in NLP research.

Results are presented in Table 4. The first part includes the accuracy obtained by the
baseline methods, while the AP-BiLSTM is a top performing model in the task of answer
selection, it performs about the same as the unsupervised path length method for our
specialized task of detecting semantic links. AP-BiLSTM obtains even worse performance
on the in-turn metric. This is due to the small size of the training dataset compared
to the large number of parameters of the model. The BERT-based method outperforms
other baselines by a significant margin on every window-time frame, but its performance
degrades with larger windows. One possible reason is that the BERT model is pretrained
on English Wikipedia and BookCorpus which contain longer sentences, especially when
compared to the utterances from the first dataset, while we fine-tune the entire model, its
small number of samples cannot alleviate this problem.

Table 4. Results for semantic links detection (Exact matching accuracy (%)/In-turn matching accuracy (%).

Window (Utterances) 5 10

Time (mins) 1 2 3 1 2 3

Path Length [25] 32.44/41.49 32.44/41.49 not reported 31.88/40.78 31.88/40.78 not reported
AP-BiLSTM [21] 32.95/34.53 32.39/35.89 33.97/37.58 33.86/35.10 28.89/31.82 24.49/28.32
Intersection kernel 31.40/34.59 33.87/39.58 33.58/40.01 31.71/34.78 32.24/37.66 29.47/35.24
Presence kernel 31.84/34.94 33.97/39.81 33.58/40.01 31.80/34.89 32.33/37.71 29.67/35.41
Spectrum kernel 31.21/34.34 33.45/39.12 33.17/39.49 31.39/34.46 31.56/36.72 28.75/34.26
BERT 40.07/41.99 43.45/47.07 44.47/48.42 40.41/42.33 41.53/45.15 38.15/38.60

NN using sk 35.21/36.90 35.55/39.39 35.77/39.95 35.55/37.02 34.08/37.47 30.24/33.74
NN using sk + conv 37.92/39.39 45.48/49.66 47.06/51.80 38.14/39.50 46.27/50.79 47.85/52.93
NN using sk+sem 36.45/38.14 36.90/40.47 36.00/40.29 36.68/38.14 35.10/38.26 31.26/34.76
NN using sk + sem + conv 37.02/38.60 46.38/50.00 48.08/52.25 37.24/38.71 47.29/51.46 49.09/53.83

NN using sk + BERT 37.35/38.71 39.16/42.21 39.61/43.00 37.24/38.60 37.13/40.18 33.52/36.90
NN using sk + BERT + conv 40.40/42.21 46.72/49.88 48.08/51.91 40.63/42.43 46.95/50.33 48.08/52.37

Note: sk—string kernels; conv—conversation-specific features, namely window and time (window—# of in-between utterances; time—
elapsed time between utterances); question and author (question—whether the utterance contains a question; author—if the utterance
shares the same author as the utterance containing the link); sem—semantic information. Bolded values represent the best results with and
without semantic information.

https://catalog.ldc.upenn.edu/LDC2011T07
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Unsupervised string kernels by themselves provide inconclusive results as they are
not always better than previous methods, but they do seem to work better especially for
larger windows. Moreover, we find that there is no convincing difference between any of
three types of string kernel functions.

The results obtained using the neural model are presented in the middle part of Table 4.
We performed multiple experiments by introducing conversation-specific and semantic
features independently (second and third row), and together (fourth row). Word2vec,
FastText, and Glove (embedding size 100 and 300) are used for extracting semantic infor-
mation, with no significant difference in results. Conversation-specific features provide
a significant accuracy increase for the task of detecting semantic links. Previous studies
found a similar conclusion, as the path length method uses the distance between two
utterances as a weighting factor [25], while semantic information improves performance,
we cannot consider that the gain is impressive.

In the last part of Table 4, we present the results obtained when extracting seman-
tic information with the method based on BERT. However, despite BERT’s Transformer
model complexity, the results are similar with the word embeddings semantic encoding.
Additional discussions of the results in Table 4 are presented in Section 4.

3.2. Imposing a Threshold for Practical Usage Scenarios

In order to make our system ready for use in practice, we propose a threshold in the
following manner: (a) run our model for each utterance in the conversation, (b) pick the
utterance with the highest similarity score, and (c) if this score is higher (or equal) than
the threshold, recommend adding the semantic link in the conversation. If the similarity
score is lower than the threshold, we consider that the given utterances are not linked to
any previous utterance. Setting the threshold is of utmost importance: a too high value
will likely generate a high number of false negatives, while a too low value would yield
more false positives. All of the following experiments and results refer only to the exact
match metric.

Overall, the absolute value of the similarity score obtained on a pair of utterances is
not very relevant per se due to the minimization of the hinge loss. The similarity scores
become relevant in context, when compared with each other (in a given window). For this
reason, we cannot simply look at the absolute values generated by the model, we need to
look at the relation between scores obtained by utterances in the same window. Therefore,
we compute, for each of the 10 folds, the mean and standard deviation values across all
predictions. Next, for each fold, we search for the threshold value that maximizes the
F1 score. For each threshold value, we compute how far this value (in terms of standard
deviation) is from the mean prediction value. This distance is computed independently
for each fold (as the model is trained for each fold). The mean value of those distances is
used for computing the threshold, then a model is trained on the entire training set and the
following formula is used for establishing the final threshold (Equation (6)):

threshold = meanp + meand ∗ stdp (6)

where:

• meanp is the mean of the predictions on the training set,
• stdp is the standard deviation of the predictions on the training set,
• meand is the mean of the distances between the mean prediction and the best threshold

found for each fold.

The final values are the following: meanp = 0.478, stdp = 0.14, meand = 1.32, which
lead to a threshold = 0.66. We evaluate our approach on the test set with the threshold set
to 0.66 and obtain an F1 Score of 0.31 (for the positive class) and a 51.67% accuracy. In a
practical scenario, if the semantic link suggestion is incorrect, the user might just ignore the
predicted link.
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3.3. Detecting Direct Replies

As previously mentioned in Section 2.3, we first train a siamese-LSTM on the large
Ubuntu Dialogue Corpus [67] to predict whether an utterance follows a sequence of
utterances. Our implementation slightly outperforms the results reported in [67], using as
metric the 1 in 10 next utterance recall: 95.2% versus 92.6% for R@5, 80.0% versus 74.5%
for R@5, and 65.4% versus 60.4% for R@1. For all following experiments, we consider our
implementation of siamese-LSTM.

In Table 5, we present the results of the proposed methods on the Linux IRC reply
dataset. To better understand how informative are string kernels, we made three sets
of experiments for each classifier: (a) one set using conversation-specific and semantic
features as proposed in [60] (with the addition of semantic information obtained by using
pretrained BERT; see the first two columns in Table 5), (b) a second set of experiments
including lexical features (presented in the middle half of Table 5), and (c) the last set where
semantic information is replaced with the features extracted with string kernels (in the last
column of Table 5. We used 250 trees for the random forest classifier and we adjusted the
class weights to penalize false positive to better handle the imbalanced dataset. Specifically,
the class weight of the positive class was 1, whereas the weight of the negative class was
set to #non_replies/#replies.

We can observe in Table 5 that lexical information provided by string kernels can be
combined with more complex features (such as semantic features obtained by siamese-
LSTM) to improve performance. Out of all the classifiers, the random forest model per-
formed the best (0.65 F1 score; 0.75 precision and 0.57 recall for the reply class).

Table 5. F1 scores (positive class) for reply detection on Linux IRC reply dataset. C denotes Conver-
sation features, S denotes semantic information while L stands for lexical information. More details
about used features can be found in Table 3.

Method C + S(RNN) C + S(BERT) C + S(RNN) + L C + S(BERT) + L C + L

Decision Tree 0.53 0.54 0.54 0.56 0.55
MLP 0.60 0.60 0.62 0.61 0.60

Random Forest 0.59 0.62 0.63 0.65 0.63

In addition, we identify which features were the most important for the random forest
model by considering Gini feature importance [68]. For the case in which we do not use
lexical information, the semantic information is the most important feature (Gini value of
0.40), followed by time difference (Gini value of 0.27), and space difference (Gini value of
0.14); see Figure 2.

Figure 2. Gini feature importance for random forest without string kernels.

When adding string kernels, the semantic information is still the most important
feature (Gini value of 0.16), followed by time and distance conversation features (Gini
value of 0.15 and 0.12, respectively), and by string kernels on ngrams of size 1–2 (Gini value
of 0.11); see Figure 3.
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Figure 3. Gini feature importance for random forest with string kernels.

If the semantic information is replaced with lexical information, the conversation
features become more important, but still the lexical features are the most informative;
see Figure 4. In all cases relying on lexical information (see Figures 3 and 4), the features
extracted by using string kernels are, as a whole, the most informative features with Gini
values of 0.41 and 0.49, respectively. More discussions of the results in Table 5 can be found
in the last part of Section 4.

Finally, we note that the rather low F1 scores for the task of detecting semantic links
(especially compared to other NLP tasks) are mainly due to the intricate nature of the
task. Solving the task of detecting semantic links in chats implies properly disentangling
discourse structure, both at individual level and when multiple participants are involved
throughout an evolving conversation.

Figure 4. Gini feature importance for random forest with string kernels replacing semantic information.

3.4. Qualitative Interpretation of the Results

In this section, we provide a qualitative interpretation of the results obtained by the
proposed neural model using string kernels. In the top half of Table 6 we present two simple
examples of semantic links, one as direct answer to a previously stated question, and a
second one as an addition to a previous idea. The proposed model is capable of detecting
when an author continues their idea in a new utterance (see lower part of Table 6).

Table 6. Example of correct semantic link prediction (explicit link/predicted link).

Utt. ID Ref. ID Speaker Content

120 Adrian so tell me why the chat could provide collaborative learning?
121 120 Maria for example if we have to work on a project and everybody has a part to do

we can discuss it in a conference
122 Adrian you can discuss the premises but not the whole project
123 120 Andreea well, you can have a certain amount of info changed
124 122 Maria you can discuss the main ideas and if someone encounters problems he can

ask for help and the team will try to help him

216 Dan are there private wikis?
217 Ana yes...there are wikis that need authentication...
218 216 Dan by private i understand that only certain users can modify their content

Our model also detects distant semantic links (see Table 7) and interleaved semantic
links (see Table 8). Table 9 presents two examples of complex interactions in which our
system correctly detects semantic links.
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Table 7. Example of correct semantic link prediction (explicit link/predicted link).

Utt. ID Ref. ID Speaker Content

139 Lucian To CHAT with a teacher and with our colleagues which have knowledge
and share it with us.

140 Florin yes, but I do not agree that chat’s are the best way to do that
141 Lucian For example, we could read a book about NLP but we could learn much

more by CHATTING with a teacher of NLP
142 Claudia but that chat is based on some info that we have previously read
... ... ...
145 139 Sebi yes but the best way to share your knowledge is to make publicly with

other people who wants to learn something. In chats you can do this just
with the people who are online, in forums everybody can share it

62 Alexandru the blog supports itself on something our firm calls a “centeredcommu-
nity”...the owner of the blog is the center...interacting with thecenter
(artist, engineer, etc. ) is something very rewarding

63 Alexandru and i would like to underline once again the artistic side of the blog
64 Alexandru blog is ART
65 Raluca you can also share files in a chat conference, in realtime
66 62 Radu you’re right... blogs have their place in community interaction

Table 8. Example of correct semantic link prediction (explicit link/predicted link).

Utt. ID Ref. ID Speaker Content

173 Ionut as the wiki grow the maintenance becomes very hard, and it consumes a
lot of human resources

174 Bogdan many users manage that information, so the chores are distributed
175 174 Ionut this would be a pro for wikis
176 173 Bogdan yes, but the wiki grows along with the users that manage that wiki

186 Costin I mean can an admin take the rights to another admin even if the firstone
became admin after the second one?

187 Ionut who can also have the right to give admin permissions
188 Tatar wikis are good for documentation but is not a communication tool
189 188 Ionut so “Thumbs up!” for chat here!
190 186 Bogdan I think if some admin does not do their job, he could lose the status

Table 9. Example of correct semantic link prediction (explicit link/predicted link).

Utt. ID Ref. ID Speaker Content

168 Octavian it s meant to improve the quality of a web site
169 Oana So it;s just to inform you...
170 Octavian yes
171 168 Tibit there isan advantage in owning a blog...by having a somehow informal

kind ofrelationship...you can get people attached to your writing...
172 Tibit you can let them kow a part of you that cannot be shown on forums

and wikis
173 Tibit you humanise the content
174 Octavian yes, i agree with you
175 174 Oana I don;t
176 Tibit why so?
177 Oana i belive that on forums, you can also show that “human” part :)
178 177 Tibit yes ...but you cannot build a relationship

188 Luis Let ustake the socket example. Using blog the information will be posted
andthe users can asks questions and receive extra information

189 188 Cristi this is a dynamic advantage of the blog
190 Cristi but what if there was a little error in the example?
191 Alex how are they able ask questions if they can modify the page?
192 189 Luis in general blog ideal for presenting products, implementation ideas , for ad-

vertising
193 191 Luis you jst put a comment

However, the model is not perfect—in about half of the cases, it is unable to detect the
correct semantic link (e.g., the best accuracy is 49.09%). Nevertheless, we must consider
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that the detection of correct links is a difficult task even for human readers due to complex
interactions between utterances (see examples in Table 10).

Table 10. First example of wrong semantic link prediction (explicit link/predicted link).

Utt. ID Ref. ID Speaker Content

156 Delia It can also make it easier to communicate with larger groups
157 Delia where will be having this conversation if the chat would not exist?:P
158 Cristian it’s the easiest way to solve a problem indeed, but only if the person is available
159 Delia the availability is prerequisitive
160 Delia yup
161 Delia but who is not online ourdays?:)
162 156 Marian yes but what about when you have a problem none of your friends know

how to solve

288 Andreea if kids get used to it at an early age, they would have an easier time later
289 Razvan blog posts, chatting, video conferences are ok
290 Razvan I thinks it’s dirrect enough
291 Andreea maybe the teacher and the students could do something fun together, like a trip :)
292 288 Mihai yes,this is a very important thing, every teacher should promote elearning

In some cases, the model fails to capture semantic relationships due to the simplistic
way of extracting the semantic information. This shortcoming can be observed in the first
example of Table 11, as the model fails to capture the relatedness of the verbs “moderate”
and “administarte”, although in this case it can be attributed to the misspelling of the verb
administrate. Our model also fails to reason—the model selects as the semantic link in the
example presented in the bottom half of Table 11) an utterance by the same participant
who refers to herself as “you”.

Table 11. Second example of wrong semantic link prediction (explicit link/predicted link).

Utt. ID Ref. ID Speaker Content

242 Alex whenyou need to have a discution between multiple people and you need itstored
so other people would be able to read it, you should definetlyuse a forum

243 Luis We need someone to administarte that forum. so it will waste their time
244 Alex what other solution you have?
245 243 Cristi exacly, someone has to moderate the discussions

51 Alexandru and sometimes you do :)
52 Raluca you save a text file when you only chat or save a video file if you really

need it
53 Radu Theidea of community is the fact that most of the members should know

whatis going on. If you do not want others (ousiders) to see the inside
messages, than you can create a private forum and never give it’s IPaddress
or DNS name to anyone :)

54 51 Raluca i agree with you here

In other cases, utterances simply do not provide enough information (see Table 12).
More complex features might help overcome these limitations. Nevertheless, some limita-
tions are also due to the way the problem was formulated, as each utterance is analysed in-
dependently.

Table 12. Third example of wrong semantic link prediction (explicit link/predicted link).

Utt. ID Ref. ID Speaker Content

400 Bogdan let us suppose that we use these technics in a serial mode:...so, every method
corresponds to a step in clasification...

401 Mihai yes, we can combine the powers of every techniques and come out with a
very versatile machine learning software

402 Bogdan and each step can get a result...
403 402 Mihai or we can choose a method depending on the nature of the problem, taking

into consideration that each one fits best on a few type of problems
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4. Discussion

Answer selection techniques, in conjunction with string kernels, were evaluated as
a method for detecting semantic links in chat conversations. We used two datasets with
related tasks (i.e., detection of semantic links as a classification task or as a regression task)
to validate our approach.

The proposed neural model greatly improves upon the previous state-of-the-art for se-
mantic link detection, boosting the exact match accuracy from 32.44% (window/time frame:
5 utterances/1 min) to 47.85% (window/time frame: 10 utterances/3 min). The neural net-
work model outperforms previous methods for all combinations of considered frames. It is
important to note that the neural network models generalize very well—e.g., performance
is better for larger windows. This was not the case with any other methods presented in
the first part of Table 4, where we included several strong baselines from previous works.

The addition of semantic information to our model increased its performance, but not
by a large margin, especially when compared to the performance gained by adding con-
versation features. This highlights that an answer selection framework imposed upon the
semantic link detection task has some limitations. The largest observed gain for semantic
information was achieved on longer frames (e.g., window/time frame: 10 utterances/3 min,
improvement from 47.85% to 49.09%), which means that semantic information becomes
more helpful when discriminating between a larger number of candidates (larger window).

An interesting observation is that using BERT for extracting semantic information
(last part of Table 4) does not bring significant improvements. We believe this is the case
because the BERT pretrained model is trained on much longer and structurally different
sentences (e.g., Wikipedia texts versus chat messages).

The results on the Linux IRC reply dataset (Table 5) are compelling. The first im-
portant observation is that the usage of string kernels improves the performance for all
combinations of features (see the first two columns of Table 5 with any of the last three
columns of Table 5). Similar to the first set of experiments (on the CSCL chat corpus; see
Table 4), semantic information helps the model better capture direct links, but it is not
critical. Using string kernels to replace semantic information (see last column of Table 5)
proves to be very effective, obtaining better performance than the model without string
kernels, but with semantic information (first two columns of Table 5).

Based on two different datasets, two slightly different tasks (regression and classifi-
cation), and two different models, we observe the same patterns: string kernels are very
effective at utterance level, while state-of-the-art semantic similarity models under-perform
when used for utterance similarity. Besides higher accuracy, string kernels are also a lot
faster and, if used in conjunction with a neural network on top of them, achieve state of the
art results with a small number of parameters. This allows the model to be trained very
fast, even on a CPU.

5. Conclusions

Computer-Supported Collaborative Learning environments have shown an increased
usage, especially when it comes to problem-solving tasks, being very useful in the con-
text of online activities imposed by the COVID-19 pandemic. For such purposes, chat
environments are usually seen as a suitable technology. In addition, chats can sometimes
incorporate a facility that allows participants to explicitly mark the utterance they are
referring to, when writing a reply. In conversations with a higher number of participants,
several discussion topics emerge and continue in parallel, which makes the conversation
hard to follow.

This paper proposes a supervised approach inspired by answer selection techniques
to solve the problem of detecting semantic links in chat conversations. A supervised
neural model integrating string kernels, semantic and conversation-specific features was
presented as an alternative to complex deep learning models, especially when smaller
datasets are available for training. The neural network learnt to combine the lexical and
semantic features together with other conversation-specific characteristics, like the distance
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and time spent between two utterances. Results were compared to findings in the question
answering field and validated the proposed solution as suitable for detecting semantic
links in a small dataset, such as the collection of CSCL conversations. Our best model
achieves 49.09% accuracy for exact match and 53.58% for in-turn metric. String kernels
were successfully combined with semantic and conversation-specific information using
neural networks, as well as other classifiers such as decision trees and random forests.
State-of-the-art results (0.65 F1 score on the reply class) were also obtained using string
kernels for reply detection on the Linux IRC reply dataset.

String kernels provide a fast, versatile, and easy approach for analyzing chat conversa-
tions, and should be considered as a central component to any automated analysis method
that involves chat conversations, while the neural network provided relevant results for the
explicit links detection task, the semantic information did not bring important additional
information to the network. The experiments on the reply detection task lead to very
similar results. Nonetheless, an inherent limitation of our model is generated by the answer
selection framework imposed on the semantic link detection task (i.e., not considering the
flow of conversation and addressing utterances independently).

The proposed method allows participants to more easily follow the flow of a discus-
sion thread within a conversation by allowing the disambiguation of the conversation
threads. As such, we provide guidance while reading entangled discussion with multiple
inter-twined discussion threads. This is of great support for both educational and business-
related tasks. Moreover, chat participants can obtain an overview of their involvement by
having access to the inter-dependencies between their utterances and the corresponding dis-
cussion threads. Another facility might aim at limiting the mixture of too many discussion
topics by providing guidance to focus only on the topics of interest. With accuracy scores
slightly over 50%, the proposed method may still require human confirmation or adjust-
ment, if the detected link is not suitable. Finally, the automated detection of semantic links
can be used to model the flow of the conversation by using a graph-based approach, further
supporting the understanding and analysis of the conversation’s rhetorical structure.

Our method does not take into account the context in which the replies occur, which
might prove to be important for detecting semantic links. Further experiments target
gathering an extended corpora of conversations to further advance the chat understand-
ing subdomain.
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