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Abstract: Queueing models with disasters can be used to evaluate the impact of a breakdown or a
system reset in a service facility. In this paper, we consider a discrete-time single-server queueing
system with general independent arrivals and general independent service times and we study the
effect of the occurrence of disasters on the queueing behavior. Disasters occur independently from
time slot to time slot according to a Bernoulli process and result in the simultaneous removal of all
customers from the queueing system. General probability distributions are allowed for both the
number of customer arrivals during a slot and the length of the service time of a customer (expressed
in slots). Using a two-dimensional Markovian state description of the system, we obtain expressions
for the probability, generating functions, the mean values, variances and tail probabilities of both
the system content and the sojourn time of an arbitrary customer under a first-come-first-served
policy. The customer loss probability due to a disaster occurrence is derived as well. Some numerical
illustrations are given.

Keywords: queueing theory; discrete-time model; disasters; general service times

1. Introduction

Queueing models with negative arrivals have been studied extensively over the
last decades, owing to their applicability in the performance analysis of a wide range of
systems, such as computers, telecommunication systems and manufacturing systems. The
basic version of such models, known as the G-queue, is due to Gelenbe [1] and considers
the notion of a negative customer that, upon arrival, removes one ordinary (or positive)
customer from the queueing system according to some killing strategy, such as the removal
of the customer in service or the removal of the customer that arrived most recently, if any.
Another type of negative arrival, introduced by Towsley and Tripathi [2], is disasters that
upon occurrence result in the simultaneous removal of all customers from the queueing
system. As such, queueing models with disasters can be used to evaluate the impact of
a machine breakdown in a production system, a system reset in a service facility or a
virus infection affecting a computer system. Queues with disasters are also referred to
in the literature as queues with mass exodus, catastrophes, queue flushing or stochastic
clearing [3].

In this paper, our focus is on queueing models with disasters in the discrete-time
domain, which have so far been analyzed to a lesser extent than their continuous-time
counterparts. The first study [3] on discrete-time queues with disasters considered the
Geo/Geo/1 queueing model with a Bernoulli distribution of the number of customer
arrivals per slot and geometric service times under the impact of Bernoulli disasters. A
similar disaster model was used in [4] to model the behavior of an email contact center. A
transient analysis of the system content in the Geo/Geo/1 disaster model was performed
in [5]. The extension to a discrete-time Geo/G/1 disaster model with Bernoulli arrivals and
general independent service times was considered in [6] (system content) and [7,8] (sojourn
time). The Geo/G/1 disaster model was also analyzed in [9] under an N-policy operation
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and in [10–12] under repair times after a disaster. The queue length and sojourn time in a
G/Geo/1 disaster queue with general independent interarrival times between customers
and, at most, 1 customer arrival per slot were investigated in [13], while disaster queues
with bursty Bernoulli arrivals and geometric service times were considered in [14,15].

Our current work further extends the existing results in the literature to a discrete-time
disaster model, where general probability distributions are allowed for both the number
of customer arrivals during a slot and the length of a customer service time. We present
a full queueing analysis of this queueing model with disasters and derive expressions
for the probability generating functions as well as the mean values, variances and tail
probabilities of both the system content and the sojourn time under a first-come-first-
served (FCFS) policy.

For related work on discrete-time G-queues with negative customers, the reader is
referred to [3,7,14,16–23]. For work on continuous-time queueing models with negative
customers and/or disasters, we refer to the bibliography in [24,25] and the more recent
papers [26–36]. Additionally, somewhat related to this paper in the sense that customers
may leave the system before their service is completed are queueing models with customer
impatience or deadlines; we refer to [37] and the references therein for an overview of
such models.

The paper is organized as follows. The specific assumptions of the considered queue-
ing model are detailed in Section 2. In Section 3, system equations are established that
describe the evolution of the state of the queueing system from slot to slot. Based on
these system equations, an expression for the steady-state joint probability generating
function (pgf) of the system state variables is obtained in Section 4 in terms of the unknown
probability of having an empty system. A technique to calculate this remaining unknown
is presented in Section 5, together with the analysis of the main characteristics of the
system content. Section 6 then derives the pgf of the unfinished work in the system, as
an intermediate step for the analysis of the characteristics of the sojourn time in Section 7.
The customer loss probability due to a disaster occurrence is derived in Section 8. Some
numerical examples to illustrate the analysis are given in Section 9, before the paper is
concluded in Section 10.

2. Queueing Model

We consider a discrete-time queueing system with one server and an infinite waiting
room for customers. The time axis is divided into fixed-length slots. New customers
arrive at the system in a stochastic way, according to a general independent arrival process,
i.e., the numbers of customers arriving during the consecutive slots are assumed to be
independent and identically distributed (i.i.d.) discrete random variables. Their common
probability mass function (pmf) is indicated as

a(n) = Prob[n customer arrivals during a slot] , n ≥ 0 ,

with corresponding pgf

A(z) =
∞

∑
n=0

a(n)zn .

The mean arrival rate, i.e., the mean number of customer arrivals during a slot, is
given by

λ = A′(1) .

The service of a customer is assumed to require a positive integer number of slots
and can start or end at slot boundaries only. More specifically, the service times of the
customers are assumed to constitute a sequence of i.i.d. positive discrete random variables
with common pmf

s(n) = Prob[service of a customer takes n slots] , n ≥ 1 ,
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corresponding pgf

S(z) =
∞

∑
n=1

s(n)zn

and mean service time
S′(1) =

1
µ

,

where µ is the so-called mean service rate, i.e., the mean number of customers that can
be served per slot. The service times are also assumed to be independent of the random
variables used in the description of the arrival process.

The queueing system is subject to so-called independent Bernoulli disasters, i.e.,
during any slot, either a disaster occurs with probability σ (σ > 0) or no disaster occurs
with probability 1− σ, independently from slot to slot. When such a disaster occurs during
a slot, all customers in the system as well as all new arrivals during the slot get lost. In
the sequel, we specifically consider that in case of a disaster, all customers are removed
from the system at the end of the disaster slot, thus leaving the system empty at the end of
that slot.

3. System Equations

Let the random variable uk denote the system content, i.e., the total number of cus-
tomers in the system, at the beginning of slot k. Let ak be the number of customer arrivals
during slot k, and let dk indicate the number of disasters occurring during slot k. Clearly, to
describe the evolution of the system content from slot k to slot k + 1, some information is
also needed about the still remaining part of the service time of the customer in service,
if any, at the beginning of slot k. We therefore define the random variable hk as follows:
hk denotes the remaining number of slots needed to complete the service of the customer
currently in service at the beginning of slot k, if uk ≥ 1, and hk = 0 if uk = 0. Note that this
definition implies that hk > 0 if and only if uk > 0. Similarly, hk = 0 if and only if uk = 0.
Finally, we let s∗ indicate the service time of the next customer to receive service at the
beginning of slot k.

With these definitions, the behavior of the queueing system is then characterized by
the following system equations:

(a) If dk = 1:
hk+1 = uk+1 = 0 . (1)

(b) If dk = 0 and hk = 0:

uk+1 = ak , (2)

hk+1 =

{
0 , if ak = 0 ,
s∗ , if ak > 0 .

(3)

(c) If dk = 0 and hk = 1:

uk+1 = uk − 1 + ak , (4)

hk+1 =

{
0 , if uk = 1 and ak = 0 ,
s∗ , if uk − 1 + ak > 0 .

(5)

(d) If dk = 0 and hk > 1:

uk+1 = uk + ak , (6)

hk+1 = hk − 1 . (7)

Equations (1)–(7) are based on the following observations. If there is a disaster in slot
k, all customers (including new arrivals during slot k) are removed from the system, so we
have an empty system at the beginning of slot k + 1. In case no disaster occurs during slot
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k and the system is empty at the beginning of slot k, then at the beginning of slot k + 1, the
system only contains the new arrivals during slot k, and, if any, one of these new arrivals
are taken into service. If hk = 1 and there is no disaster in slot k, the customer in service
leaves the system at the end of slot k; moreover, the service of a new customer starts at the
beginning of slot k + 1 unless the system has become empty. Finally, if hk > 1 and there is
no disaster in slot k, no customer leaves the system at the end of slot k, and the remaining
service time of the customer in service decreases by one slot.

It is obvious from the system equations that knowledge of the values of hk and uk
suffices to determine the joint probability distribution of hk+1 and uk+1. The sequence of
pairs {(hk, uk)}, therefore, forms a two-dimensional first-order Markov chain and the state
of the queueing system in slot k is fully characterized by the pair (hk, uk).

4. Queueing Analysis

By means of the system Equations (1)–(7), we can now analyze the queueing behavior.
To do so, we first define Pk(x, z) as the joint pgf of the state vector (hk, uk) at the beginning
of slot k:

Pk(x, z) , E
[

xhk zuk
]
=

∞

∑
i=0

∞

∑
n=0

Prob[hk = i, uk = n]xizn ,

where the operator E[. . .] indicates the expected value of the random expression between
the square brackets.

The next step in our analysis is then to derive a relationship between the pgfs Pk(x, z)
and Pk+1(x, z) of the state vectors at the beginning of two consecutive slots. Using
Equations (1)–(7), we write the function Pk+1(x, z) as

Pk+1(x, z) , E
[

xhk+1 zuk+1
]

= Prob[dk = 1]E
[

x0z0|dk = 1
]

+ Prob[hk = 0, ak = 0, dk = 0]E
[

x0z0|hk = 0, ak = 0, dk = 0
]

+ Prob[hk = 0, ak > 0, dk = 0]E
[

xs∗zak |hk = 0, ak > 0, dk = 0
]

+ Prob[hk = 1, uk = 1, ak = 0, dk = 0] (8)

· E
[

x0z0|hk = 1, uk = 1, ak = 0, dk = 0
]

+ Prob[hk = 1, uk − 1 + ak > 0, dk = 0]

· E
[

xs∗zuk−1+ak |hk = 1, uk − 1 + ak > 0, dk = 0
]

+ Prob[hk > 1, dk = 0]E
[

xhk−1zuk+ak |hk > 1, dk = 0
]

.

Note that the system state variables hk and uk are statistically independent of the
variables ak, dk and s∗ due to the uncorrelated nature of both the customer arrival process
and the occurrence of disasters from slot to slot and the i.i.d. nature of the service times of
the customers. This allows us to further rewrite Pk+1(x, z) as follows:

Pk+1(x, z) = Prob[dk = 1] + Prob[dk = 0]
{

Prob[hk = 0]Prob[ak = 0]

+ Prob[hk = 0]Prob[ak > 0]S(x)E[zak |ak > 0]

+ Prob[hk = 1, uk = 1]Prob[ak = 0] (9)

+ Prob[hk = 1, uk − 1 + ak > 0]S(x)E
[
zuk−1+ak |hk = 1, uk − 1 + ak > 0

]
+ Prob[hk > 1]

1
x

A(z)E
[

xhk zuk |hk > 1
]}

.
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Using the property that Prob[hk = 0] = Pk(0, 0) and the law of total expectation, we
then obtain

Pk+1(x, z) = σ + (1− σ)
{

Pk(0, 0)A(0) + Pk(0, 0)S(x)[A(z)− A(0)]

+ Prob[hk = 1, uk = 1]A(0)

+ S(x)
{

Prob[hk = 1]E
[
zuk−1+ak |hk = 1

]
− Prob[hk = 1, uk = 1]Prob[ak = 0]E

[
zuk−1+ak |hk = 1, uk = 1, ak = 0

]}
(10)

+
1
x

A(z)
{

Pk(x, z)− Prob[hk = 1]E
[

xhk zuk |hk = 1
]

− Prob[hk = 0]E
[

xhk zuk |hk = 0
]}}

.

Let us now define the function Rk(z) as

Rk(z) , Prob[hk = 1]E
[
zuk−1|hk = 1

]
=

∞

∑
n=1

Prob[hk = 1, uk = n]zn−1 , (11)

such that Rk(0) = Prob[hk = 1, uk = 1]. Then we finally find the following relationship
between Pk(x, z) and Pk+1(x, z):

Pk+1(x, z) = σ + (1− σ)
{

Pk(0, 0)A(0)[1− S(x)] + Pk(0, 0)S(x)A(z)

+ Rk(0)A(0) + S(x)A(z)Rk(z)− S(x)A(0)Rk(0)

+
1
x

A(z)
{

Pk(x, z)− xzRk(z)− Pk(0, 0)
}}

. (12)

Since we are interested in the steady-state behavior of the queueing system, we let
the time index k go to ∞. In steady state (for k→ ∞), the pgfs Pk(x, z) and Pk+1(x, z) both
converge to a common limiting function

P(x, z) , lim
k→∞

Pk(x, z) . (13)

Note that due to the possible occurrence of disasters (σ > 0), such a steady state
will always exist. Equation (12) then leads to a linear equation for P(x, z) with the
following solution:

P(x, z) =
1

x− (1− σ)A(z)

{
σx + A(0)x(1− σ)[1− S(x)][P(0, 0) + R(0)]

+ P(0, 0)A(z)(1− σ)[xS(x)− 1] + A(z)x(1− σ)R(z)[S(x)− z]
}

, (14)

where
R(z) , lim

k→∞
Rk(z) .

It now remains to determine the unknown function R(z) and the two unknown
probabilities R(0) and P(0, 0). This can be done as follows. First note that, due to the fact
that hk = 0 if and only if uk = 0, the following property holds:

P(x, 0) = P(0, 0) , for all x .

In particular, this means that P(1, 0) as obtained from (14) should equal P(0, 0), which
leads to the following relationship between P(0, 0) and R(0):

P(0, 0) = σ + A(0)(1− σ)[P(0, 0) + R(0)] . (15)
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Next, we notice that the pgf P(x, z) must be bounded for all values of its arguments x
and z such that |x| ≤ 1 and |z| ≤ 1. In particular, this should be true for x = (1− σ)A(z)
and |z| ≤ 1, since (1− σ)|A(z)| ≤ 1 for all such z, as A(z) is a pgf. If we now choose
x = (1− σ)A(z) in Equation (14), where |z| ≤ 1, it is clear that the denominator of P(x, z)
vanishes. Of course, the numerator of P(x, z) in (14) must then also be equal to zero for
x = (1− σ)A(z) with |z| ≤ 1. This requirement together with the relation (15) then leads
to the following equation for R(z):

(1− σ)A(z)R(z) = S((1− σ)A(z))
P(0, 0)[(1− σ)A(z)− 1] + σ

z− S((1− σ)A(z))
. (16)

From (14) together with Equations (15) and (16), an expression for P(x, z) can then be
derived in terms of the single unknown probability P(0, 0):

P(x, z) =
1

x− (1− σ)A(z)

{
σx + x[1− S(x)][P(0, 0)− σ]

+ P(0, 0)A(z)(1− σ)[xS(x)− 1]

+ xS((1− σ)A(z))
P(0, 0)[(1− σ)A(z)− 1] + σ

z− S((1− σ)A(z))
[S(x)− z]

}
. (17)

The classical approach to determine the final remaining unknown P(0, 0) would now
be to express the normalization condition for the joint distribution of the state vector.
However, in our case it turns out that P(1, 1) = 1, irrespective of the value of P(0, 0). So, a
different approach is needed to obtain P(0, 0), which is presented in the next section. Once
P(0, 0) is determined and, hence, the joint probability generating function P(x, z) is fully
known, all main performance measures of the queueing system (namely the moments and
tail probabilities of the system content and the sojourn time as well as the customer loss
probability) can be derived directly from the function P(x, z), i.e., without any need for
inversion of this joint pgf or calculation of joint probabilities. The methodology is explained
in the next sections.

5. System Content

The pgf U(z) of the system content u observed at the beginning of a random slot in the
steady state can be obtained from P(x, z) by simply putting x = 1: U(z) = P(1, z). After
rearranging some terms, we obtain

U(z) =
S((1− σ)A(z))[1− (1− σ)A(z)](z− 1)P(0, 0) + σz[1− S((1− σ)A(z))]

[1− (1− σ)A(z)][z− S((1− σ)A(z))]
. (18)

We can now find the unknown P(0, 0) = U(0) by noting that the function U(z), as a
pgf, must be bounded for all z with |z| ≤ 1. Using Rouché’s theorem, it can be shown (see
Appendix A, Property A1) that the factor z− S((1− σ)A(z)) in the denominator of U(z)
in (18) has exactly one zero inside the unit circle in the complex z-plane. Let us denote this
zero by z∗. It satisfies the following equation:

z∗ − S((1− σ)A(z∗)) = 0 , with |z∗| < 1 . (19)

Clearly, the zero z∗ of the denominator must then also be a zero of the numerator of
U(z). This property then yields the following linear equation for P(0, 0):

z∗[1− (1− σ)A(z∗)](z∗ − 1)P(0, 0) + σz∗(1− z∗) = 0 , (20)
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where we also use Equation (19). Since z∗ 6= 1 and under the assumption that z∗ 6= 0, the
probability P(0, 0) then directly follows from (20) as

P(0, 0) =
σ

1− (1− σ)A(z∗)
. (21)

It is worth noting here that in view of (19), z∗ = 0 is only possible in the case that
A(0) = 0. In such a case, new arrivals occur in each slot and the system can only be empty
at the beginning of a slot if there is a disaster during the previous slot, so P(0, 0) = σ. The
latter is, in fact, in full agreement with the result (21), so the expression (21) for P(0, 0)
turns out to be generally valid. The value of z∗ in this expression for P(0, 0) needs to be
determined numerically from (19), e.g., by means of Newton–Raphson’s method.

Based on the pgf U(z), the moments and tail probabilities of the system content can
now be derived, as explained below.

5.1. Mean and Variance of the System Content

In general, any moment of the system-content distribution can be obtained by express-
ing the desired moment of u as a function of the consecutive derivatives of the pgf U(z)
with respect to z for z = 1. Here, we give the results obtained from Equation (18) for the
mean value E[u] and the variance var[u] of the system content:

E[u] = U′(1) =
1− σ

σ
A′(1) +

S(1− σ)

1− S(1− σ)
[P(0, 0)− 1] (22)

and

var[u] = U′′(1) + U′(1)−U′(1)2

=
1− σ

σ

{
A′(1) + A′′(1) + 2(A′(1))2 1− σ

σ

}
− 2(1− σ)A′(1)S(1− σ)

σ(1− S(1− σ))

+
P(0, 0)− 1

[1− S(1− σ)]2

{
2(1− σ)A′(1)S′(1− σ)− S(1− σ)[1 + S(1− σ)]

}
(23)

−
{

1− σ

σ
A′(1) +

S(1− σ)

1− S(1− σ)
[P(0, 0)− 1]

}2

.

5.2. Tail Distribution of the System Content

Another important characteristic is the tail distribution of the system content. We use
here an approximation technique as described, for example, in [38]. Specifically, from the
inversion formula for z-transforms, it follows that the pmf of the system content can be
expressed as a weighted sum of negative nth powers of the poles of the pgf U(z). Since all
these poles have a modulus larger than 1, it is clear that for n sufficiently large, Prob[u = n]
is dominated by the contribution of the pole having the smallest modulus. It can be argued
(see, for example, [38]) that this dominant pole must be real and positive to ensure that the
tail probabilities are non-negative anywhere. Moreover, it can be shown (see Appendix A,
Property A2) that the dominant pole of U(z) has multiplicity 1. As such, Prob[u = n] can
be approximated as

Prob[u = n] ≈ − bu

zu
(zu)

−n , (24)

for large n, where zu is the dominant pole of U(z) and bu is the residue of U(z) in the point
z = zu. From the expression (18) for U(z), it follows (see Appendix A, Property A2) that zu
is the unique real root larger than 1 of the equation

z− S((1− σ)A(z)) = 0 . (25)
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Note that zu and z∗ are roots of the same equation; see also (19). The value of zu can
be calculated numerically from (25) via the Newton–Raphson procedure. The residue bu
can be calculated as

bu = lim
z→zu

(z− zu)U(z)

=
zu(zu − 1)

{
[1− (1− σ)A(zu)]P(0, 0)− σ

}
[1− (1− σ)A(zu)][1− S′((1− σ)A(zu))(1− σ)A′(zu)]

. (26)

6. Unfinished Work

As an intermediate step in the study of the sojourn time of an arbitrary customer, we
determine the pgf W(z) of the unfinished work in the queueing system at the beginning of
a slot in the steady state. Let the random variable wk indicate the unfinished work at the
beginning of slot k, i.e., the remaining number of slots required to complete the service of
all customers present in the system at the beginning of slot k. The unfinished work wk can
then be expressed in terms of the system state variables hk and uk as follows:

wk =


0 , if hk = 0 ,

hk +
uk−1

∑
i=1

si , if hk ≥ 1 ,
(27)

where the variables si are the full service times of the uk − 1 customers still awaiting
service at the beginning of slot k. Next, from (27), we derive an expression for the steady-
state pgf W(z) of the unfinished work in terms of the steady-state joint pgf of the system
state variables:

W(z) = lim
k→∞

E[zwk ]

= lim
k→∞

{
Prob[hk = 0] + Prob[hk ≥ 1]E

z
hk+

uk−1
∑

i=1
si
| hk ≥ 1

}

= lim
k→∞

{
Pk(0, 0) + Prob[hk ≥ 1]E

[
zhk S(z)uk−1 | hk ≥ 1

]}
(28)

= lim
k→∞

{
Pk(0, 0) +

1
S(z)

E
[
zhk S(z)uk

]
− 1

S(z)
Prob[hk = 0]E

[
zhk S(z)uk | hk = 0

]}
= P(0, 0) +

P(z, S(z))− P(0, 0)
S(z)

.

Finally, using (17) and after some further mathematical manipulations, we obtain the
following result:

W(z) =
σz + P(0, 0)(1− σ)A(S(z))(z− 1)

z− (1− σ)A(S(z))
, (29)

where P(0, 0) is given by (21). This result will prove useful to derive the pgf of the customer
sojourn time in the next section.

7. Sojourn Time

We define the sojourn time of a customer as the total (integer) number of slots between
the end of the arrival slot of the customer and the departure instant of the customer from
the system. In this section, we analyze the sojourn time of an arbitrary customer under the
assumption of a FCFS queueing discipline.

Let us consider an arbitrary customer, say customer C, that arrives in the system
during some slot in the steady state, referred to as slot I. Let t with pgf T(z) denote the
sojourn time of C. To derive T(z), we use a two-step approach. Firstly, we focus on the
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number of slots tmax that C would spend in the system until its service is completed in case
no disasters occur while C is in the system. Note that, due to the occurrence of disasters, C
can actually be removed from the system before its service is completed, so tmax is an upper
bound on the actual sojourn time t of C. If we define w̃ as the unfinished work observed
at the beginning of slot I and f as the number of customers arriving during slot I before
customer C, then the maximum sojourn time tmax is expressed as follows:

tmax = (w̃− 1)+ +
f+1

∑
i=1

s̃i , (30)

where (. . .)+ denotes max(0, . . .) and the variables s̃i are the service times of C and the
customers arriving during slot I and to be served before C. The pgf F(z) of f is known to
be given by (see, for example, [39])

F(z) =
A(z)− 1

A′(1)(z− 1)
. (31)

Moreover, due to the uncorrelated nature of the arrival process from slot to slot, w̃
has the same pgf W(z) as the unfinished work at the beginning of an arbitrary slot and the
variables w̃ and f are statistically independent. The variables s̃i are i.i.d. with common pgf
S(z). Translating (30) to pgfs, we then find

Tmax(z) =
W(z) + (z− 1)W(0)

z
S(z)F(S(z)) , (32)

or, using Equations (29) and (31),

Tmax(z) =
[σ + (z− 1)P(0, 0)]S(z)[A(S(z))− 1]
[z− (1− σ)A(S(z))]A′(1)[S(z)− 1]

. (33)

Secondly, we note that for a given value of tmax, the actual sojourn time t of C cannot
be larger than tmax, and its specific value depends on the occurrence process of disasters.
In particular, in view of the independent Bernoulli nature of the disaster process, it can be
shown that the conditional pmf of t, given that tmax = i (i ≥ 1), equals

Prob[t = n|tmax = i] =


(1− σ)nσ , 0 ≤ n < i ,
(1− σ)i , n = i ,
0 , n > i .

(34)

Indeed, the sojourn time t is zero if a disaster occurs during slot I. For tmax = i, the
variable t takes a value n (0 < n < i) if there are no disasters in slot I nor in the n− 1 slots
following slot I, and a disaster occurs in the nth slot after slot I. Finally, as long as there are
no disasters in slot I or in the i− 1 slots after slot I, the customer spends the maximum
number of i slots in the system. Using the above conditional pmf (34) and the law of total
expectation, the pgf T(z) of t is then found as

T(z) , E
[
zt] = ∞

∑
i=1

Prob[tmax = i]E
[
zt|tmax = i

]
=

∞

∑
i=1

Prob[tmax = i]

{
i−1

∑
n=0

(1− σ)nσzn + (1− σ)izi

}

=
∞

∑
i=1

Prob[tmax = i]

{
σ

1− [(1− σ)z]i

1− (1− σ)z
+ [(1− σ)z]i

}

=
σ + (1− σ)(1− z) Tmax((1− σ)z)

1− (1− σ)z
. (35)
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The combination of Equations (33) and (35) finally leads to the following expression
for T(z):

T(z) =
1

[1− (1− σ)z]A′(1)[S((1− σ)z)− 1][z− A(S((1− σ)z))]

·
{

σA′(1)[S((1− σ)z)− 1][z− A(S((1− σ)z))]

+ (1− z)[σ + ((1− σ)z− 1)P(0, 0)]S((1− σ)z)[A(S((1− σ)z))− 1]
}

. (36)

7.1. Mean and Variance of the Sojourn Time

Based on the moment-generating property of pgfs, the following expressions for the
mean value and the variance of the sojourn time are obtained from the pgf T(z):

E[t] =
1− σ

σ
+

S(1− σ)

A′(1)[1− S(1− σ)]
[P(0, 0)− 1] (37)

and

var[t] =
1− σ

σ2 +
2(1− σ)S(1− σ)

σA′(1)[S(1− σ)− 1]

+
P(0, 0)− 1

A′(1)[S(1− σ)− 1]

{
2(1− σ)S(1− σ)

σ
+

2(1− σ)S′(1− σ)

S(1− σ)− 1
(38)

+
2S(1− σ)

1− A(S(1− σ))
− S(1− σ)

}
−
{
[P(0, 0)− 1]S(1− σ)

A′(1)[S(1− σ)− 1]

}2

.

It was also verified that the above result for E[t] is in full agreement with Little’s law:
E[u] = A′(1)E[t].

7.2. Tail Distribution of the Sojourn Time

Similar to Section 5.2, we use a dominant-pole approximation for the tail distribution
of the sojourn time. The pmf Prob[t = n] is approximated by the following geometric form:

Prob[t = n] ≈ − bt

zt
(zt)

−n , (39)

for n that is sufficiently large. It can be proved (see Appendix A, Property A3) that the
dominant pole zt of T(z) is the unique real root larger than 1

1−σ with multiplicity 1 of the
equation

z− A(S((1− σ)z)) = 0 . (40)

The residue bt then follows from (36) as

bt = lim
z→zt

(z− zt)T(z)

=
[σ + ((1− σ)zt − 1)P(0, 0)]S((1− σ)zt)(zt − 1)2

A′(1)[1− (1− σ)zt][1− S((1− σ)zt)][1− A′(S((1− σ)zt))S′((1− σ)zt)(1− σ)]
. (41)
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8. Loss Probability

Due to the occurrence of disasters, some customers are removed from the system
and get lost without receiving complete service. Let the random variable `k denote the
number of customers that get lost due to a disaster occurring during slot k. Then `k can be
expressed as follows:

`k =

{
ak + uk , if dk = 1 ,
0 , if dk = 0 .

(42)

The steady-state pgf L(z) of the number of lost customers during a slot immediately
follows from (42) as

L(z) = 1− σ + σA(z)U(z) . (43)

Finally, the customer loss probability CLP, i.e., the fraction of the arriving customers
that get lost due to a disaster, is then obtained from (43) as

CLP =
L′(1)
A′(1)

= 1 +
σS(1− σ)[P(0, 0)− 1]
[1− S(1− σ)]A′(1)

. (44)

9. Numerical Examples

In order to illustrate the results obtained above, let us consider a number of numerical
examples. In a first set of examples, in Figures 1–4, we consider a Poisson distribution for
the number of customer arrivals during a slot, i.e.,

A(z) = e λ (z−1) ,

and a (shifted) geometric distribution for the service times, i.e.,

S(z) =
µ z

1− (1− µ) z
,

with µ = 0.75 (S′(1) = 1
µ = 1.33). In Figure 1, the mean system content E[u] is plotted

versus the arrival rate λ, for different values of the disaster probability σ. Similarly, Figure 2
shows the variance of the system content var[u], the mean sojourn time E[t] is plotted in
Figure 3 and the customer loss probability is shown in Figure 4, all versus λ for different
values of σ. We observe that for an increasing disaster probability, E[u], var[u] and E[t]
are decreasing, while CLP is increasing. This is clearly as intuitively expected. Indeed,
the more often the system gets emptied due to a disaster occurrence (higher σ), the more
customers are expected to get lost and the lower and less variable the system content and
sojourn time thus become.

Next, in Figure 5, a number of different distributions are considered for the customer
service times, all with the same mean service time S′(1) = 1

µ = 5: a (shifted) geometric
distribution, a (shifted) Poisson distribution with

S(z) = z e (
1
µ−1) (z−1)

and constant service times with
S(z) = z

1
µ .
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Figure 1. Mean system content E[u] versus λ, for Poisson arrivals, geometric service times with
µ = 0.75 and different values of σ.
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Figure 2. Variance of the system content var[u] versus λ, for Poisson arrivals, geometric service times
with µ = 0.75 and different values of σ.



Mathematics 2021, 9, 3283 13 of 22

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

λ

E
[t
]

σ = 0.01
σ = 0.04
σ = 0.1
σ = 0.2
σ = 0.4

Figure 3. Mean sojourn time E[t] versus λ, for Poisson arrivals, geometric service times with µ = 0.75
and different values of σ.
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Figure 4. Customer loss probability CLP versus λ for Poisson arrivals, geometric service times with
µ = 0.75 and different values of σ.
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Figure 5 shows the mean system content versus λ, for Poisson arrivals and a disaster
probability σ = 0.4. For S′(1) = 5, the variance of the service times increases from 0 in
the case of constant service times, to 1

µ − 1 = 4 in the case of Poisson service times, and

finally to 1−µ
µ2 = 20 in the case of geometric service times. We observe that E[u] decreases

as the variance of the service times increases. Note that this is different from what is seen
in classical queueing systems without disasters, where the mean system content typically
increases with higher irregularity in the service times. The behavior of Figure 5 then follows
from the fact that in the case of disaster occurrence, typically more customers are removed
from the system when the service times are more variable, resulting in a lower system
content on average.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

λ

E
[u
]

geometric
Poisson
constant

Figure 5. Mean system content E[u] versus λ, for Poisson arrivals, σ = 0.4 and various distributions
for the service times with S′(1) = 5.

In Figures 6–8, we consider Poisson arrivals and a (shifted) Poisson distribution for
the service times. In Figure 6, the mean system content is shown versus the mean service
time S′(1) for λ = 0.4 and various values of σ. Similarly, Figure 7 shows the variance var[u]
of the system content, and Figure 8 shows the customer loss probability. From these figures,
it can be seen that for a given value of λ, E[u], var[u] and CLP all increase with increasing
values of S′(1), which could be expected due to the increasing system load λS′(1). For
increasing values of σ, we observe again that E[u] and var[u] are decreasing, while the loss
probability increases, as is intuitively clear.
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Figure 6. Mean system content E[u] versus S′(1) for Poisson service times, Poisson arrivals with
λ = 0.4 and different values of σ.

2 4 6 8 10
0

20

40

60

S′(1)

va
r[
u
]

σ = 0.01
σ = 0.04
σ = 0.1
σ = 0.2
σ = 0.4

Figure 7. Variance of the system content var[u] versus S′(1) for Poisson service times, Poisson arrivals
with λ = 0.4 and different values of σ.
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Figure 8. Customer loss probability CLP versus S′(1) for Poisson service times, Poisson arrivals with
λ = 0.4 and different values of σ.

In Figures 9–11, (shifted) geometric service times are considered with µ = 0.75. A
number of different arrival distributions are considered, all with the same mean arrival
rate λ: Poisson arrivals, Bernoulli arrivals, i.e.,

A(z) = 1− λ + λ z ,

geometric arrivals, i.e.,

A(z) =
1

1 + λ− λ z
,

and binomial arrivals, i.e.,

A(z) =
(

1− λ

N
+

λ

N
z
)N

,

where N = 2. Figures 9 and 10 show the mean system content E[u] and the variance of the
system content var[u] versus λ, for a fixed disaster probability σ = 0.1. We observe that
both E[u] and var[u] decrease in the order of geometric, Poisson, binomial and Bernoulli
arrivals. This means that for given values of λ and µ, E[u] and var[u] decrease as the
variance of the number of arrivals per slot decreases.

In Figure 11, the variance of the system content is plotted versus σ for the same four
arrival distributions with a fixed value of λ = 0.9. For all arrival distributions, the variance
var[u] decreases while the value of σ is increasing, in accordance with the observations of
Figure 2.

In Figure 12, the tail distribution of the system content is plotted on a logarithmic
scale for (shifted) Poisson service times with µ = 0.75, Poisson arrivals with arrival rate
λ = 1 and different values of the disaster probability σ. For the same setting, Figure 13
shows the tail distribution of the sojourn time. We observe that, similar to the moments
of the system content and the sojourn time, also the corresponding tail probabilities are
decreasing functions of the disaster probability.
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Figure 9. Mean system content E[u] versus λ for geometric service times with µ = 0.75, σ = 0.1 and
various distributions for the number of arrivals per slot.
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Figure 10. Variance of the system content var[u] versus λ for geometric service times with µ = 0.75,
σ = 0.1 and various distributions for the number of arrivals per slot.
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Figure 11. Variance of the system content var[u] versus σ, for geometric service times with µ = 0.75,
λ = 0.9 and various distributions for the number of arrivals per slot.
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Figure 12. Tail distribution of the system content Prob[u = n] versus n for Poisson service times with
µ = 0.75, Poisson arrivals with λ = 1 and different values of σ.
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Figure 13. Tail distribution of the sojourn time Prob[t = n] versus n for Poisson service times with
µ = 0.75, Poisson arrivals with λ = 1 and different values of σ.

Finally, Table 1 presents some numerical results on the tail probabilities, the mean
value and the variance of both the system content u and the sojourn time t for two different
values of the disaster probability σ. We consider Poisson arrivals with λ = 0.4 and Poisson
service times with µ = 0.2 (S′(1) = 1

µ = 5).

Table 1. Tail probabilities, mean and variance of the system content u and the sojourn time t for
Poisson arrivals with λ = 0.4, Poisson service times with µ = 0.2 and different values of σ.

σ = 0.05 σ = 0.2

n Prob[u = n] Prob[t = n] Prob[u = n] Prob[t = n]

10 2.5647668× 10−2 3.9904988× 10−2 1.2037267× 10−3 1.4136466× 10−2

20 3.2333712× 10−3 1.5896751× 10−2 2.5425991× 10−6 4.6894762× 10−4

30 4.0762729× 10−4 6.3327096× 10−3 5.3706629× 10−9 1.5556354× 10−5

40 5.1389091× 10−5 2.5227300× 10−3 1.1344305× 10−11 5.1604946× 10−7

50 6.4785619× 10−6 1.0049674× 10−3 2.3962267× 10−14 1.7118859× 10−8

60 8.1674464× 10−7 4.0034385× 10−4 5.0614846× 10−17 5.6788228× 10−10

70 1.0296603× 10−7 1.5948299× 10−4 1.0691236× 10−19 1.8838304× 10−11

80 1.2980806× 10−8 6.3532442× 10−5 2.2582808× 10−22 6.2492127× 10−13

90 1.6364749× 10−9 2.5309103× 10−5 4.7701050× 10−25 2.0730453× 10−14

100 2.0630845× 10−10 1.0082261× 10−5 1.0075763× 10−27 6.8768935× 10−16

E[u] = 4.663592380 E[u] = 1.292139933
var[u] = 23.95418492 var[u] = 2.933050427
E[t] = 11.65898095 E[t] = 3.230349832
var[t] = 120.6749369 var[t] = 10.28852063

10. Conclusions

In this paper, we studied the impact of disasters on the behavior of a discrete-time
single-server queueing system under general probability distributions for both the number
of customer arrivals during a slot and the length of the service time of a customer. Using a
supplementary variable technique, we derived expressions for the pgfs, moments and tail
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probabilities of the system content and the sojourn time, and an expression for the customer
loss probability due to disasters. Through numerical examples, the impact of disasters on
the system characteristics was assessed. In contrast to classical queueing systems without
disasters, we observed that for systems with disasters under a given system load, the mean
system content decreases with increasing irregularity in the service times.
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Appendix A

In this appendix, we show some properties with respect to the zeros of the denomina-
tors of the pgfs U(z) and T(z).

Property A1. The factor z− S((1− σ)A(z)) in the denominator of U(z) has exactly one zero
inside the unit circle in the complex z-plane.

Proof of Property A1. We define

f (z) , z ,

g(z) , −S((1− σ)A(z)) .

It is clear that the functions f (z) and g(z) are analytic functions of z at least inside and
on the unit circle in the complex z-plane. For |z| = 1, we also have that | f (z)| = |z| = 1
and |g(z)| = |S((1− σ)A(z))| < 1. The latter follows from |S(z)| < 1 for |z| < 1, and
|(1− σ)A(z)| < 1 for |z| = 1 and σ > 0. Thus |g(z)| < | f (z)| for all z with |z| = 1. We can
then apply Rouché’s theorem from complex analysis (see, for example, [39,40]) to conclude
that f (z) and f (z) + g(z) = z − S((1− σ)A(z)) have the same number of zeros inside
the unit circle, i.e., the denominator factor z− S((1− σ)A(z)) has exactly one zero within
{z : |z| < 1}.

Property A2. The dominant pole zu of U(z) has multiplicity 1 and is the unique real positive root
with modulus larger than 1 of the equation z− S((1− σ)A(z)) = 0.

Proof of Property A2. First, we note that any zero of the factor 1− (1− σ)A(z) in the
denominator of U(z) is also a zero of the numerator of U(z) and therefore cannot be a
pole of the pgf U(z). Since the dominant pole zu must be real and positive, we now
look at the factor m(z) , z − S((1 − σ)A(z)) in the denominator for real values of
z. Clearly, m(1) = 1− S(1− σ) > 0 for a disaster system (σ > 0). In addition, since
A(z) and S(z) are both pgfs of non-negative random variables, it is easily seen that
m′(z) = 1− S′((1− σ)A(z))(1− σ)A′(z) < 0 for sufficiently large real values of z. More-
over, m′′(z) = −S′′((1− σ)A(z))(1− σ)2 A′(z)2 − S′((1− σ)A(z))(1− σ)A′′(z) ≥ 0 for
all real z > 0. These properties imply that m(z) has exactly one positive real zero outside
the unit circle, which has multiplicity 1 and is the dominant pole zu we are looking for.
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Property A3. The dominant pole zt of T(z) has multiplicity 1 and is the unique real positive root
with modulus larger than 1

1−σ of the equation z− A(S((1− σ)z)) = 0.

Proof of Property A3. In this proof, we only consider real values of z since the dominant
pole zt must be real and positive. First, we observe that z = 1

1−σ is a zero of both the
factors 1− (1− σ)z and S((1− σ)z)− 1 in the denominator of T(z). However, it is easily
verified that both the numerator of T(z) and the first derivative of this numerator vanish
for z = 1

1−σ as well. We conclude that z = 1
1−σ is a zero of both the denominator and

the numerator of T(z) with the same multiplicity 2 and therefore cannot be a pole of
T(z). We then look at the factor r(z) , z− A(S((1− σ)z)) in the denominator of T(z).
For 1 < z ≤ 1

1−σ , we have that (1− σ)z ≤ 1, hence also S((1− σ)z) ≤ 1, and therefore
A(S((1− σ)z)) ≤ 1 < z. This means that r(z) > 0 for all real values of z with 1 < z ≤ 1

1−σ .
We also have that r′(z) < 0 for sufficiently large real values of z and r′′(z) ≥ 0 for all z > 0.
We may conclude that r(z) has exactly one positive real zero with modulus larger than 1

1−σ
and multiplicity 1; this zero of r(z) is the dominant pole zt of T(z).
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