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Abstract: The purpose of this paper is to develop a numerical scheme for the two-dimensional
fourth-order fractional subdiffusion equation with variable coefficients and delay. Using the L2 − 1σ

approximation of the time Caputo derivative, a finite difference method with second-order accuracy
in the temporal direction is achieved. The novelty of this paper is to introduce a numerical scheme
for the problem under consideration with variable coefficients, nonlinear source term, and delay
time constant. The numerical results show that the global convergence orders for spatial and time
dimensions are approximately fourth order in space and second-order in time.

Keywords: nonlinear fractional differential equation of fourth-order; L2 − 1σ formula;
two-dimensional; variable coefficients; delay

1. Introduction

The theory of fractional integrals and derivatives of arbitrary real or complex orders
dates back approximately three centuries. In recent years, researchers have shown that
differential equations with non-integer order derivatives can better model real-world
physical phenomena than integer-order derivatives. Because of their importance in science
and engineering, chemistry, physics, finance, and other fields [1], fractional differential
equations have received increasing attention in recent years. In some cases, the analytical
solution to fractional differential equations can be obtained using Laplace and Fourier
transforms, as well as the Green function [2,3]. Due to the presence of a singular kernel
in fractional derivatives, it is difficult to find an analytical solution for the majority of
fractional differential equations.

In this paper, we implement a difference analog of the Caputo fractional derivative
known as the L2 − 1σ [4] formula, which provides second-order global convergence in the
time direction. Abbaszadeh and Dehghan [5] developed an accurate and robust numerical
solution for solving neutral delay time-space distributed-order fractional damped diffusion-
wave equation based on the Galerkin meshless method. They also obtained a meshless
numerical simulation for a fractional damped diffusion-wave equation with delay [6].
Abbaszadeh et al. [7] introduced an interpolating stabilized element-free Galerkin method
for neutral delay fractional damped diffusion-wave equations. In some important appli-
cations, the fourth-order derivative term plays a crucial role. Nikan et al. [8] proposed an
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efficient numerical procedure, the local radial basis function created by the finite differ-
ence method, for computing the approximation solution of the time-fractional fourth-
order reaction-diffusion equation in terms of the Riemann–Liouville derivative. The
time-fractional derivative was estimated using the second-order accurate formulation,
while the spatial terms were discretized using the local radial basis function generated
by the finite difference method. Huang and Stynes [9] studied α-robust error analysis
of a mixed L1-finite element method for a time-fractional fourth-order diffusion equa-
tion. For a two-dimensional distributed-order time-fractional fourth-order partial dif-
ferential equation, Fakhar-Izadi [10] investigated the space-time Petrov–Galerkin spec-
tral approach. The problem is converted to a multi-term time-fractional equation by
using an appropriate Gauss-quadrature rule to discretize the distributed integral operator.
Liu et al. [11] presented and discussed a finite difference/finite element algorithm for
casting about for numerical solutions to a time-fractional fourth-order reaction–diffusion
problem with a nonlinear reaction term, which is based on a finite difference approxima-
tion in time and a finite element method in spatial direction. Moreover, many numerical
methods have been developed for solving different classes of fractional differential equa-
tions such as spectral methods [12–19], finite difference methods [20–25], finite element
methods [26,27], finite volume method [28,29], and matrix transfer technique [30,31]. The
study of delay differential equations with fractional derivatives is rapidly expanding these
days since they are frequently employed in modeling of elastic media and stress–strain be-
havior for the torsional model, control difficulties, high-speed machining communications,
and so on [1].

The multidimensional fourth order nonlinear fractional subdiffusion model with time
delay is obtained from the standard problem by replacing the first-order time derivative by
fractional derivatives in the Caputo sense. The analytical solution of this problem is only
gained for the linear case when the coefficients constants. Recently, the authors of [32–34]
constructed numerical techniques for this problem with fourth-order fractional diffusion
wave equations and some modifications have been considered in [35]. In [36], a Newton-
linearized compact ADI scheme for Riesz space fractional nonlinear reaction-diffusion
equations was constructed and analyzed. The numerical computation for a class of fourth-
order linear fractional subdiffusion equations with spatially variable coefficient under the
first Dirichlet boundary conditions were considered in [37]. Two finite difference schemes
with second-order accuracy were derived by applying L2 − 1σ formula and FL2 − 1σ

formula, respectively, to approximate the time Caputo derivative. Liu et al. [38] studied
and analyzed a Galerkin mixed finite element method combined with time second-order
discrete scheme for solving nonlinear time fractional diffusion equation with fourth-order
derivative term. Most of the numerical techniques opted in the articles are based upon L1
approximation of Caputo time derivative which gives first-order convergence for fractional
order 0 < α ≤ 1, where α is the fractional order (present in time-fractional derivative).
Recently, articles based on orthogonal spline collocation method are published [39] which
focus on weakly singular solutions and constructing a high-order numerical scheme for
fourth-order subdiffusion equations.

In the real world, parameters such as the coefficients in the problem under considera-
tion are spatially or temporally variable. Therefore, presenting a numerical scheme and
finding numerical solution becomes a tedious task. There are many difficulties to build
numerical schemes for fourth-order fractional differential equations with delay due to
non-locality of the problem, variable coefficients, nonlinearity, and error depends upon
the history of considered problem. Therefore, the main issue we address in this paper is
introducing an effective numerical approach for multi-dimensional fourth-order fractional
subdiffusion equations with delay. In the studies discussed above and mainly in literature,
there is a lack of studies available on delay differential equations.

In this paper, our target is to present high ordered difference scheme to solve the
following two-dimensional time-fractional subdiffusion equation of fourth-order with
variable coefficients and nonlinear source term having a delay constant.
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C
0 Dα

t U(x1, x2, t) + a(x1, x2)
∂4U (x1, x2, t)

∂x4
1

+ b(x1, x2)
∂4U (x1, x2, t)

∂x4
2

= F(x1, x2, t,U (x1, x2, t),U (x1, x2, t− s)),

s > 0, (x1, x2) ∈ Ω, t ∈ (0, T], (1a)

with the initial and the boundary conditions:

U (x1, x2, t) = φ(x1, x2, t), (x1, x2) ∈ Ω, t ∈ [−s, 0], (1b)

U (0, x2, t) = α1(x2, t), U (L, x2, t) = α2(x2, t), x2 ∈ [0, L2], t ∈ [0, T], (1c)

U (x1, 0, t) = β1(x1, t), U (x1, M, t) = β2(x1, t), x1 ∈ [0, L1], t ∈ [0, T], (1d)

∂2U (0, x2, t)
∂x2

1
= γ1(x2, t),

∂2U (L, x2, t)
∂x2

1
= γ2(x2, t), x2 ∈ [0, L2], t ∈ [0, T], (1e)

∂2U (x1, 0, t)
∂x2

2
= γ3(x1, t),

∂2U (x1, L, t)
∂x2

2
= γ4(x1, t), x1 ∈ [0, L1], t ∈ [0, T]. (1f)

where Ω = (0, L1)× (0, L2) and ∂Ω is its boundary. Here, C
0 Dα

t U (x1, x2, t) is the temporal
Caputo fractional operator of order α ∈ (0, 1), s > 0 is the constant delay parameter
and F(x1, x2, t,U (x1, x2, t),U (x1, x2, t − s)) is the nonlinear source function with delay.
φ(x1, x2, t), α1(x2, t), α2(x2, t), β1(x1, t), β2(x1, t), γ1(x2, t), γ2(x2, t), γ3(x1, t), and γ4(x1, t)
are all given sufficiently smooth functions. Now, we present the definitions of fractional
integral, and fractional derivatives which would be used later.

Definition 1. The Caputo fractional derivative [40] of order α ∈ [0, 1] is defined by

C
0 Dα

t U (x1, x2, t) :=

{
1

Γ(1−α)

∫ t
0 (t− ξ)−α ∂U

∂ξ (x1, x2, ξ)dξ, 0 ≤ α < 1;
Ut(x1, x2, t), α = 1.

Next, for discretization, we partition the mesh Ωhx1 hx2 t = Ωhx1
×Ωhx2

×Ωt, where
Ωhx1

= {x1,i|0 ≤ i ≤ M1}, Ωhx2
= {x2,j|0 ≤ j ≤ M2}, Ωt = {tk| − n ≤ k ≤ N}.

Introducing the positive integers M1, M2, and N, let hx = L1
M1

, hy = L2
M2

, τ = s
n (n > 0

is a positive constant) are the spatial and temporal steps respectively. Define x1,i = i hx1 ,
0 ≤ i ≤ M1, x2,j = j hx2 , 0 ≤ j ≤ M2, tk = k τ, −n ≤ k ≤ N.

1.1. The L2 − 1σ Discretization of the Time Fractional Operator

Alikhanov [4] constructed a discrete approximation for Caputo fractional derivative
which will be mentioned firstly. Next, some Lemmas important in the later context are
introduced to aid in constructing the numerical scheme for the system (1).

Definition 1 ([4]). Let σ = 1− α
2 , 0 < α < 1, the approximated formula for U (t) ∈ C3[0, T]

at the fixed point tk−1+σ, k ∈ {1, 2, . . . , N}, is called L2 − 1σ formula of second order temporal
convergence for α ∈ (0, 1), given as follows:

Let a0 = σ1−α, al = (l + σ)1−α − (l − 1 + σ)1−α, l ≥ 1,
bl =

1
2−α [(l + σ)2−α − (l − 1 + σ)2−α]− 1

2 [(l + σ)1−α + (l − 1 + σ)1−α], l ≥ 1,

For k = 0, c(k)0 = a0, and
further when k ≥ 1,

c(k)j =

{ a0 + b1, j = 0,
aj + bj+1 − bj, 1 ≤ j ≤ k− 1,

aj − bj, j = k.
(2)
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Defining

C
0 Dα

t U k−1+σ
ij =

τ1−α

Γ(2− α)

[
c(k)0 U

k −
k−1

∑
p=1

(c(k)k−p−1 − c(k)k−i)U
p − c(k)k−1U

0

]
.

Below given Lemma estimates the error of the L2 − 1σ formula.

Lemma 1 ([4]). For any α ∈ (0, 1) and u ∈ C3[0, tk+1], it holds that∣∣∣∣∣C0 Dα
t U (t)|t=tk−1+σ

− C
0 Dα

t U k−1+σ

∣∣∣∣∣ = O(τ3−α).

The next lemmas are giving some technical properties for Alikhanov formula.

Lemma 2 ([41,42]). Let function U (x) ∈ C6[xi−1, xi+1], xi+1 = xi + h, xi−1 = xi − h and
T(q) = (1− q)3[5− 3(1− q)2], then

U ′′(xi+1) + 10U ′′(xi) + U ′′(xi−1)

12
=
U (xi+1)− 2U (xi) + U (xi−1)

h2

+
h4

360

∫ 1

0
[U (6)(xi − qh) + U (6)(xi + qh)]T(q) dq. (3)

Define
νh = {U = Ui j|(i, j) ∈ Ωhx1 hx2

},

ν∗h = {U|U ∈ νh;Ui j = 0|(i, j) ∈ ∂Ω}.

For any U , V ,W ∈ νh, we introduce the following notations:

δx1Ui− 1
2 j =

1
hx

(Uij −Ui−1 j), δ2
x1
Ui j =

1
hx

(δx1Ui+ 1
2 j − δx1Ui− 1

2 j)

δx2Ui− 1
2 j =

1
hx2

(Uij −Ui j−1), δ2
x2

Ui j =
1

hx2

(δx2Ui j+ 1
2
− δx2Ui j− 1

2
)

H1Uij =
1

12
(Ui−1 j + 12Uij + Ui+1 j), (4)

H2Uij =
1

12
(Ui j−1 + 12Uij + Ui j+1), (5)

HUij = H1H2Uij. (6)
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Now, we define inner products and discrete norms useful in the analysis section of the
described numerical scheme (for any U ,V ∈ ν∗h ):

(U ,V) = hx1 hx2

M1−1

∑
i=1

M2−1

∑
j=1

Ui jVi j, ||U ||2 = (U ,U )

||U ||∞ = max
1≤i≤M1−1 ,1≤j≤M2−1

|Ui j|

(δx1U , δx1V) = hx1 hx2

M1

∑
i=1

M2−1

∑
j=1

δx1Ui− 1
2 jδx1 Vi− 1

2 j,

(δx2U , δx2V) = hx1 hx2

M1−1

∑
i=1

M2

∑
j=1

δx2Ui j− 1
2
δx2Vi j− 1

2
,

(δ2
x1
U , δ2

x1
V) = hx1 hx2

M1−1

∑
i=1

M2−1

∑
j=1

δ2
x1
Ui jδ

2
x1
Vi j,

(δ2
x2
U , δ2

x2
V) = hx1 hx2

M1−1

∑
i=1

M2−1

∑
j=1

δ2
x2
Ui jδ

2
x2
Vi j,

1.2. Numerical Scheme Construction

A numerical scheme is constructed by employing the linear operator (H) for the
spatial dimensions and the L2 − 1σ approximation of Caputo time-fractional derivative.

First, consider

V(x1, x2, t) =
∂2U (x1, x2, t)

∂x2 , W(x1, x2, t) =
∂2U (x1, x2, t)

∂x2
2

. (7)

Substituting (7) into (1a), yields

C
0 Dα

t U (x1, x2, t)+a(x1, x2)
∂2V(x1, x2, t)

∂x2
1

+ b(x1, x2)
∂2W(x1, x2, t)

∂x2
2

= F(x1, x2, t,U (x, y, t),U (x1, x2, t− s)), (8)

V(x1, x2, t) =
∂2U
∂x2

1
(x1, x2, t), (9)

W(x1, x2, t) =
∂2U
∂x2

2
(x1, x2, t). (10)

The numerical scheme for (1) is ready after that order reduction. Considering
Equations (8)–(10) at (x1,i, x2,j, tk−1+σ) yields

C
0 Dα

t U (x1,i, x2,j, tk−1+σ) + a(x1,i, x2,j)
∂2V
∂x2

1
(x1,i, x2,j, tk−1+σ)

+ b(x1,i, x2,j)
∂2W
∂x2

2
(x1,i, x2,j, tk−1+σ) = F

(
x1,i, x2,j, tk−1+σ

,U (x1,i, x2,j, tk−1+σ),U (x1,i, x2,j, tk−1+σ−n)
)

, (11)

V(x1,i, x2,j, tk−1+σ) =
∂2U
∂x2

1
(x1,i, x2,j, tk−1+σ), (12)

W(x1,i, x2,j, tk−1+σ) =
∂2U
∂x2

2
(x1,i, x2,j, tk−1+σ). (13)
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Using Lemma 1, we can write

C
0 Dα

t U (x1,i, x2,j, tk−1+σ) =
C
0 Dα

t U k−1+σ
ij + O(τ2). (14)

Using the Taylor’s expansion we can write the following equalities:

U (x1,i, x2,j, tk−1+σ) =σU (x1,i, x2,j, tk) + (1− σ)U (x1,i, x2,j, tk−1) (15)

∂2V
∂x2

1
(x1,i, x2,j, tk−1+σ) = σ

∂2V
∂x2

1
(x1,i, x2,j, tk)

+ (1− σ)
∂2V
∂x2

1
(x1,i, x2,j, tk−1) + O(τ2), (16)

∂2W
∂x2

2
(x1,i, x2,j, tk−1+σ) = σ

∂2W
∂x2

2
(x1,i, x2,j, tk)

+ (1− σ)
∂2W
∂x2

2
(x1,i, x2,j, tk−1) + O(τ2). (17)

Acting the operatorH1 on (16) gives

H1
∂2V
∂x2 (x1,i, x2,j, tk−1+σ) = σH1

∂2V
∂x2 (x1,i, x2,j, tk)

+ (1− σ)H1
∂2V
∂x2 (x1,i, x2,j, tk−1) + O(τ2),

= δ2
x1
V k−1+σ

ij + O(τ2) + O(h4
x1
). (18)

Similarly, acting the operatorH2 on (17) gives

H2
∂2W
∂y2 (x1,i, x2,j, tk−1+σ) = δ2

x2
W k−1+σ

ij + O(τ2) + O(h4
x2
). (19)

Employing Taylor’s expansion for the source term (linearization) gives

F(x1,i, x2,j, tk−1+σ, U(x1,i, x2,j, tk−1+σ),U (x1,i, x2,j, tk−1+σ−n))

=F
(

x1,i, x2,j, tk−1+σ, σ(2U k−1
ij −U k−2

ij ) + (1− σ)(2Uk−2
ij −U k−3

ij )

, σUk−n
ij + (1− σ)Uk−n−1

ij

)
+ O(τ2), (using Equation (15))

=F
(

x1,i, x2,j, tk−1+σ, 2σU k−1
ij + (2− 3σ)U k−2

ij − (1− σ)U k−3
ij

, σU k−n
ij + (1− σ)Uk−n−1

ij

)
+ O(τ2). (20)

Acting the operatorH on Equations (11)–(13) and substituting above equations gives

HC
0 Dα

t U k−1+σ
ij +H2a(x1,i, x2,j)δ

2
x1

Vk−1+σ
ij +H1b(x1,i, x2,j)δ

2
x2

Wk−1+σ
ij

= HF

(
x1,i, x2,j, tk−1+σ, 2σU k−1

ij + (2− 3σ)U k−2
ij

− (1− σ)U k−3
ij , σU k−n

ij + (1− σ)U k−n−1
ij

)
+ |Rk

ij|, (21)

HV(x1,i, x2,j, tk−1+σ) =H2δ2
x1
U k−1+σ

ij + |Sk
ij|, (22)

HW(x1,i, x2,j, tk−1+σ) =H1δ2
x2
U k−1+σ

ij + |Ck
ij|. (23)
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where |Rk
ij| = |O(τ2 + h4

x1
+ h4

x2
)|, 1 ≤ i ≤ M1 − 1, 1 ≤ j ≤ M2 − 1, 0 ≤ k ≤ N,

|Sk
ij| = |O(τ2) + O(h4

x1
)|, 1 ≤ i ≤ M1 − 1, 1 ≤ j ≤ M2 − 1, 0 ≤ k ≤ N,

|Ck
ij| = |O(τ2) + O(h4

x2
)|, 1 ≤ i ≤ M1 − 1, 1 ≤ j ≤ M2 − 1, 0 ≤ k ≤ N, and there exists

a positive constant C such that |Rk
ij|+ |Sk

ij|+ |Ck
ij| ≤ C(τ2 + h4

x1
+ h4

x2
), 1 ≤ i ≤ M1 − 1,

1 ≤ j ≤ M2 − 1, 0 ≤ k ≤ N.
Noticing the initial and boundary conditions at (x1,i, x2,j, tk)

U (x1,i, x2,j, tk) = φ(x1,i, x2,j, tk),

0 ≤ i ≤ M1, 0 ≤ j ≤ M2, −n ≤ k ≤ 0, (24)

U (0, x2,j, tk) = α1(x2,j, tk), U (L1, x2,j, tk) = α2(x2,j, t),

0 ≤ j ≤ M2, 0 ≤ k ≤ N, (25)

U (x1,i, 0, tk) = β1(x1,i, tk), U (x1,i, L2, tk) = β2(x1,i, tk),

0 ≤ i ≤ M1, 0 ≤ k ≤ N, (26)

∂2U
∂x2 (0, x2,j, tk) = γ1(x2,j, tk),

∂2U
∂x2 (L1, x2,j, tk) = γ2(x2,j, tk),

0 ≤ j ≤ M2, 0 ≤ k ≤ N, (27)

∂2U
∂x2

2
(x1,i, 0, tk) = γ3(x1,i, tk),

∂2U
∂x2

2
(x1,i, L, tk) = γ4(x1,i, tk),

0 ≤ i ≤ M1, 0 ≤ k ≤ N. (28)

Omitting the small terms in (21)–(23), we construct the numerical scheme for (1)
as follows:

HC
0 Dα

t U k−1+σ
ij +H2a(x1,i, x2,j)δ

2
x1
V k−1+σ

ij +H1b(x1,i, x2,j)δ
2
x2
W k−1+σ

ij = HFσ
i,j,

1 ≤ i ≤ M1 − 1, 1 ≤ j ≤ M2 − 1, 0 < k ≤ N, (29a)

HV(x1,i, x2,j, tk−1+σ) = H2δ2
x1
U k−1+σ

ij ,

1 ≤ i ≤ M1 − 1, 1 ≤ j ≤ M2 − 1, 0 < k ≤ N, (29b)

HW(x1,i, x2,j, tk−1+σ) = H1δ2
x2
U k−1+σ

ij ,

1 ≤ i ≤ M1 − 1, 1 ≤ j ≤ M2 − 1, 0 < k ≤ N, (29c)

U (x1,i, x2,j, tk) = φ(x1,i, x2,j, tk),

0 ≤ i ≤ M1, 0 ≤ j ≤ M2,−n ≤ k ≤ 0, (29d)

U (0, x2,j, tk) = α1(x2,j, tk), U (L1, x2,j, tk) = α2(x2, t),

0 ≤ j ≤ M2, 0 ≤ k ≤ N, (29e)

U (x1,i, 0, tk) = β1(x1,i, tk), U (x1,i, L2, tk) = β2(x1,i, tk),

0 ≤ i ≤ M1, 0 ≤ k ≤ N, (29f)

∂2U
∂x2

1
(0, x2,j, tk) = γ1(x2,j, tk),

∂2U
∂x2

1
(L1, x2,j, tk) = γ2(x2,j, tk),

0 ≤ j ≤ M2, 0 ≤ k ≤ N, (29g)

∂2U
∂x2

2
(x1,i, 0, tk) = γ3(x1,i, tk),

∂2U
∂x2

2
(x1,i, L2, tk) = γ4(x1,i, tk),

0 ≤ i ≤ M1, 0 ≤ k ≤ N, (29h)
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such that

Fσ
i,j = F

(
x1,i, x2,j, tk−1+σ, 2σU k−1

ij + (2− 3σ)U k−2
ij − (1− σ)U k−3

ij ,

σU k−n
ij + (1− σ)U k−n−1

ij

)
.

2. Numerical Simulations

Two examples are presented here to show the efficiency of numerical scheme (29)
for the problem defined in (1). Let uk = uk(hx1 , hx2 , τ) be the solution of proposed
numerical scheme.

Denote E∞(hx1 , hx2 , τ) = max−n≤k≤N ||Uk − uk||. Order(τ) = log2
( E∞(hx1 ,hx2 ,2τ)

E∞(hx1 ,hx2 ,τ)

)
,

Order(hx1) = log2
( E∞(2hx1 ,hx2 ,τ)

E∞(hx1 ,hx2 ,τ)

)
, Order(hx2) = log2

( E∞(hx1 ,2hx2 ,τ)
E∞(hx1 ,hx2 ,τ)

)
.

Example 1. Consider the following two-dimensional fourth-order subdiffusion equation:

C
0 Dα

t U (x1, x2, t)+x1x2
∂4U
∂x4

1
+ (x1 + x2)

∂4U
∂x4

2
= U 3(x1, x2, t) + U (x1, x2, t− 0.3)

+ (x2
1 + x2

2)e
−t,

U (x1, x2, t) =e−tx5
1(2− x1)

5x5
2(2− x2)

5 (x1, x2) ∈ Ω, t ∈ [−0.3, 0],

U (0, x2, t) =0, U (1, x2, t) = e−tx5
1x5

2(2− x2)
5, x2 ∈ [0, 1], t ∈ [0, 1],

U (x1, 0, t) =0, U (x1, 1, t) = e−tx5
1(2− x1)

5x5
2, x ∈ [0, 1], t ∈ [0, 1],

∂2U (0, x2, t)
∂x2

1
=0,

∂2U (1, x2, t)
∂x2

1
= −10e−tx5

2(2− x2)
5, x2 ∈ [0, 1], t ∈ [0, 1],

∂2U (x1, 0, t)
∂x2

2
=0,

∂2U (x1, 1, t)
∂x2

2
= −10e−tx5

1(2− x2)
5, x1 ∈ [0, 1], t ∈ [0, 1].

where the initial and boundary conditions are defined specially so that the exact solution of above
problem is

U (x1, x2, t) = e−tx5
1(2− x1)

5x5
2(2− x2)

5.

Problem (1) is solved using our proposed method. The numerical results are listed
in Tables 1 and 2. It can be monitored from the results that our proposed method gives
O(τ2 + h4

x1
+ h4

x2
) order of convergences. The numerical results are obtained for different

values of fractional order α ∈ (0, 1) with varying values of time and spatial step sizes.
Figure 1 gives surface plot for different values of time t = 0, 0.5, 0.75, 1. The variation in
numerical values can be observed from the varying range in U(x1, x2, t) with respect to
change in the value of time variable. The obtained convergence orders are approximately 4,
4, 2 for spatial directions and time direction, respectively, and same is validated in Stability
and Convergence section discussed above.
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Table 1. The maximum error and convergence order in time-dimension for example 1.

hx1 = hx2 α τ E∞ Order(τ) CPU(s)

0.3 1/16 2.6368 × 10−5 - 0.5698
1/32 6.8212 × 10−6 1.9507 0.8240
1/64 1.7197 × 10−6 1.9879 2.1024

0.6 1/16 3.0455 × 10−5 - 0.5695
1/50 1/32 7.7345 × 10−6 1.9773 0.8240

1/64 1.9366 × 10−6 1.9978 2.1026
0.9 1/16 1.5525 × 10−6 - 0.5692

1/32 3.9139 × 10−7 1.9879 0.8241
1/64 9.1213 × 10−8 2.1013 2.1022

Table 2. The maximum error and average convergence order in spatial-dimensions for Example 1.

τ α hx1 = hx2 E∞ Spatial-Order CPU(s)

0.2 1/15 1.0550 × 10−4 - 0.5690
1/30 7.2704 × 10−6 3.8591 0.8237
1/60 4.5902 × 10−7 3.9854 2.0191

0.5 1/15 5.5330 × 10−5 - 0.5692
1/50 1/30 3.7425 × 10−6 3.8860 0.8237

1/60 2.3451 × 10−7 3.9963 2.0189
0.7 1/15 1.5221 × 10−4 - 0.5690

1/30 9.8463 × 10−6 3.9503 0.8235
1/60 6.0793 × 10−7 4.0176 2.0193

Figure 1. The numerical solutions for Example 1 for different time values (a: t = 0, b: t = 0.5,
c: t = 0.75, d: t = 1).

We present a second problem solved with described numerical scheme. Maximum
error was being computed for varying step sizes in space and time dimensions as given in
Tables 3 and 4. The decrease in error can be observed from these tables with decrease in
step size. Moreover, we can observe that approximate convergence orders for space and
time are 4 and 2, respectively. Figure 2 depicts the numerical solution for different values of
time variable with spatial step sizes hx1 = hx2 = 1/50. Moreover, the convergence orders
for spatial and time dimensions are authenticated in Stability and convergence section
as well.
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Example 2. Consider the two dimensional fourth order subdiffusion equation in the following form:

C
0 Dα

t U (x1, x2, t)+ exp(x1 + x2)
∂4U
∂x4

1
+ (x1 − x2)

∂4U
∂x4

2
= U 2(x1, x2, t) + U (x1, x2, t− 0.5)

+
10t3.8

Γ(0.8)
(x1 + x2)

2 sin(t + 1),

U (x1, x2, t) =x4
1(2− x1)

4x4
2(2− x2)

4 sin(t + 1), (x1, x2) ∈ Ω, t ∈ [−0.5, 0],

U (0, x2, t) =0, U (2, x2, t) = 0, x2 ∈ [0, 2], t ∈ [0, 2],

U (x1, 0, t) =0, U (x1, 2, t) = 0, x1 ∈ [0, 2], t ∈ [0, 2],

∂2U (0, x2, t)
∂x2

1
=0,

∂2U(2, x2, t)
∂x2

1
= 0, x2 ∈ [0, 2], t ∈ [0, 1],

∂2U (x1, 0, t)
∂x2

2
=0,

∂2U (x1, 2, t)
∂x2

2
= 0, x1 ∈ [0, 2], t ∈ [0, 1].

The exact solution of above example is

U (x, y, t) = x4
1(2− x1)

4x4
2(2− x2)

4 sin(t + 1).

Table 3. The maximum error and average convergence order in spatial dimensions for Example 2.

τ α hx1 = hx2 E∞ Spatial-Order

0.2 1/15 4.0674 × 10−5 -
1/30 2.8291 × 10−6 3.8457
1/60 1.8400 × 10−7 3.9426

1/50 0.5 1/15 1.1170 × 10−4 -
1/30 7.7102 × 10−6 3.8567
1/60 4.9571 × 10−7 3.9592

0.7 1/15 2.8042 × 10−5 -
1/30 1.7836 × 10−6 3.9747
1/60 1.1159 × 10−7 3.9985

Table 4. The maximum error and convergence order in time-dimension for Example 2.

τ α hx1 = hx2 E∞ Order(τ)

0.3 1/15 6.4458 × 10−6 -
1/30 1.6533 × 10−6 1.9630
1/60 4.1809 × 10−7 1.9835

1/50 0.6 1/15 1.2813 × 10−5 -
1/30 3.2828 × 10−6 1.9646
1/60 8.2659 × 10−7 1.9897

0.9 1/15 1.5544 × 10−6 -
1/30 3.9067 × 10−7 1.9923
1/60 9.1095 × 10−8 2.1005
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Figure 2. The numerical solutions for Example 2 for different time values (a: t = 0, b: t = 0.5,
c: t = 0.75, d: t = 1).

2.1. A Final Example

Finally, we consider a problem whose exact solution is not known to us.

C
0 Dα

t U (x1, x2, t)+(x1 + x2
2)

∂4U
∂x4

1
+ 2 exp(x1 + x2)

∂4U
∂x4

2
= U 3(x1, x2, t) + U (x1, x2, t− 0.8)

+
(t− 0.5)2

10Γ(0.8)
exp(x1 + x2),

U (x1, x2, t) =2 exp(x1 + x2)(t3 + t)(x1 − 1)4(x2 − 1)4, (x1, x2) ∈ ∂Ω, t ∈ [−0.8, 0],

U (0, x2, t) =0, U (1, x2, t) = 0, x2 ∈ [0, 1], t ∈ [0, 1],

U (x1, 0, t) =0, U (x1, 1, t) = 0, x1 ∈ [0, 1], t ∈ [0, 1],

∂2U (0, x2, t)
∂x2

1
=0,

∂2U (1, x2, t)
∂x2

1
= 0, x2 ∈ [0, 1], t ∈ [0, 1],

∂2U (x1, 0, t)
∂x2

2
=0,

∂2U (x1, 1, t)
∂x2

2
= 0, x ∈ [0, 1], t ∈ [0, 1].

Similar to above problems, we find the numerical results using the numerical scheme
given in Equation (29). The above problem has variable coefficients and the exact solution is
not known to us; therefore, we check the accuracy of proposed numerical scheme by means
of absolute residual error function, which is a measure of how well the approximation
satisfies the original nonlinear fractional differential problem given in Example Section 2.1.
The absolute residual error is defined as

Rm(x1, x2, t) :=
∣∣∣∣C0 Dα

t Um(x1, x2, t) + (x1 + x2
2)

∂4Um

∂x4
1

+ 2 exp(x1 + x2)
∂4Um

∂x4
2
−U 3

m(x1, x2, t)

−Um(x1, x2, t− 0.8)− (t− 0.5)2

10Γ(0.8)
exp(x1 + x2)

∣∣∣∣, (x1, x2) ∈ Ω, t ∈ [0, 1).

The numerical results are shown in Figure 3 with different time variable values.
Tables 5 and 6 show the numerical results of residual error Rn, n = 6, 8, 10. From our
numerical results, we can conclude that numerical and theoretical results are in agreement.
The numerical scheme gives the global second-order time convergence and fourth-order
convergence in spatial dimensions. The accuracy of getting convergence order becomes
more pronounced when step sizes are decreased. In all the calculations MATLAB is used.



Mathematics 2021, 9, 3050 12 of 15

Table 5. The absolute residual error and average convergence order in spatial dimensions for
Example Section 2.1 with t = 0.5.

α x1 = x2 m Absolute Residual Error Spatial-Order

0.2 0.3 6 5.500 × 10−3 -
8 4.7670 × 10−4 3.5283

10 3.6402 × 10−5 3.7110
0.5 0.5 6 9.6002 × 10−2 -

8 9.0001 × 10−3 3.4151
10 7.0036 × 10−4 3.6383

0.7 0.7 6 2.8001 × 10−3 -
8 2.6252 × 10−4 3.4150

10 2.0169 × 10−5 3.7022

Table 6. The absolute residual error and average convergence order in time-dimension for
Example Section 2.1 with x1 = x2 = 0.5.

α t m Absolute Residual Error Time-Order

0.2 0.3 6 6.0999 × 10−4 -
8 2.0118 × 10−4 1.6003

10 6.0908 × 10−5 1.7238
0.5 0.5 6 7.4003 × 10−3 -

8 2.4001 × 10−3 1.6245
10 7.0036 × 10−4 1.8020

0.7 0.7 6 4.1518 × 10−4 -
8 1.3862 × 10−4 1.5826

10 4.2205 × 10−5 1.7156

Figure 3. The numerical solutions for Example Section 2.1 for different time values (a: t = 0, b: t = 0.5,
c: t = 0.75, d: t = 1).

3. Conclusions

The major contribution of this works lies in the construction of the numerical scheme
and numerical results for two-dimensional fourth-order fractional subdiffusion equation
with delay, nonlinear source term, and variable coefficients in case of smooth solutions. The
numerical scheme presented in this paper incorporates the L2 − 1σ formula for Caputo’s
time-fractional derivative. By invoking the works in [37,43] and due to the nonlocality of
time Caputo fractional derivatives which need high computational cost and storage, we
can improve our approach in the near future by presenting a high-order scheme based
on the sum of exponential functions technique to speed up the evaluation. Furthermore,
recalling the methodologies in [37,44] side by side to the numerical analysis in [35] and
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the appropriate discrete Grönwall inequality in [35,45], the unconditional convergence
and stability estimates with out any constraints on time and space steps can be deduced.
Assuming that a0 ≤ a(x1, x2) ≤ a1 and b0 ≤ b(x1, x2) ≤ b1, such that a0, b0 and a1, b1 are
positive constants, is essential to prove the stability and convergence estimates which will
be devoted to a new study in the near future. The numerical results indicate the efficiency
of the numerical scheme. We obtained the fourth-order convergence in spatial dimensions
and second-order convergence in the time dimension. Our numerical results validate the
obtained theoretical results. The proposed numerical scheme can easily be extended and
implemented for higher dimension problems.
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