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Abstract: The traditional set stability of Boolean networks (BNs) refers to whether all the states can
converge to a given state subset. Different from the existing results, the set stability investigated
in this paper is whether all states in a given initial set can converge to a given destination set. This
paper studies the set stability and set stabilization avoiding undesirable sets of BNs and Boolean
control networks (BCNs), respectively. First, by virtue of the semi-tensor product (STP) of matrices,
the dynamics of BNs avoiding a given undesirable set are established. Then, the set reachability and
set stability of BNs from the initial set to destination set avoiding an undesirable set are investigated,
respectively. Furthermore, the set stabilization of BCNs from the initial set to destination set avoiding
a given undesirable set are investigated. Finally, a design method for finding the time optimal set
stabilizer is proposed, and an example is provided to illustrate the effectiveness of the results.

Keywords: Boolean networks; largest invariant set; semi-tensor product of matrices; set stability; set
stabilization; state constraint

1. Introduction

A Boolean network (BN) was first proposed by Kauffman, which laid the founda-
tion for the study of gene regulation networks [1]. Since then, BNs have been widely
investigated by researchers from biology, physics, and many other fields [2–5].

Two basic issues, stability and stabilization have been studied extensively [6–9], where
the limit behavior of BNs is considered. For example, stable functions of BNs are studied
in [6]. The stability of equilibria states and limit cycles in sparsely connected BNs is
investigated by [7]. However, it is difficult to find all the limit cycles and fixed points for
general BNs before the emergence of semi-tensor products (STP) of matrices.

STP is a new matrix product that overcomes the constraint of dimension in traditional
matrix product [10,11]. All the limit cycles and fixed points of general BNs are revealed by
using STP [12]. In addition, controllability [13,14], observability [15,16], optimal control [17],
perturbation [18,19], and other properties [20–26] have also been investigated. It can be
seen that STP is becoming an effective tool for studying BNs.

This paper investigates the set stability and set stabilization of Boolean control net-
works (BCNs) avoiding a given undesirable set. The motivations for investigating set
stability and set stabilization come from two aspects.

(a) Practical problems: In some cases, the research interest focuses on whether a subset
of state space of an interconnected subsystem converges to or can be stabilized to another
subset, which is termed set stability from the initial set to destination set in this paper.
A typical example of set stability is the partial synchronization of a collection of locally
interconnected systems [27]. The other example is the finite-time consensus of finite field
networks with a probabilistic time delay, which can be converted into the set stability from
the state space to destination set [28].

(b) Hotspot of recent research: Set stability and set stabilization have been a research
hotspot recently. Professor Guo [29] investigated the set stability and set stabilization of
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BCNs based on invariant subsets. The set stabilization of multivalued logical systems
was studied in [30]. However, the existing results on set stability and set stabilization are
from the full state space to a given state subset. Different from the existing results, the
set stability and set stabilization problem studied in this paper are from the initial state
set to the destination state set, which is the generation of traditional set stability and set
stabilization.

Another concern that frequently occurs in biological systems is to prevent certain
states of genes from being in an unfavorable or dangerous environment [31]. For example,
in the treatment of diseases, some states of the genes or cell may cause new diseases, and
they should be avoided [32]. In BCNs, such a situation is called state or input constrained.
There are some works that focus on BCNs with state or input constraints. The reachability
and controllability of BCNs under certain constraints were investigated in [33]. Professor
Guo [34] studied the observability of BCNs with input constraints. The set controllability
of logical control networks with state constraints was considered in [35]. Therefore, it is
crucial to consider state constraints when studying the set stability and set stabilization
of BCNs.

This paper investigates the set stability and set stabilization of BCNs with state
constraints in the framework of STP. The contributions of this paper are as follows.

(i) The dynamics of BNs and BCNs avoiding given undesirable set is established using
STP.

(ii) The set reachability and set stability of BNs and BCNs from the initial set to destination
set are provided avoiding a given undesirable set, respectively. The criteria are
provided with matrix forms, which are easily verified.

(iii) The calculation formula of the transition period from each state of an initial set to a
given destination set is given. The algorithm of a time optimal stabilizer is designed.

The organization of the rest of this paper is as follows: In Section 2, some preliminaries
and symbol explanations of STP of matrices are provided. In Section 3, the definition of set
stability of BNs avoiding undesirable states is first provided. Then, a discrete-time dynamic
system is constructed, based on which the necessary and sufficient condition of set stability
avoiding an undesirable set is obtained. In Section 4, the problem of the set stabilization
of BCNs avoiding undesirable sets is discussed. In Section 5, a design method for finding
the time optimal set stabilizer is proposed, and an example is provided to illustrate the
effectiveness of the results. A brief conclusion is given in Section 6.

2. Preliminaries

In this section, we first list some notations:

(1) Mm×n is the set of all m× n real matrices; Rn is the set of n-dimensional real vectors.
(2) Coli(M)

(
Rowi(M)

)
is the i-th column (row) of matrix M; Col(M)

(
Row(M)

)
is the

set of columns (rows) of matrix M.
(3) δi

n is the i-th column of n-dimensional identity matrix In.
(4) D := {0, 1}.
(5) ∆n = Col(In), ∆ := ∆2.
(6) Assume L = [δi1

m δi2
m . . . δin

m ], and then its shorthand form is L = δm[i1 i2 . . . in].
(7) 1r(0r) represents the column vector of length r whose all terms are 1(0).
(8) Let A ∈ Mm×n, A is called a logical matrix if Col(A) ⊆ ∆m.
(9) Denote by Lm×n the set of m× n dimension logical matrices.
(10) Let A ∈ Mm×n,

(
A
)

i,j denotes the (i, j)-element of matrix A.

(11) A = (aij) is called a Boolean matrix if aij ∈ D, and denote by Bm×n the set of m× n
dimension Boolean matrices.
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(12) The following is the definition of Boolean addition of Boolean matrices
α +B β := α ∨ β, ∀α, β ∈ D

(B) ∑n
i=1 αi := α1 ∨ α2 ∨ . . . αn, ∀αi ∈ D

X +B Y = (xij +B yij) ∈ Bm×n, ∀X, Y ∈ Bm×n.

(13) For any X ∈ Bm×n, Y ∈ Bn×p, X×B Y := Z = (zij)m×p is called the Boolean product
of X and Y, where zij =(B) ∑n

k=1 xik ∧ ykj ∈ D.
(14) If X ∈ Bn×n, then X(k) := (X×B X×B . . .×B X)︸ ︷︷ ︸

k

.

(15) Let X, Y ∈ Rn, then X > Y represents (X)i,1 > (Y)i,1, ∀i ∈ {1, 2, . . . , n}.
(16) Assume that X = (xij) ∈ Bm×n, Y = (yij) ∈ Lm×n. Then, X ∧Y = (xij ∧ yij) ∈ Lm×n.
(17) For any F ∈ Bm×n, the logical sub-matrix of F is defined as F ∈ Lm×n, if F∧ F = F. Let

ϕ(F) denotes the set of all logical sub-matrix of F, that is, ϕ(F) := {F ∈ Lm×n|F ∧ F =
F}. In particular, for any nonzero vector x ∈ Bm×1, ϕ(x) = {z ∈ ∆m|z ∧ x = z}. For
convenience, define ϕT(x) := ϕ(xT) for any x ∈ B1×n.

Definition 1 (Ref. [11]). The STP of two matrices A ∈ Mm×n and B ∈ Mp×t is defined as

A n B = (A⊗ I α
n
)(B⊗ I α

p
),

where α = lcm(n, p) is the least common multiple of n and p, and ⊗ is the Kronecker product.

Remark 1. The STP is a generalization of the ordinary matrix product, thus, we can simply call it
“product” and omit the symbol “n” without confusion.

Proposition 1 (Ref. [11]). Let X ∈ Rt and A ∈ Mm×n. Then,

XA = (It ⊗ A)X.

Definition 2 (Ref. [11]). Define a matrix W[m,n] ∈ Mmn×mn as follows

W[m,n] := [δ1
n ⊗ δ1

m, . . . , δn
n ⊗ δ1

m, δ1
n ⊗ δ2

m, . . . , δn
n ⊗ δ2

m, . . . , δ1
n ⊗ δm

m , . . . , δn
n ⊗ δm

m ],

where W[m,n] is called the swap matrix.

Proposition 2 (Ref. [11]). Let X ∈ Rm and Y ∈ Rn be two column vectors. Then,

W[m,n]XY = YX.

A function f : Dn → D is called a Boolean function. To use matrix expression we
identify 0 ∼ δ1

2 and 1 ∼ δ2
2 , then ∆ ∼ D. Denote x(t) = nn

i=1xi(t), where xi(t) ∈ ∆, we
have the following proposition:

Proposition 3 (Ref. [11]). Let f : ∆n → ∆ be a logical function. Then, there exists a unique
matrix M f ∈ M2n×2, such that

f (x1, · · · , xn) = M f nn
i=1 xi, xi ∈ ∆,

where M f is called the structure matrix of f .



Mathematics 2021, 9, 2864 4 of 20

3. Set Stability Avoiding Undesirable Set

In this section, we consider the stability of BN from the initial set to destination set
avoiding undesirable set.

3.1. Algebraic Expression of Bn under Restricted State Set

A Markov-type BN with n nodes is described as [11]
x1(t + 1) = f1(x1(t), · · · , xn(t)),
x2(t + 1) = f2(x1(t), · · · , xn(t)),
...
xn(t + 1) = fn(x1(t), · · · , xn(t)),

(1)

where xi ∈ D, i = 1, · · · , n are state variables; fi : Dn → D, i = 1, · · · , n are Boolean
functions.

By virtue of Proposition 3, we obtain its algebraic expression as follows:

x(t + 1) = Lx(t),

where x(t) = nn
i=1xi(t), and L ∈ L2n×2n is called the structure matrix of (1).

Consider BN (1) and suppose the undesirable set Ω is

Ω = {δk1
2n , . . . , δ

kγ

2n } ⊆ ∆2n .

Define the initial set S0 and the destination set Sd as follows

S0 :=
{

δi1
2n , δi2

2n , · · · , δiα
2n

}
⊆ ∆2n\Ω,

Sd :=
{

δ
j1
2n , δ

j2
2n , · · · , δ

jβ
2n

}
⊆ ∆2n\Ω.

(2)

For simplicity, assume

i1 < i2 < · · · < iα, j1 < j2 < · · · < jβ.

Using the initial set and destination set, we give the definition of set stability avoiding
undesirable set Ω of BN (1).

Definition 3. Consider BN (1) with the initial set S0 and the destination set Sd. BN (1) is said to
be set stable from S0 to Sd avoiding Ω, if, for any initial state x0 ∈ S0, there exists a positive integer
T(x0) > 0 such that

x(t, x0) ∈ Sd, ∀t > T(x0), (3)

and
x(k, x0) 6∈ Ω, k = 0, 1, 2, . . . . (4)

Let Tmin(x0) represent the smallest integer such that (3) and (4) hold, which is called
the transient period from x0 ∈ S0 to Sd avoiding Ω. The transient period of BN (1) is
defined as TS := maxx0∈S0 Tmin(x0).

In the following, we give the algebraic expression of BN (1) under restricted state set
∆2n \Ω by constructing a matrix IΩ.

Define a Boolean matrix IΩ ∈ B2n×2n related to Ω as follows

Coli(IΩ) =

02n , δi
2n ∈ Ω,

Coli(I2n), δi
2n 6∈ Ω.

(5)
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Denote by
LΩ = IΩLIΩ.

According to LΩ, we know that, for the initial state x(0) 6∈ Ω, if x(1) = LΩx(0) = 02n , then
state x(0) evolves to Ω at the first step. We can construct the algebraic expression of BN (1)
under restricted state set ∆2n \Ω as

X (t + 1) = LΩX (t), (6)

where X (t) ∈ B2n×1 is the state that belongs to (∆2n \Ω) ∪ {02n}.
Using Equation (6), we can obtain

X (t) =LΩX (t− 1)

=LΩ n LΩX (t− 2)

= . . .

=Lt
ΩX (0),

(7)

where X (0) = x(0). Assume x(0) 6∈ Ω. X (t) = 02n indicates that state x(0) will evolve to
Ω within t steps. If X (t) 6= 02n , this indicates that the state x(0) can stay away from Ω at
the first t steps.

3.2. Reachability Avoiding States Set

Theorem 1. Consider BN (1). The state δi
2n is reachable from state δ

j
2n at s-th step while avoiding

Ω, if and only if (Ls
Ω)i,j = 1.

Proof of Theorem 1. Note that the state of BN (1) at time t can be expressed as x(t, x0) =

Ltx0. According to Definition 3, we know that BN (1) is reachable from δ
j
2n to δi

2n while
avoiding Ω at s-th step, if and only if,Lsδ

j
2n = δi

2n ,

Lkδ
j
2n 6∈ Ω, ∀k = 0, 1, 2, . . . s.

(8)

It follows from the construction of LΩ that Equation (8) is equivalent to

Ls
Ωδ

j
2n = δi

2n ,

which is further equivalent to
(δi

2n)T Ls
Ωδ

j
2n = 1,

that is, (Ls
Ω)i,j = 1.

Remark 2. On the basis of algebraic Equation (7), Theorem 1 proposes a necessary and sufficient
condition to detect the reachability between two states while avoiding Ω. This is prepared for the
proof of Theorem 2.

In the following, we consider the set reachability of BN (1) avoiding undesirable set.
According to (2), define matrix J0 ∈ L2n×α related to S0 and the index vector Jd ∈ R2n

related to Sd as follows, respectively,

J0 = δ2n [i1 i2 · · · iα], (Jd)i,1 =

1, δi
2n ∈ Sd,

0, δi
2n 6∈ Sd.

(9)
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Theorem 2. Consider BN (1) with the initial set S0 and destination set Sd as defined by (2).

(1) BN (1) is reachable from δ
j
2n ∈ S0 to Sd avoiding Ω, if and only if, there exists an integer sj,

such that

JT
d L

sj
Ωδ

j
2n > 0. (10)

(2) BN (1) is reachable from S0 to Sd avoiding Ω, if and only if, there exists an integer s, such that

JT
d (

s

∑
k=1

Lk
Ω)J0 > 0T

α , (11)

where α = |S0| is the cardinality of S0.

Proof of Theorem 2. (1) According to Theorem 1, we know that BN (1) is reachable from
δ

j
2n ∈ S0 to Sd avoiding Ω, if and only if there exists an integer sj such that (L

sj
Ω)r,j = 1,

where δr
2n ∈ Sd. That is to say,

L
sj
Ωδ

j
2n = δr

2n ∈ Sd. (12)

From the construction of Jd, we have

Jd = (B)

β

∑
i=1

δ
ji
2n ,

then Equation (12) holds if and only if

JT
d L

sj
Ωδ

j
2n = 1 > 0,

which is equivalent to (10).
(2) We know that x0 ∈ S0 can reach Sd avoiding Ω if and only if conclusion (10)

holds. Denoted by sj the integer that makes conclusion (10) hold when the initial state

x0 = δ
j
2n ∈ S0. Let s = max{si1 , si2 , . . . , siα}, then BN (1) is reachable from S0 to Sd avoiding

Ω if and only if conclusion (11) can be obtained.

Remark 3. By definition of matrix J0 and the index vector Jd, Theorem 2 gives a method to verify
whether the given initial state set S0 can reach the destination set Sd while avoiding set Ω. It
is noted that all the calculations involved are matrix operations, which are easy to validate by
mathematical software.

The following corollary is obvious.

Corollary 1. (1) BN (1) is reachable from δ
j
2n ∈ S0 to Sd avoiding Ω, if and only if,

JT
d

2n

∑
k=1

(LΩ)kδ
j
2n > 0.

(2) BN (1) is reachable from S0 to Sd avoiding Ω, if and only if,

JT
d

2n

∑
k=1

(LΩ)k J0 > 0T
α .

3.3. Set Stability Avoiding States Set

In the following, we consider the set stability problem of a BN avoiding Ω using the
largest invariant subset.
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Definition 4 (Ref. [29]). A subset S ⊆ ∆2n is called an invariant subset of BN (1) if, for any state
x0 ∈ S , x(t, x0) ∈ S , ∀t > 0.

The union of all the invariant subsets contained in Sd is the largest invariant subset
of Sd.

Lemma 1 (Ref. [29]). Consider a state subset Sd ⊆ ∆2n of BN (1) with |Sd| = β. Define a matrix
Md ∈ B2n×2n related to Sd as follows

Coli(Md) =

δi
2n , δi

2n ∈ Sd,

02n , δi
2n /∈ Sd.

(13)

Then, the largest invariant subset, denoted by I(Sd), contained in Sd is

I(Sd) = Col(QSd)\{02n},

where
QSd = (MdL)β Md. (14)

Using (9) and (14), we can define a vector, called the set stability vector avoiding Ω, as

H := JT
d ×B QSd ×B L2n

Ω ×B J0.

Remark 4. According to the properties of the largest invariant set I(Sd), we know that, for any
state x0 ∈ I(Sd), it holds that x(t, x0) ∈ I(Sd), ∀t ≥ 0, and I(Sd) ⊆ Sd. Therefore, the stability
from the initial set S0 to destination set Sd is equivalent to the reachability from the initial set S0 to
the largest invariant set I(Sd).

Theorem 3. Consider BN (1) with the initial set S0 and destination set Sd as defined by (2).

(1) BN (1) is set stable from δ
ij
2n ∈ S0 to Sd avoiding Ω, if and only if,

Colj(H) = 1. (15)

(2) BN (1) is set stable from S0 to Sd avoiding Ω, if and only if,

H = 1T
α . (16)

(3) If BN (1) is set stable from S0 to Sd avoiding Ω, then for any δ
ij
2n ∈ S0, we have

Tmin(δ
ij
2n) = min{τ|JT

d QSd Lτ
Ωδ

ij
2n = 1}.

Proof of Theorem 3. (1) Note that (JT
d QSd)

T is the index vector related to I(Sd). According

to Theorem 2, we know that BN (1) is reachable from δ
ij
2n ∈ S0 to I(Sd) avoiding Ω, if and

only if, there exists an integer sij , such that

(JT
d QSd)L

sij
Ω δ

ij
2n = 1 > 0. (17)

Combining the properties of the largest invariant set I(Sd), we can find that Equation (17)

holds if and only if BN (1) is stable from δ
ij
2n ∈ S0 to I(Sd) avoiding Ω.

In addition, since system (1) has 2n finite states, then it is easy to obtain from (17) that

JT
d QSd L2n

Ω δ
ij
2n = 1 > 0,
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that is,

Colj(H) = JT
d QSd L2n

Ω J0δ
ij
2n

= JT
d QSd L2n

Ω δ
ij
2n

= 1.

(2) BN (1) is set stable from S0 to Sd avoiding Ω, if and only if it is stable from x0 to
Sd avoiding Ω for any x0 ∈ S0. That is, Colj(H) = 1 for any j = 1, 2, . . . , α. The result is
proven.

(3) If BN (1) is set stable from S0 to Sd avoiding Ω, then, for any δ
ij
2n ∈ S0, we have

Colj(H) = 1. That is to say, there exists a smallest integer τ such that

JT
d QSd Lτ

Ωδ
ij
2n = JT

d QSd Lτ
Ω J0δ

ij
2n

= Hδ
ij
2n

= Colj(H)

= 1.

Combining to the definition of transient period, it is easy to verify that

Tmin(δ
ij
2n) = min{τ|JT

d QSd Lτ
Ωδ

ij
2n = 1}, ∀δ

ij
2n ∈ S0.

Remark 5. Theorem 3 not only presents the criteria of set stability of BNs from the initial set S0 to
destination Sd, but also gives the method to calculate the transition period of any given state from
S0 to set Sd. In addition, the criteria are provided in vector form to facilitate verification.

Example 1. Consider the Drosophila melanogaster segmentation polarity gene network

x1(t + 1) = x1(t) ∧ ¬x2(t) ∧ ¬x4(t),

x2(t + 1) = ¬x1(t) ∧ x2(t) ∧ ¬x3(t),

x3(t + 1) = x1(t) ∨ x3(t),

x4(t + 1) = x2(t) ∨ x4(t),

x5(t + 1) =
(
¬x2(t) ∧ ¬x4(t)

)
∨
(
x5(t) ∧ ¬x1(t) ∧ ¬x3(t)

)
,

x6(t + 1) =
(
¬x1(t) ∧ ¬x3(t)

)
∨
(
x6(t) ∧ ¬x2(t) ∧ ¬x4(t)

)
,

(18)

where x1, x2, x3, x4 represent four different secreted proteins wingless, and x5 and x6 represent two
different transmembrane receptor proteins patched. Please refer to [32] and [26] for their specific
meanings.

Let x(t) = n6
i=1xi(t). Then, the algebraic form of (18) can be obtained as follows

x(t + 1) = Lx(t),
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where

L = δ64
[
52 52 52 52 52 52 52 52

52 52 52 52 52 52 52 52

52 52 52 52 21 22 21 22

52 52 52 52 21 22 21 22

52 52 52 52 52 52 52 52

41 41 43 43 41 41 43 43

52 52 52 52 53 54 53 54

57 57 59 59 61 61 61 61
]
.

Suppose

S0 ={δ13
64 , δ20

64 , δ44
64 , δ47

64 , δ51
64 , δ60

64},

Sd ={δ23
64 , δ43

64 , δ52
64 , δ59

64 , δ62
64},

and the undesirable set
Ω = {δ29

64 , δ42
64 , δ48

64}.

First, according to (9) and (13), we have

J0 = δ64[13 20 44 47 51 60],

Jd = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0],

and

Md = δ64[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 23 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 43 0 0 0 0 0

0 0 0 52 0 0 0 0 0 0 59 0 0 62 0 0],

where δ0
64 is a zero column vector with dimension 64.

By Lemma 1, we obtain

QSd = (MdL)5Md

= δ64[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 43 0 0 0 0 0

0 0 0 52 0 0 0 0 0 0 59 0 0 0 0 0].

Then, the largest invariant subset of Sd is obtained as follows

I(Sd) = {δ43
64 , δ52

64 , δ59
64}.
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Next, according to the undesirable set Ω, LΩ can be obtained as

LΩ = δ64
[
52 52 52 52 52 52 52 52

52 52 52 52 52 52 52 52

52 52 52 52 21 22 21 22

52 52 52 52 0 22 21 22

52 52 52 52 52 52 52 52

41 0 43 43 41 41 43 0

52 52 52 52 53 54 53 54

57 57 59 59 61 61 61 61
]
.

By a direct calculation, we find the set stability vector avoiding set Ω as follows

H = JT
d QSd(LΩ)64 J0,

= [1 1 1 1 1 1].

According to Theorem 3, Drosophila melanogaster segmentation polarity gene network (18)
is set stable from set S0 to Sd avoiding set Ω.

Finally, it is easily checked that TS = min{τ|JT
d QSd(LΩ)τ J0 = 1T

6 } = 1. Thus, after
one step, gene network (18) is set stable from set S0 to Sd avoiding set Ω.

4. Set Stabilization Avoiding Undesirable Set

In this section, we consider the set stabilization of BCN from the initial set to destina-
tion set avoiding undesirable set Ω.

4.1. Algebraic Expression of Bcn under Restricted State Set

Consider the following Markov-type BCN

x1(t + 1) = f1(x1(t), · · · , xn(t), u1(t), · · · , um(t)),

x2(t + 1) = f2(x1(t), · · · , xn(t), u1(t), · · · , um(t)),

· · ·

xn(t + 1) = fn(x1(t), · · · , xn(t), u1(t), · · · , um(t)),

(19)

where xi(t) ∈ D are state variables of node i ∈ N at time t, uj(t) ∈ D are controls of input
node j ∈ M at time t, and fi : Dm+n → D, i = 1, 2, · · · , n are Boolean functions.

The algebraic expression of BCN (19) is

x(t + 1) = Lu(t)x(t),

where x(t) = nn
i=1xi(t), u(t) = nm

j=1uj(t) and L ∈ L2n×2m+n is called the structure matrix
of (19).

Definition 5. Let Ω be the undesirable set. Consider BCN (19) with the initial set S0 and the
destination set Sd. BCN (19) is said to be set stabilizable from S0 to Sd avoiding Ω, if for any initial
state x0 ∈ S0, there exists a sequence of controls u := {u(0), u(1), . . .} and a positive integer
T(x0, u) > 0 such that

x(t, x0, u) ∈ Sd, ∀t > T(x0, u), (20)

and
x(k, x0, u) 6∈ Ω, k = 0, 1, 2, . . . . (21)
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Let T̄min(x0) represent the smallest integer such that (20) and (21) hold under a proper
control sequence u0, which is called the transient period from x0 ∈ S0 to Sd avoiding Ω,
where u0 is called the time optimal control sequence from x0 ∈ S0 to Sd avoiding Ω. The
transient period of BCN (19) is defined as T̄S := maxx0∈S0 T̄min(x0).

For BCN (19) IΩ is defined similarly as (5). LΩ is defined as [33]

LΩ := IΩL(I2m ⊗ IΩ).

Then, construct the algebraic expression of BCN (19) under restricted state set ∆2n \Ω

X (t + 1) = LΩu(t)X (t), (22)

where X (t) ∈ B2n×1 is the state that belongs to (∆2n \Ω) ∪ {02n}.

4.2. Reachability Avoiding States Set

Define
Ck,Ω := (LΩ ×B 12m)(k), (23)

and set

CΩ :=(B)
2n

∑
k=1
Ck,Ω.

Lemma 2 (Ref. [33]). For BCN (19), the state δi
2n is reachable from state δ

j
2n at s-th step with

proper control sequence while avoiding Ω, if and only if (Cs,Ω)i,j = 1.

Assume J0 and Jd are defined as (9). From Definition 5 and Lemma 2, the following
results are obtained.

Theorem 4. Consider BCN (19) with the initial set S0 and destination set Sd as defined by (2).

(1) BCN (19) is reachable from δ
j
2n ∈ S0 to Sd avoiding Ω, if and only if, there exists an integer

sj such that

JT
d Csj ,Ωδ

j
2n > 0. (24)

(2) BCN (19) is reachable from S0 to Sd avoiding Ω, if and only if, there exists an integer s, such
that

JT
d (B)

s

∑
k=1
Ck,Ω J0 > 0T

α , (25)

where α = |S0|.

Proof of Theorem 4. (1) (Necessity): Assume (19) is reachable from δ
j
2n to Sd avoiding

Ω. According to Lemma 2, for the initial state δ
j
2n , there exists an integer sj such that

(Csj ,Ω)r,j = 1, where δr
2n ∈ Sd. This is equivalent to

δr
2nCsj ,Ωδ

j
2n = 1.

According to the definition of Jd, we have

JT
d Csj ,Ωδ

j
2n > 0.
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(Sufficiency): Suppose there exists an integer sj, such that Equation (24) holds. Then,
there is at least one state δr

2n ∈ Sd such that

δr
2nCsj ,Ωδ

j
2n = 1,

which implies that
(Csj ,Ω)r,j = 1.

According to Lemma 2, we know that BCN (19) is reachable from δ
j
2n to Sd avoiding Ω.

(2) (Necessity): Assume BCN (19) is reachable from S0 to Sd avoiding Ω. That is, for
any δ

j
2n ∈ S0, BCN (19) is reachable from δ

j
2n to Sd avoiding Ω. Then, according to (24), for

each δ
j
2n ∈ S0, there exists an integer sj such that

JT
d Csj ,Ωδ

j
2n > 0.

Taking s = max{si1 , si2 , . . . , siα}, then we have

JT
d (B)

s

∑
k=1
Ck,Ω J0 > 0T

α .

(Sufficiency): Suppose there exists an integer s such that

JT
d (B)

s

∑
k=1
Ck,Ω J0 > 0T

α .

Therefore, for each δ
j
2n ∈ S0, there exists an integer sj < s such that

JT
d Csj ,Ωδ

j
2n > 0,

which implies that BCN (19) is reachable from S0 to Sd avoiding Ω.

Corollary 2. (1) BCN (19) is reachable from δ
j
2n ∈ S0 to Sd avoiding Ω, if and only if,

JT
d CΩδ

j
2n > 0.

(2) BCN (19) is reachable from S0 to Sd avoiding Ω, if and only if, JT
d CΩ J0 > 0T

α .

4.3. Set Stabilization Avoiding States Set

In the following, we consider the set stabilization problem of a BCN avoiding Ω by
using the largest control invariant subset.

Definition 6 (Ref. [29]). A subset S ⊆ ∆2n is called a control invariant subset of BCN (19) if for
any state x0 ∈ S , there exists a control sequence u such that x(t, x0, u) ∈ S , ∀t > 0.

Similarly, for BCN (19), the largest control invariant subset of a given set Sd is the
union of all the control invariant subsets contained in Sd, denoted by IC(Sd).

Define
Ck := (L×B 12m)(k), (26)

and set

C :=(B)
2n

∑
k=1
Ck.
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Lemma 3 (Ref. [29]). Consider a state subset Sd ⊆ ∆2n of BCN (19) with |Sd| = β. Then, the
largest control invariant subset IC(Sd) is

IC(Sd) = Col
(

I2n ∧ (QT
Sd ,C ×B QSd ,C)

)
\{δ0

2n},

where

QSd ,C = (Md ×B C1)
(β) ×B Md, (27)

and Md is defined in (13).

Similarly, based on (9) and (27), we can define a vector, called the set stabilization
vector avoiding Ω, as

HC := JT
d ×B QSd ,C ×B CΩ ×B J0,

where

QSd ,C = I2n ∧ (QT
Sd ,C ×B QSd ,C). (28)

Theorem 5. Consider BCN (19) with the initial set S0 and destination set Sd as defined by (2).

(1) BCN (19) is set stabilizable from δ
ij
2n ∈ S0 to Sd avoiding Ω, if and only if,

Colj(HC) = 1. (29)

(2) BCN (19) is set stabilizable from S0 to Sd avoiding Ω, if and only if,

HC = 1T
α . (30)

(3) If BCN (19) is set stabilizable from S0 to Sd avoiding Ω, then for any δ
ij
2n ∈ S0, we have

T̄min(δ
ij
2n) = min{τ|JT

d ×B QSd
×B Cτ,Ωδ

ij
2n = 1}.

Proof of Theorem 5. (1) Note that Col(QSd ,C) = IC(Sd)
⋃{02n}; thus, (JT

d QSd ,C)
T is the

index vector of IC(Sd). According to Corollary 2 and the property of IC(Sd), we know that

BCN (19) is set stabilizable from δ
ij
2n ∈ S0 to IC(Sd) ⊆ Sd avoiding Ω, if and only if,

(JT
d QSd ,C)CΩδ

ij
2n > 0. (31)

Since ×B is a Boolean product, and δ
ij
2n ∈ S0, then (31) is equivalent to

(JT
d ×B QSd ,C)×B CΩδ

ij
2n = JT

d ×B QSd ,C ×B CΩ ×B J0δ
j
α

= HCδ
j
α

= Colj(HC)

= 1.

(2) The conclusion of (2) can be easily obtained from (1).
(3) According to Theorem 4 and the property of IC(Sd), we know that BCN (19) is

stabilizable from δ
ij
2n ∈ S0 to Sd avoiding Ω, if and only if, there exists an integer sij ,

such that

JT
d QSd ,CCsij

,Ωδ
ij
2n > 0.
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Combined with the definition of T̄min(x0), we obtain that, for any ∀δ
ij
2n ∈ S0,

T̄min(δ
ij
2n) = min{τ|JT

d ×B QSd ,C ×B Cτ,Ωδ
ij
2n = 1}.

Example 2. Consider the BCN model presented in [36], which is a simplified model of the lac
operon in the bacterium Escherichia coli:

x1(t + 1) = ¬u1(t) ∧ (x2(t) ∨ x3(t)),

x2(t + 1) = ¬u1(t) ∧ u2(t) ∧ x1(t),

x3(t + 1) = ¬u1(t) ∧ (u2(t) ∨ (u3(t) ∧ x1(t))),

(32)

where x1, x2, x3 represent the lac mRNA, lactose in high concentrations, and lactose in medium con-
centrations, respectively. Moreover, u1, u2, u3 represent the extracellular glucose, high extracellular
lactose, and medium extracellular lactose, respectively, and are regarded as the control of input node.

Let x(t) = n3
i=1xi(t), then the algebraic expression of (32) is

x(t + 1) = Lu(t)x(t),

where

L = δ8[8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

1 1 1 5 3 3 3 7 1 1 1 5 3 3 3 7

3 3 3 7 4 4 4 8 4 4 4 8 4 4 4 8].

The one-step transition matrix of (32) can be calculated as follows

C1 =



1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 1 0 1 1 1 0
1 1 1 0 1 1 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 1
1 1 1 1 1 1 1 1


.

Suppose
S0 = {δ4

8 , δ6
8 , δ8

8}, Sd = {δ1
8 , δ3

8},

and the undesirable set is
Ω = {δ5

8}.

We first calculate the largest control invariant subset of Sd.
According to (9) and (13), we have

J0 = δ8[4 6 8], Jd = [1 0 1 0 0 0 0 0]T ,

and
Md = δ8[1 0 3 0 0 0 0 0],
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where δ0
8 is the 8-dimensional all-zero column vector. Using Lemma 3, we find

QSd ,C = (Md ×B C1)
(2) ×B Md =



1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


.

Furthermore,

QSd ,C = I8 ∧ (QT
Sd ,C ×B QSd ,C)

= δ8[1 0 3 0 0 0 0 0].

Therefore, the largest control invariant subset of Sd is

IC(Sd) = {δ1
8 , δ3

8}.

Next, we verify whether system (32) can be stabilized from set S0 to set IC(Sd).
Since Ω = {δ1

8 , δ2
8}, then we can obtain the following constrained transition matrix:

CΩ =



1 1 1 1 0 1 1 1
0 0 0 0 0 0 0 0
1 1 1 1 0 1 1 1
1 1 1 1 0 1 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 1 1 0 1 1 1
1 1 1 1 0 1 1 1


.

By a direct calculation, the set stabilization vector is obtained as follows

HC = JT
d ×B QSd ,C ×B CΩ ×B J0

= [1 1 1],

according to Theorem 5, we know that system (32) is set stabilizable from the initial set S0
to destination set Sd avoiding Ω.

Finally, it is easily checked that T̄S = min{τ|JT
d ×B QSd ,C ×B Cτ,Ω ×B J0 = 1T

3 } = 2.
That is to say, after two steps, BCN (32) can be stabilized from the initial set S0 to destination
set Sd avoiding Ω.

5. Design of Time Optimal Set Stabilizers

In this section, we consider the design of a state feedback controller with form

u(t) = Gx(t), (33)

where G ∈ L2m×2n , such that the closed loop system can be stabilized from S0 to Sd
avoiding Ω. In general, the stabilizer is not unique. This section only considers the design
of the time optimal stabilizer. That is to say, under the time optimal stabilizer, the BCN (19)
can be stabilized from set S0 to set Sd in the shortest time T̄S while avoiding Ω.

First, we detect the time T̄S. It is easy to obtain from Theorem 5 and the definition of
T̄S that if BCN (19) is set stabilizable from S0 to Sd avoiding Ω, then

T̄S = min{τ|JT
d ×B QSd ,C ×B Cτ,Ω ×B J0 = 1T

α }. (34)
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Therefore, we can find the shortest time T̄S by Equation (34) and denote it as s∗ = T̄S.
It is easy to verify that Remark 4 is also applicable to BCNs. Thus, the stabilizer design

problem from S0 to Sd is equivalent to the stabilizer design problem from S0 to IC(Sd).
Next, we calculate the largest control invariant subset IC(Sd) and set Rs

(
IC(Sd)

)
,

where Rs
(

IC(Sd)
)

is the k-step reachable set composed of all the initial state x0 ∈ ∆2n\Ω,
which can be steered to IC(Sd) in s steps by proper control sequences.

Lemma 4. Consider BCN (19) with S0, Sd and Ω, then

ϕT(JT
d ×B QSd ,C ×B Cs,Ω ×B IΩ) = Rs

(
IC(Sd)

)
,

where IΩ is defined as (5).

Proof of Lemma 4. A direct calculation shows that δ
j
2n ∈ ϕT(JT

d ×B QSd ,C ×B Cs,Ω ×B IΩ)
is equivalent to

(JT
d ×B QSd ,C ×B Cs,Ω ×B IΩ)δ

j
2n = 1.

This implies that IΩδ
j
2n 6= 0T

2n , i.e., IΩδ
j
2n = δ

j
2n ∈ ∆2n\Ω. Then,

(JT
d ×B QSd ,C ×B Cs,Ω ×B IΩ)δ

j
2n = (JT

d QSd ,C)×B Cs,Ω ×B (IΩδ
j
2n)

= JT
d QSd ,C ×B Cs,Ωδ

j
2n

= (JT
d QSd ,C)×B Colj(Cs,Ω).

In addition, since (JT
d QSd ,C)

T is the index vector of IC(Sd), then (JT
d QSd ,C)×B Colj(Cs,Ω) = 1

if and only if there exists at least one state δi
2n ∈ IC(Sd), such that

(Cs,Ω)i,j = 1.

According to Lemma 2, we know that (Cs,Ω)i,j = 1 is equivalent to that state δi
2n ∈

IC(Sd) is reachable from state δ
j
2n ∈ ∆2n\Ω at s-th step with proper control sequence while

avoiding Ω, that is δ
j
2n ∈ Rs

(
IC(Sd)

)
.

We divide the set Rs∗
(

IC(Sd)
)

into s∗ + 1 subsets, as follows:

E0 :=IC(Sd) 6= ∅,

E1 :=ϕT(JT
d ×B QSd

×B C1,Ω ×B IΩ)\E0,

E2 :=ϕT(JT
d ×B QSd

×B C2,Ω ×B IΩ)\(E0 ∪ E1),

...

Es∗ :=ϕT(JT
d ×B QSd

×B Cs∗ ,Ω ×B IΩ)\(E0 ∪ E1 ∪ . . . ∪ Es∗−1).

(35)

It follows that the states in set Es can reach set IC(Sd) only at the s-th step.
Then, denote by

R̄(W) = {δi
2n |(C1,Ω)i,j = 1, ∀δ

j
2n ∈W},

where W ⊆ ∆2n is a set, and C1,Ω is defined in (23). We further process Ei, i = 0, 1, . . . , s∗ as
follows:
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Ws∗ :=Es∗ ∩ S0,

Ws∗−1 :=Es∗−1 ∩
(
S0 ∪ R̄(Ws∗)

)
,

Ws∗−2 :=Es∗−2 ∩
(
S0 ∪ R̄(Ws∗−1)

)
,

...

W1 :=E1 ∩
(
S0 ∪ R̄(W2)

)
,

W0 :=E0.

(36)

It follows that, for any state x ∈Wi, i = 0, 1, . . . , s∗, it holds that x ∈ Ri
(

IC(Sd)
)

and there
must exist a state x0 ∈ S0 and a control sequence u such that x(x0, u) = x.

Finally, we give the design method of G to steer system (19) from S0 to Sd avoiding Ω.
Using Proposition 2, we find the equivalent form of expression (22):

X (t + 1) = L̄ΩX (t)u(t),

where L̄Ω = LΩW[2m ,2n ] ∈ B2n×2m+n . Then, system (19) can reach set Ws−1 from any state

δ
j
2n ∈Ws under state feedback control (33), if and only if the j-th column of G is designed as

Colj(G) ∈ Uj, (37)

where Uj = {δ
ρj
2m |L̄Ωδ

j
2n δ

ρj
2m ∈Ws−1}, s = 0, 1, . . . , s∗, and W−1 := W0.

If δ
j
2n 6∈

⋃s∗
i=0 Wi, then the j-th column of G can be designed freely.

Theorem 6. Consider BCN (19) with S0, Sd and Ω. Then, the feedback control (33) with the state
feedback matrix G given by Algorithm 1 can set stabilize BCN (19) from S0 to Sd avoiding Ω.

Algorithm 1 Algorithm for designing time optimal set stabilizers.

1: Find the optimal time s∗ according to T̄S = min{τ|JT
d ×B QSd

×B Cτ,Ω ×B J0 = 1T
α },

where JT
d , QSd

and Cτ,Ω are defined as (9), (28) and (23), respectively;
2: Calculate Es, ∀s = 0, 1, 2, . . . , s∗ according to (35);
3: Calculate Ws, ∀s = 0, 1, 2, . . . , s∗ according to (36);
4: If δ

j
2n ∈Ws, s = 0, 1, 2, . . . , s∗, then design the j-th column of G as Colj(G) ∈ Uj, where

Uj = {δ
ρj
2m |L̄Ωδ

j
2n δ

ρj
2m ∈ Ws−1}, s = 0, 1, . . . s∗, and W−1 := W0. If δ

j
2n 6∈

⋃s∗
i=0 Wi, then

the j-th column of G can be designed freely.

It is easy to verify the correctness, so we omit its proof.

Example 3. Recall Example 2, we know that the largest control invariant subset IC(Sd) = {δ1
8 , δ3

8}
and the smallest integer T̄S = 2. In the following, we intend to design a state feedback controller (33)
under which system (32) can be stabilized from S0 to Sd avoiding Ω in two steps.

First, according to Lemma 4, we can find the 2-step reachable set of IC(Sd) as follows:

R2
(

IC(Sd)
)
= ∆8.

Next, according to (35), we divide the set R2
(

IC(Sd)
)

into 3 subsets as

E0 =IC(Sd) = {δ1
8 , δ3

8},

E1 ={δ2
8 , δ6

8 , δ7
8},

E2 ={δ4
8 , δ8

8}.
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Then, according to (36), we obtain that

W2 =E2 ∩ S0 = {δ4
8 , δ8

8},

W1 =E1 ∩
(
S0 ∪ R̄(W2)

)
= {δ6

8 , δ7
8},

W0 =E0 = {δ1
8 , δ3

8}.

Finally, we know from (37) that when δ
j
8 ∈ Ws, s = 0, 1, 2, control δ

ρj
2m should satisfy

LΩδ
ρj
2m δ

j
2n ∈Ws−1,where W−1 = W0, then we have

ρ4 = 7, ρ8 = 6,

ρ6 = 6, ρ7 = 6,

ρ1 = 6 or 7, ρ3 = 6 or 7,

that is, Col1(G) ∈ {δ6
8 , δ7

8}, Col3(G) ∈ {δ6
8 , δ7

8}, Col4(G) = δ7
8 , Col6(G) = Col7(G) =

Col8(G) = δ6
8 , and columns 2 and 5 of G are designed freely.

Then, a feasible stabilizer is:
u(t) = Gx(t), (38)

where
G = δ8[6 1 6 7 2 6 6 6].

In addition, we can see that the state transition diagram of the closed-loop network is
shown in Figure 1 under the stabilizer (38), and T̄S = 2. Then, the stabilizer (38) is the time
optimal stabilizer for system (32).

Figure 1. The state transition diagram of Example 3.

6. Conclusions

In this paper, set stability and set stabilization avoiding undesirable set of BNs and
BCNs have been investigated, respectively. Using the STP of matrices, necessary and
sufficient conditions for set reachability and set stability of BNs and BCNs with constraint
states have been obtained, respectively. In addition, for BNs and BCNs, the formulas for
calculating the transition period from each state of initial set to a given destination set
have been given, respectively. Based on the transition period, a design method of the time
optimal stabilizer is proposed.

By means of matrix LΩ, the test method of reachability from one state to the others
was given. Moreover, we constructed the set stability vector H (set stabilization vector HC)
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based on constrained matrix LΩ, which can give the criteria of set stability (set stabilization)
under the state constraint in vector form. It is noted that all the calculations involved
are matrix operations, which are easy to validate by mathematical software. In general,
all the results in this paper can be extended to mixed-valued logical (control) networks.
The method proposed in this paper is helpful to the study of partial stability and partial
stabilization under state constraints.

However, computational complexity is the main obstacle to study large-scale logical
(control) networks using STP. In this paper, the set stability under state constraints was
studied theoretically. We will consider the problem of reducing computational complexity
in the future.
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