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Abstract: The development of distribution linguistic provides a new research idea for linguistic
information group decision-making (GDM) problems, which is more flexible and convenient for
experts to express their opinions. However, in the process of using distribution linguistic fuzzy
preference relations (DLFPRs) to solve linguistic information GDM problems, there are few stud-
ies that pay attention to both internal consistency adjustment and external consensus of experts.
Therefore, this study proposes a fresh decision support model based on consistency adjustment
algorithm and consensus adjustment algorithm to solve GDM problems with distribution linguistic
data. Firstly, we review the concept of DLFPRs to describe the fuzzy linguistic evaluation information,
and then we present the multiplicative consistency of DLFPRs and a new consistency measurement
method based on the distance, and investigate the consistency adjustment algorithm to ameliorate
the consistency level of DLFPRs. Subsequently, the consensus degree measurement is carried out,
and a new consensus degree calculation method is put forward. At the same time, the consensus
degree adjustment is taken the expert cost into account to make it reach the predetermined level.
Finally, a distribution linguistic fuzzy group decision making (DLFGDM) method is designed to
integrate the evaluation linguistic elements and obtain the final evaluation information. A case of the
evaluation of China’s state-owned enterprise equity incentive model is provided, and the validity
and superiority of the proposed method are performed by comparative analysis.

Keywords: distribution linguistic fuzzy preference relations; consistency adjustment algorithm;
consensus adjustment algorithm; group decision making

1. Introduction

GDM is an overall process where many people take part in decision-making analysis
and make decisions aiming to make the best of the collective wisdom. Decision-making
method is also widely used, such as public transportation development decision [1],
passenger satisfaction evaluation [2], equity incentive decision-making [3], etc. Particularly,
with economic development, equity incentive plays an increasingly important role in the
development of enterprises. Wang et al. [3] used rough set theory as research method to
study the influencing factors of equity incentive mode decision-making of listed companies.
However, there are few researches on equity incentive methods in GDM problems, so we
also turn the research and application direction of this paper to this field.

Due to subjective and objective reasons, including the complicacy and fuzziness of
decision-making scenes and the limited knowledge of experts, we cannot express evalua-
tion information by clear values. In this case, fuzzy preference relation (FRL) [4] appeared
to flexibly express pairwise comparison evaluation. FRL was extended into hesitant fuzzy
preference relation [5], Pythagorean fuzzy preference relation [6], which are all preference
relations based on numbers. At the same time, because the traditional GDM is not very
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effective in dealing with the fuzziness of evaluation, the fuzzy group decision making
method is also widely used [7]. Wu et al. [7] proposed a fuzzy group decision model, which
is on the foundation of a new compatibility measure with multiplicative trapezoidal fuzzy
preference relations.

However, the environment is complex and not all problems can be evaluated numeri-
cally. Therefore, Zadeh [8] studied the fuzzy linguistic method and derived the linguistic
preference relation (LPR). LPR can express the evaluation information by using the lin-
guistic variable in the linguistic term sets [9], which is more consistent with the human
thinking inertia. Furthermore, Zhang et al. [10] utilized the linguistic distribution term sets
(LDTSs) and put forward the distribution linguistic fuzzy preference relations (DLFPRs)
to represent the evaluation information, which can utilize different linguistic vocabulary
in different degrees. For example, when experts are invited to evaluate several equity
incentive methods, he/she has a tendency of 30% to choose “very good”, a tendency of 60%
to choose “good”, a tendency of 10% to choose “medium”. DLFPR is a great development
of LPR and plays a great role in decision making. Many researches in this field have made
some achievements.

Guo et al. [11] proposed a proportional fuzzy linguistic distribution model to deal
with incomplete linguistic evaluation. Huang et al. [12] developed linguistic distribution
assessment to represent rick assessment information and combined it with an improved
TODIM method for analysis. Based on linguistic distribution and the application of hesitant
fuzzy linguistic term sets, Wu et al. [13] proposed a new linguistic decision model and
called it maximum support decision model. Liang et al. [14] and Ju et al. [15] conducted
an in-depth study on multi-granularity language distribution evaluation and put it into
application. Wang et al. [16] explored the unbalanced environment of linguistic distribution
evaluation, extended the comparison method, distance measurement and other related
contents, and proposed an asymmetric trapezoidal cloud-based linguistic group decision-
making model.

From the research results of GDM using DLFPRs, consistency checking and improve-
ment is an important process. Thus, so far, there has been some progress on consistency.
Dong et al. [17,18] and Jin et al. [19,20] gave the consistency definition of fuzzy linguistic
preference relations and Zhang et al. [10] gave the consistency definition of DLFPRs. Tang
et al. [21] studied the personalized linguistic term environment, analyzed the properties of
additive consistency and multiplicative consistency of DLFPRs, then constructed a new
consistency driven optimization model. Zhao et al. [22] and Wang et al. [23] explored the
decision-making situation of incomplete linguistic preference relation, established target
model and estimated the missing value of preference relation. In establishing consistency
algorithm, Zhao et al. [22] proposed a multi-stage algorithm that considered and adjusted
individual consistency and group consistency. Wang et al. [23] defined a weak consistency
algorithm to interact with experts, flexibly solicit expert opinions, and then complement
with additive consistency. When different experts have different degrees of uncertainty,
it is necessary to study the consistency of multi-granularity context. Cai et al. [24] estab-
lished a consistency index based on the distance of multi-granularity language preference
relationship, and used Chi-square statistics as the consistency threshold. Zhao et al. [25]
proposed a sufficient condition to describe the multi-granularity aggregation mechanism
of consistency and used an attitudinal language approach to improve consistency ranking.
With the development of society, consistency recognition and improvement have been put
into use in all kinds of fields, such as investment decision-making [26,27], public health
emergency decision making [28], stock selection decision-making [29], etc.

However, owing to decision makers (DMs) have different knowledge background
and personal preference, there may be differences between them, thus, consensus is also an
important part of decision-making. Zhang et al. [30] explored a new consensus-oriented
aggregation model for GDM, making use of the maximum consensus to form collec-
tive opinion, and then combined the lowest consensus cost model to propose the entire
consensus-reaching process. Liu et al. [31] proffered a new maximum consensus model
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to measure similarity from two dimensions of direction and module, which is more con-
venient for application. In the research of consensus reaching in multi-attribute group
decision making (MAGDM) [32–36], Yao [32] used (MAGDM) represented by linguistic
distribution evaluation as the background. It identified experts based on recognition
rules and adjusted their preferences according to the optimization model, minimizing
the discrepancy between the output value and the initial value, and preserving the initial
evaluation information as much as possible, making it completer and more reliable. Yu
et al. [36] defined the group consensus degree based on multi-granular hesitant fuzzy
linguistic terms, combined with the optimization model of minimum adjustment, designed
an iterative algorithm to help DMs reach consensus in MAGDM. Wu et al. [37] proposed a
new indicator and consensus evolution networks to measure the consensus degree and
reflect the evolution of consensus more clearly.

Combined with the above research results and analysis, we can know that using
DLFPRs to solve fuzzy and complex GDM problems has become an effective research
direction. Although many achievements have been made in this field, some shortcomings
remain to be developed. Therefore, this paper continues to study this aspect and uses
DLFPR to express expert evaluation information. At the same time, this paper uses the
recognition and adjustment mechanism of consistency level and consensus degree to reach
the internal and external consensus of experts, so that we can make the most reasonable and
reliable decision-making, which can make up for the deficiencies of the current research.
Zhang et al. [10] introduced the concept of DLFPR, studied the operation rules of language
distribution estimation, defined the multiplicative consistency and additive consistency of
preference relation of distributed language, and gave their ideal properties. In addition,
a new consensus model including recognition rules and adjustment rules was proposed.
The recognition rules are based on matrix distance and arithmetic average operator, which
needs to be improved. On the basis of using different types of numerical scale, Tang
et al. [38] related DLFPRs with FRL and multiplicative preference relation, defined the
expectation consistency of DLFPRs, proposed some goal programming models, derived
personalized numerical scale of language terms, which can fill the research defect of
personalized semantics. However, Tang et al. [38] only considered the consistency within
the experts and did not consider the differences caused by the different cultural and
knowledge backgrounds among the experts, so there was no consensus among the experts.

According to the above analysis, there are still few researches on DLFPRs and some
defects. Therefore, it is of great significance to study the consistency adjustment process
and consensus reaching process of DLFPRs. This paper mainly uses the empirical research
method, using mathematical empirical research and case empirical research, to study and
prove the theoretical hypothesis, and then puts forward some algorithms to optimize the
process, and finally applies it to the case to verify its feasibility. The key contributions of
this article are listed as follows:

• The consistency of DLFPRs is redefined, and only the probability variation is consid-
ered, so the calculation is easier to understand.

• A new iterative algorithm for consistency recognition and adjustment is proposed to
improve consistency level to acceptable level.

• A new iterative algorithm for recognition and adjustment of group consensus degree
is proposed to improve group consensus degree.

The residue part of the article is formulated as follows. Section 2 introduces the basic
concept of LDTSs, DLFPRs. Section 3 redeclares the multiplication consistency of DLFPRs
and a new consistency recognition and adjustment algorithm is proposed. Section 4 designs
a new algorithm for group consensus recognition and adjustment, including the considera-
tion of expert cost. In Section 5, the developed DLFGDM model is established including
consistency adjustment process, consensus reaching process, information integration, ideal
scheme selection. In Section 6, by giving numerical examples of equity incentive mode
selection, the method developed in this paper is in comparison with other methods to
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analyze and appraise the actual utility and advantages of it. In Section 7, we draw the
conclusion of this article and indicate the future research direction.

2. Preliminaries

In this part, we briefly retrospect the LDTSs and outline the concept of DLFPRs.

2.1. Linguistic Distribution Term Sets (LDTSs)

A fuzzy linguistic distribution term set is indicated as S =
{

sξ |ξ = 0, 1, . . . , 2τ
}

with
odd cardinality, where the number of sξ is known as the cardinality of S [8,39–45].

It is necessitated that the fuzzy LDTSs ought to fulfill the characteristics as follows:

1. If sξ ≤ sψ, then ξ ≤ ψ;
2. If ξ = 2τ − ψ, then neg(sξ) = sψ, especially sτ = neg(sτ).

Example 1. To assess the size of a coffee cup, experts can express their inclinations by utilizing the
following LTDS:

S = {s0 : very small, s1 : small, s2 : medium, s3 : big, s4 : very big}

2.2. Distribution Linguistic Fuzzy Preference Relations (DLFPRs)

When making pairwise comparisons in decision making, it is beneficial to express
their preference over elections. In this case, the DMs can utilize assessments of the linguistic
term set mentioned above. Thus, the concept of DLFPRs is introduced.

Definition 1. Supposing that X = {x1, x2, . . . , xn} is an alternative set, S =
{

sξ |ξ = 0, 1, . . . , 2τ
}

is a LDTS, and a DLFPR on X is defined as H ⊂ X×X, H = (hij)n×n with a distribution linguis-

tic fuzzy element (DLFE) hij =

{
(sξ , p(ξ)ij )|ξ = 0, 1, . . . , 2τ, 0 ≤ p(ξ)ij ≤ 1,

2τ

∑
ξ=0

p(ξ)ij = 1

}
, which

is referred to as a linguistic distribution preference of S, where p(ξ)ij represents the corresponding
probability of sξ in the relation between xi and xj. In addition, the following conditions are satisfied

by (sξ , p(ξ)ij ):

1. p(ξ)ij = p(2τ−ξ)
jl , ∀i, j = 1, 2, . . . , n, ξ = 0, 1, . . . , 2τ;

2. hii = {(sτ , 1)}.

3. Consistency-Adjustment Algorithm for DLFPRs

In view of the uncertainty of the item itself and the influence of subjective and objective
factors such as the structure of expert knowledge, experts’ evaluation of decision may have
strong of personal color, which is hard to supply DLFPRs with perfect consistency. Hence,
it is essential to improve DLFPRs.

The section contains three parts. First, characterize the concept of the multiplicative
consistency of DLFPRs. Then, construct a consistency index for DLFPRs to quantify the
consistency level of DLFPRs. Based on them, we propose a method for developing the
consistency level.

3.1. Multiplicative Consistency of DLFPRs

To develop the theory based on the multiplicative consistency of FRL, the multiplica-
tive consistency of DLFPRs is described as below:

Definition 2. Let H = (hij)n×n be a DLFPR, where hij =
{
(sξ , p(ξ)ij )|ξ = 0, 1, . . . , 2τ, 0 ≤ p(ξ)ij

≤ 1,
2τ

∑
ξ=0

p(ξ)ij = 1

}
. If H = (hij)n×n satisfies the following conditions:

∀i, j, l = 1, 2, . . . , n, ξ = 0, 1, . . . , 2τ, p(ξ)ij p(ξ)jl p(ξ)li = p(ξ)il p(ξ)l j p(ξ)ji , (1)
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then H = (hij)n×n is a DLFPR with multiplicative consistency.

Remark 1. In [21,46], there has been some development in the consistency of DLFPRs, but it still
has some drawbacks such as complexity of calculation. Thus, we redefine multiplicative consistency
as follows.

Theorem 1. Given a DLFPR H = (hij)n×n, where hij =
{
(sξ , p(ξ)ij )|ξ = 0, 1, . . . , 2τ, 0 ≤

p(ξ)ij ≤ 1,
2τ

∑
ξ=0

p(ξ)ij = 1

}
, then H̃ = (h̃ij)n×n is a DLFPR with multiplicative consistency, where

h̃ij =

{
(s ξ , p̃(ξ)ij )|ξ= 0, 1, . . . , 2τ, 0 ≤ p̃(ξ)ij ≤ 1,

2τ

∑
ξ=0

p̃(ξ)ij = 1

}
and p̃(ξ)ij =


p̂(ξ)ij /

2τ

∑
ξ=0

p̂(ξ)ij , i < j

p(ξ)ij , i = j

p̃(2τ−ξ)
ji , i > j

,

where

p̂(ξ)ij =

1 +

n
∑

l=1
p(ξ)jl

n
∑

l=1
p(ξ)il


−1

, (2)

satisfies the following:

(1) 0 ≤ p̃(ξ)ij ≤ 1;

(2) H̃ is DLFPR;

(3) p(ξ)ij p(ξ)jl p(ξ)li = p(ξ)il p(ξ)l j p(ξ)ji .

Proof of Theorem 1.

(1) For ∀i, j, l = 1, 2, . . . , n, 0 ≤ p(ξ)ij ≤ 1, we have: 0 ≤ p(ξ)il ≤ 1, 0 ≤ p(ξ)jl ≤ 1, then
n
∑

l=1
p(ξ)jl

n
∑

l=1
p(ξ)il

> 0. Thus,

0 ≤ p̃(ξ)ij =

1 +

n
∑

l=1
p(ξ)jl

n
∑

l=1
p(ξ)il


−1

/
2τ

∑
ξ=0

1 +

n
∑

l=1
p(ξ)jl

n
∑

l=1
p(ξ)il


−1

≤ 1. (3)

(2) For ∀i, j = 1, 2, . . . , n, when i = j, p̃(ξ)ij = p(ξ)ij , we can obtain h̃ii = {(s0, 0), . . . , (sτ−1, 0),

(sτ , 1), (sτ+1, 0), . . . , (s2τ , 0)}. Thus, H̃ = (h̃ij)n×n is a DLFPR.

(3) For ∀i, j, l = 1, 2, . . . , n, ξ = 0, 1, . . . , 2τ, p̂(ξ)ij + p̂(ξ)ji = 1, we can attest:

p̂(ξ)il

p̂(ξ)li

·
p̂(ξ)l j

p̂(ξ)jl

= 1
1− p̂(ξ)il

· 1
1− p̂(ξ)l j

= 1
1/ p̂(ξ)il −1

· 1
1/ p̂(ξ)l j −1

= 1
n
∑

l=1
p(ξ)ll /

n
∑

l=1
p(ξ)il

· 1
n
∑

l=1
p(ξ)jl /

n
∑

l=1
p(ξ)ll

=

n
∑

l=1
p(ξ)il

n
∑

l=1
p(ξ)jl

=

1+

n
∑

l=1
p(ξ)jl

n
∑

l=1
p(ξ)il

1+

n
∑

l=1
p(ξ)il

n
∑

l=1
p(ξ)jl

=

1+

n
∑

l=1
p(ξ)jl

n
∑

l=1
p(ξ)il


−1

1+

n
∑

l=1
p(ξ)il

n
∑

l=1
p(ξ)jl


−1 =

p̂(ξ)ij

p̂(ξ)ji

,

(4)
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Then,
p̃(ξ)il

p̃(ξ)li

·
p̃(ξ)jl

p̃(ξ)l j

=
p̂(ξ)il

∑ p̂(ξ)il

· ∑ p̂(ξ)li

p̂(ξ)li

·
p̂(ξ)l j

∑ p̂(ξ)l j

·
∑ p̂(ξ)jl

p̂(ξ)jl

=
p̂(ξ)ij

p̂(ξ)ji

· ∑ p̂(ξ)ji

∑ p̂(ξ)ij

=
p̃(ξ)ij

p̃(ξ)ji

,
(5)

Thus, we can obtain:

i.e., ∀i, j, l = 1, 2, . . . , n, ξ = 0, 1, . . . , 2τ, p(ξ)ij p(ξ)jl p(ξ)li = p(ξ)il p(ξ)l j p(ξ)ji (6)

Thus, DLFPR H̃ = (h̃ij)n×n is of multiplicative consistency, which finishes the attesta-
tion of Theorem 1. �

On the basis of them, we can propose the following one.

Theorem 2. Given a DLFPR H = (hij)n×n with hij =
{
(sξ , p(ξ)ij )|ξ = 0, 1, . . . , 2τ, 0 ≤ p(ξ)ij ≤ 1,

2τ

∑
ξ=0

p(ξ)ij = 1

}
, its multiplicative consistent DLFPR H̃ = (h̃ij)n×n is created by Equation (2).

Therefore, H is multiplicative consistent when and merely when H = H̃.

3.2. Consistency Index of the DLFPR

In order to judge if acceptable consistency has been achieved, we need to take ad-
vantage of the consistency index. Inspired by the consistency index of the LPR [47] and
the probability linguistic preference relation [48], an index of the DLFPR is proposed as
follows, which is to use for measuring the consistency level of DLFPRs.

Definition 3. Regard the distance between two DLFPRs R1 = (rij,1)n×n and R2 = (rij,2)n×n as
the followings [47]:

d(R1, R2) =
1
n2

n

∑
i=1

n

∑
j=1
|rij,1 − rij,2| (7)

The distance between two DLFPRs is defined on the foundation of Definition 3.

Definition 4. Let H1 = (hij,1)n×n, H2 = (hij,2)n×n be two DLFPRs, then the distance between
them can be described as:

d(H1, H2) =
1
n

√√√√ 1
2τ + 1

n

∑
i=1

n

∑
j=1

2τ

∑
ξ=0

(
p(ξ)ij,1 − p(ξ)ij,2

)2
(8)

Then, we need to prove the axiom properties of distance that d(H1, H2) satisfies.

Theorem 3. Supposing that Hk = (hij,k)n×n(k = 1, 2, 3) are three DLFPRs, the distance
d(H1, H2), described by Equation (8), satisfies some axiomatic properties as follows:

1. d(H1, H2) ≥ 0,
2. d(H1, H2) = d(H2, H1)
3. d(H1, H1) = 0
4. d(H1, H3) ≤ d(H1, H2) + d(H2, H3).

Proof of Theorem 3. The first three axiomatic Properties (1)–(3) are clearly satisfied. Thus,
it is important for us to prove the last axiomatic Property (4).
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For ∀i, j, l = 1, 2, . . . , n, ξ = 0, 1, . . . , 2τ, we can get:(
p(ξ)ij,1 − p(ξ)ij,3

)2
=
(

p(ξ)ij,1 − p(ξ)ij,2 + p(ξ)ij,2 − p(ξ)ij,3

)2

≤
(

p(ξ)ij,1 − p(ξ)ij,2

)2
+
(

p(ξ)ij,2 − p(ξ)ij,3

)2

then,

1
2τ+1

n
∑

i=1

n
∑

j=1

2τ

∑
ξ=0

(
p(ξ)ij,1 − p(ξ)ij,3

)2
≤ 1

2τ+1

n
∑

i=1

n
∑

j=1

2τ

∑
ξ=0

((
p(ξ)ij,1 − p(ξ)ij,2

)2
+
(

p(ξ)ij,2 − p(ξ)ij,3

))
= 1

2τ+1

n
∑

i=1

n
∑

j=1

2τ

∑
ξ=0

(
p(ξ)ij,1 − p(ξ)ij,2

)2

+ 1
2τ+1

n
∑

i=1

n
∑

j=1

2τ

∑
ξ=0

(
p(ξ)ij,2 − p(ξ)ij,3

)2
,

then,√
1

2τ+1

n
∑

i=1

n
∑

j=1

2τ

∑
ξ=0

(
p(ξ)ij,1 − p(ξ)ij,3

)2
≤
√

1
2τ+1

n
∑

i=1

n
∑

j=1

2τ

∑
ξ=0

(
p(ξ)ij,1 − p(ξ)ij,2

)2
+ 1

2τ+1

n
∑

i=1

n
∑

j=1

2τ

∑
ξ=0

(
p(ξ)ij,2 − p(ξ)ij,3

)2

≤
√

1
2τ+1

n
∑

i=1

n
∑

j=1

2τ

∑
ξ=0

(
p(ξ)ij,1 − p(ξ)ij,2

)2
+

√
1

2τ+1

n
∑

i=1

n
∑

j=1

2τ

∑
ξ=0

(
p(ξ)ij,2 − p(ξ)ij,3

)2

thus,

1
n

√
1

2τ+1

n
∑

i=1

n
∑

j=1

2τ

∑
ξ=0

(
p(ξ)ij,1 − p(ξ)ij,3

)2
≤ 1

n

√
1

2τ+1

n
∑

i=1

n
∑

j=1

2τ

∑
ξ=0

(
p(ξ)ij,1 − p(ξ)ij,2

)2

+

√
1

2τ+1

n
∑

i=1

n
∑

j=1

2τ

∑
ξ=0

(
p(ξ)ij,2 − p(ξ)ij,3

)2

i.e., d(H1, H3) ≤ d(H1, H2) + d(H2, H3).
Therefore, the proof of Theorem 3 is accomplished. �

Definition 5. Supposing that H = (hij)n×n is a DLFPR, where hij =
{
(sξ , p(ξ)ij )| ξ = 0, 1, . . . ,

2τ, 0 ≤ p(ξ)ij ≤ 1,
2τ

∑
ξ=0

p(ξ)ij = 1

}
, then H̃ = (h̃ij)n×n is a DLFPR of multiplicative consistency,

where h̃ij =

{
(s ξ , p̃(ξ)ij )|ξ= 0, 1, . . . , 2τ, 0 ≤ p̃(ξ)ij ≤ 1,

2τ

∑
ξ=0

p̃(ξ)ij = 1

}
. The consistency index of

the DLFPR H is described as

CI(H) = d(H̃, H) =
1
n

√√√√ 1
2τ + 1

n

∑
i=1

n

∑
j=1

2τ

∑
ξ=0

(
p̃(ξ)ij − p(ξ)ij

)2
. (9)

We can clearly obtain the following properties about CI(H):

1. 0 ≤ CI(H) ≤ 1;
2. H is a DLFPR of multiplicative consistency if CI(H) = 0.

Definition 6. Define CI as the threshold of the consistency index for a DLFPR H = (hij)n×n to
determine whether it is acceptable for multiplicative consistency. If CI(H) > CI, then it indicates
H has unacceptable consistency. On the contrary, H is of acceptable consistency.
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3.3. Consistency-Adjustment Algorithm for DLFPRs

Next, we proffer an algorithm on consistency adjustment to ameliorate the level
of consistency. For the initial DLFPR H = (hij)n×n given by experts, in order to retain
information as much as possible and ensure a certain degree of information restoration, we

only adjust the matrix with the most inconsistent element p(ξ
′)

i′ j′(t) in each iteration.

Algorithm 1. Consistency-adjustment process for DLFPRs.

Input: The incipient DLFPR H = (hij)n×n, the threshold of consistency CI and the adjusted
parameter θ(0 < θ < 1).

Output: The adjusted DLFPR H = (hij)n×n, which is of acceptable multiplicative
consistency.

Step 1. Let t = 0 and H(t) = H.
Step 2. According to Theorem 1, let H̃ = (h̃ij)n×n be a DLFPR with multiplicative

consistency.
Step 3. Given

CI(H(t)) = d(H̃, H) =
1
n

√√√√ 1
2τ + 1

n

∑
i=1

n

∑
j=1

2τ

∑
ξ=0

(
p̃(ξ)ij(t) − p(ξ)ij(t)

)2
. (10)

Step 4. Compare the level of consistency with the threshold, if CI(H(t)) ≤ CI, then jump to
step 8. Otherwise, advance to Step 5.

Step 5. Seek the element p(ξ
′)

i′ j′(t) with the lowest consistency level, where(
p̃(ξ

′)
ij(t) − p(ξ

′)
ij(t)

)2
= max

0≤ξ≤2τ,i<j

(
p̃(ξ)ij(t) − p(ξ)ij(t)

)2
.

Step 6. Generate the new DLFPR H(t+1) = (hij(t+1))n×n
with hij(t+1) =

{
(sξ , p(ξ)ij(t+1))|

ξ = 0, 1, . . . , 2τ, 0 ≤ p(ξ)ij(t+1) ≤ 1
}

and

p(ξ)ij(t+1) =


(1− δ) · p(ξ

′)
i′ j′(t) + δ · p̃(ξ

′)
i′ j′(t), i = i′, j = j′, ξ = ξ ′

p(ξ)ij(t), otherwise

p(2τ−ξ)
ij(t+1) , i = j′, j = i′, 2τ − ξ = ξ ′

. (11)

Step 7. Let t = t + 1, then back to Step 2.
Step 8. Let H = H(t).
Step 9. End.

In the following, we give the proof about the convergence of Algorithm 1.

Theorem 4. For a DLFPR H = (hij)n×n, θ(0 < θ < 1) is regarded as the iteratively adjusting
parameter and CI(H(t)) is regarded as the consistency index. In addition, t represents the iterative
times, we have CI(H(t+1)) ≤ CI(H(t)) at each t.

Proof of Theorem 4. Based on Equation (11), we learn that p(ξ)ij(t+1) = (1− θ) · p(ξ
′)

i′ j′(t) +

θ · p̃(ξ
′)

i′ j′(t) and p(ξ)ij(t+1) = p(ξ)ij(t), (i, j, ξ) 6= (i′, j′, ξ ′), i, j = 1, 2, . . . , n, ξ = 0, 1, . . . , 2τ. Then,
according to Equation (10), we have:
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CI(H(t+1)) =
1
n

√
1

2τ+1

n
∑

i=1

n
∑

j=1

2τ

∑
ξ=0

(
p̃(ξ)ij(t+1) − p(ξ)ij(t+1)

)2

= 1
n

√
1

2τ+1

(
p̃(ξ
′)

i′ j′(t+1) − p(ξ
′)

i′ j′(t+1)

)2
+ 1

2τ+1 ∑
(i.j.ξ) 6=(i′ ,j′ ,ξ ′)

(
p̃(ξ)ij(t) − p(ξ)ij(t)

)2

= 1
n

√
1

2τ+1

(
p̃(ξ
′)

i′ j′(t+1) − (1− θ) · p(ξ
′)

i′ j′(t) + θ · p̃(ξ
′)

i′ j′(t)

)2
+ 1

2τ+1 ∑
(i.j.ξ) 6=(i′ ,j′ ,ξ ′)

(
p̃(ξ)ij(t) − p(ξ)ij(t)

)2

= 1
n

√
1

2τ+1

(
(1− θ) · p̃(ξ

′)
i′ j′(t+1) − p(ξ

′)
i′ j′(t)

)2
+ 1

2τ+1 ∑
(i.j.ξ) 6=(i′ ,j′ ,ξ ′)

(
p̃(ξ)ij(t) − p(ξ)ij(t)

)2

= 1
n

√
1

2τ+1

(
(1− θ) · p̃(ξ

′)
i′ j′(t) − p(ξ

′)
i′ j′(t)

)2
+ 1

2τ+1 ∑
(i.j.ξ) 6=(i′ ,j′ ,ξ ′)

(
p̃(ξ)ij(t) − p(ξ)ij(t)

)2

≤ 1
n

√
1

2τ+1

(
p̃(ξ
′)

i′ j′(t) − p(ξ
′)

i′ j′(t)

)2
+ 1

2τ+1 ∑
(i.j.ξ) 6=(i′ ,j′ ,ξ ′)

(
p̃(ξ)ij(t) − p(ξ)ij(t)

)2

= 1
n

√
1

2τ+1

n
∑

i=1

n
∑

j=1

2τ

∑
ξ=0

(
p̃(ξ)ij(t) − p(ξ)ij(t)

)2
= CI(H(t)),

thus, we finish the proof of Theorem 4. �

4. Consensus Measures and Consensus Model for DLFPRs

Consensus is the level of consistency formed within DMs, which is important for GDM
to be reliable. In this section, we will make consensus assessments and improvements
on the original evaluation information provided by DMs, where the group consensus
index is to use for measuring the consensus level of all DMs. In GDM problems, A =
{a1, a2, . . . , am} is regarded as a fixed scheme set and S = {s0, s1, . . . , s2τ} is a LDTS. Let
E = {e1, e2, . . . , el}(l ≥ 2) be a collection of l experts. Suppose that C = {c1, c2, . . . , cn} is
an attribute set.

Assume that Dk = (dk
ij)m×n

(k = 1, 2, . . . , l) are l linguistic distribution information

decision-making matrices provided by DMs, where dk
ij =

{
(sξ , p(ξ)ij(k))|ξ = 0, 1, . . . , 2τ,

0 ≤ p(ξ)ij(k) ≤ 1,
2τ

∑
ξ=0

p(ξ)ij(k) = 1

}
. With the help of the similarity measure between distribution

linguistic fuzzy elements (DLFEs), we construct a similarity matrix SMpq = (smpq
ij )m×n

,
p, q = 1, 2, · · · , l for DMs ep and eq, which can be described as:

SMpq =


smpq

11 smpq
12 · · · smpq

1n
smpq

21 smpq
22 · · · smpq

2n
...

...
. . .

...
smpq

m1 smpq
m2 · · · smpq

mn

, (12)

where smpq
ij = 1−

2τ

∑
ξ=0
|p(ξ)ij(p) − p(ξ)ij(q)|, i = 1, 2, . . . , m, j = 1, 2, . . . , n, especially smqq

ij = 1.

On the basis of the similarity matrix SMpq = (smpq
ij )m×n

, we have the consensus

matrix B = (bpq)l×l as follows: B =


b11 b12 · · · b1q
b21 b22 · · · b2q

...
...

. . .
...

bl1 bl2 · · · bll

, where bpq = 1
mn

m
∑

i=1

n
∑

j=1
smpq

ij

represents the consensus degree between DMs ep and eq. In addition, consensus matrix
B = (bpq)l×l is a matrix with symmetry [49].
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Definition 7. Assume that B = (bpq)l×l is a consensus matrix of DMs E = {e1, e2, . . . , el}, then
we define the group consensus degree (GCD) as:

GCD =
2

l(l + 1) ∑
p≤q

bpq (13)

In the following, for the sake of development of consensus degree, we propose a
consensus adjustment algorithm.

Algorithm 2. Consensus-adjustment process for DLFPRs.

Input: The distribution linguistic information decision-making matrices
Dk = (dk

ij)m×n
(k = 1, 2, . . . , l), the threshold of group consensus index θ(0 < θ < 1), the

adjustment cost of DMs c1, c2, . . . , cn(n = 1, 2, · · · , l).
Output: The adapted distribution linguistic information decision-making matrices

D̃k = (d̃k
ij)m×n

(k = 1, 2, . . . , l), which is of acceptable consistency and consensus degree.

Step 1. Determine the magnitude of GCI with θ. If GCI ≥ θ, then jump to Step 5; otherwise,
advance to Step 2.

Step 2. Seek out the smallest element bpq, which means there is the lowest consensus degree
between ep and eq, then search for the similarity matrices SMpq.

Step 3. Based on SMpq, looking for the element with the smallest value smpq
ij , which shows

ep and eq differ the most greatly on the evaluation of alternative Ai in regard to attribute cj. Then,
dp

ij or dq
ij need be adjusted.

Step 4. Adjust according to the adjustment cost cp and cq of DMs ep and eq.
If cp > cq, then the LDE dp

ij should be changed into dq
ij.

If cp < cq, then the LDE dq
ij should be changed into dp

ij.
Step 5. Output the new distribution linguistic information decision-making matrices

D̃k = (d̃k
ij)m×n

(k = 1, 2, . . . , l).

Step 6. End.

5. Distribution Linguistic Fuzzy GDM (DLFGDM) Method

DLFGDM method is a new decision support model developed by us, which can be
divided into three stages as below:

Stage 1.
Improving internal consistency of experts: identify and adjust consistency level within

experts, adjust original DLFPRs into new DLFPRs with acceptable consistency.
Stage 2.
Improving external consensus of experts: identify and adjust GCD of external experts,

and output the consensus matrices.
Stage 3.
Making optimal selection: combine with known weights, DLFPR of acceptable consis-

tency and consensus is aggregated by operators to form a comprehensive DLFPR and then
integrate DLFEs into the final DLFE to sort.

The GDM problem involves the comparison and selection of alternatives. In the past
research, [50] has proposed the probability linguistic weighted averaging (PLWA) operator
to figure out the total aggregate.

We first aim to obtain the comprehensive DLFPR, thus we apply distribution linguistic
weighted averaging (DLWA) operators which is based on PLWA operators [51,52].

If we know an important weight vector of experts, ω = (ω1, ω2, . . . , ωn)
T , where ωj ≥

0, ∑n
j=1 ωj = 1, then we use the DLWA operator to integrate DLFPRs D̃k = (d̃k

ij)m×n
(k =

1, 2, . . . , l), where dk
ij =

{
(sξ , p(ξ)ij(k))|ξ = 0, 1, . . . , 2τ, 0 ≤ p(ξ)ij(k) ≤ 1,

2τ

∑
ξ=0

p(ξ)ij(k) = 1

}
,



Mathematics 2021, 9, 2457 11 of 19

d′ij = DLWA(d̃(1)ij , d̃(2)ij , · · · , d̃(l)ij )

= w1d̃(1)ij ⊕ w2d̃(2)ij ⊕ · · · ⊕ wnd̃(l)ij .
(14)

Thus, we have a comprehensive DLFPR D′ij = (d′ij)m×n
.

In the following, in order to obtain the best alternative from ranking order, an effective
alternative sorting method is proposed by [50].

Suppose that an important weight vector, ω′ =
(
ω′1, ω′2, . . . , ω′n

)T , where ω′j =
1
n is

given, then we use the distribution linguistic arithmetic averaging (DLAA) operator to
integrate the adjusted DLTSs of alternatives ai(i = 1, 2, . . . , m)

d′i = DLAA(d′i1, d′i2, . . . , d′in)
= w1d′i1 ⊕ w2d′i2 ⊕ · · · ⊕ wnd′in
= 1

n (d
′
i1 ⊕ d′i2 ⊕ · · · ⊕ d′in).

(15)

Therefore, we obtain the comprehensive DLFEs
{

d′1, d′2, . . . , d′m
}

, then rank all alterna-
tives a1, a2, . . . , am and make the most satisfactory choice.

The developed DLFGDM method is graphically shown in Figure 1.
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6. Numerical Examples and Comparative Discussion

In this part, we apply the DLFGDM model to deal with the matter of equity incentive
mode selection, then we provide a comparative analysis to present its advantages.

6.1. Application to Select the Best Equity Incentive Mode

With the continuous development of mixed ownership economy, the implementation
of equity incentive in state-owned enterprises can combine the interests of managers and
shareholders of the company, help to improve the internal governance of state-owned
enterprises, enhance the competitiveness of state-owned enterprises, and add vitality to
the long-run development of state-owned enterprises. Therefore, the choice of incentive
mode is particularly important for realizing the goal of equity incentive. According to
relevant documents [53], the stock incentive models can be divided into the following
types: performance stock (x1), restricted stock (x2), virtual stock (x3). In addition, there
are three evaluation attributes of stock incentive models: timeless (c1), binding force
(c2), market risk (c3). Therefore, the state-owned enterprise invited three authoritative
experts {e1, e2, e3} to compare and evaluate the four equity incentive modes and give their
preferences. Let S = {s0 : very poor, s1 : poor, s2 : medium, s3 : good, s4 : very good} be a
LDTS, where the threshold θ of group consensus index is 0.85. Besides, the cost of experts
is (g1, g2, g3) = (1, 3, 4) [54,55]. At the same time, because of the complexity of thinking,
the evaluation of experts is difficult to be expressed by numerical value, and FLPR is
needed to describe it. For instance, DM e1 compares restricted stock (x2) with virtual stock
(x3) and gives an opinion that he/she is 20% sure that the linguistic preference level of
restricted stock (x2) over virtual stock (x3) is very poor, 30% sure that restricted stock (x2)
over virtual stock (x3) is poor, 40% sure that restricted stock (x2) over virtual stock (x3)
is medium, 10% sure that restricted stock (x2) over virtual stock (x3) is good. Thus, the
evaluation of experts on restricted stock (x2) over virtual stock (x3) can be expressed as a
DLFE h1

23 = {(s0, 2), (s1, 0.3), (s2, 0.4) (s3, 0.1), (s4, 0)}. Therefore, through interviews with
three experts and information acquisition based on the above methods, we obtain three
distribution linguistic information decision-making matrices Hk = (hk

ij)3×3
(k = 1, 2, 3) as

follows:

H1 =

 {(s0, 0), (s1, 0), (s2, 1), (s3, 0), (s4, 0)} {(s0, 0.15), (s1, 0.15), (s2, 0.00), (s3, 0.60), (s4, 0.10)} {(s0, 0.00), (s1, 0.20), (s2, 0.00), (s3, 0.45), (s4, 0.35)}
{(s0, 0.10), (s1, 0.60), (s2, 0.00), (s3, 0.15), (s4, 0.15)} {(s0, 0), (s1, 0), (s2, 1), (s3, 0), (s4, 0)} {(s0, 0.2), (s1, 0.3), (s2, 0.4), (s3, 0.1), (s4, 0.0)}
{(s0, 0.35), (s1, 0.45), (s2, 0.00), (s3, 0.20), (s4, 0.00)} {(s0, 0.0), (s1, 0.1), (s2, 0.4), (s3, 0.3), (s4, 0.2)} {(s0, 0), (s1, 0), (s2, 1), (s3, 0), (s4, 0)}



H2 =

 {(s0, 0), (s1, 0), (s2, 1), (s3, 0), (s4, 0)} {(s0, 0.1), (s1, 0.1), (s2, 0.2), (s3, 0.3), (s4, 0.3)} {(s0, 0.2), (s1, 0.5), (s2, 0.1), (s3, 0.1), (s4, 0.1)}
{(s0, 0.3), (s1, 0.3), (s2, 0.2), (s3, 0.1), (s4, 0.1)} {(s0, 0), (s1, 0), (s2, 1), (s3, 0), (s4, 0)} {(s0, 0.3), (s1, 0.2), (s2, 0.3), (s3, 0.2), (s4, 0.0)}
{(s0, 0.1), (s1, 0.1), (s2, 0.1), (s3, 0.5), (s4, 0.2)} {(s0, 0.0), (s1, 0.2), (s2, 0.3), (s3, 0.2), (s4, 0.3)} {(s0, 0), (s1, 0), (s2, 1), (s3, 0), (s4, 0)}



H3 =

 {(s0, 0), (s1, 0), (s2, 1), (s3, 0), (s4, 0)} {(s0, 0.1), (s1, 0.1), (s2, 0.1), (s3, 0.6), (s4, 0.1)} {(s0, 0.00), (s1, 0.35), (s2, 0.25), (s3, 0.20), (s4, 0.20)}
{(s0, 0.1), (s1, 0.6), (s2, 0.1), (s3, 0.1), (s4, 0.1)} {(s0, 0), (s1, 0), (s2, 1), (s3, 0), (s4, 0)} {(s0, 0.25), (s1, 0.00), (s2, 0.40), (s3, 0.35), (s4, 0.00)}

{(s0, 0.20), (s1, 0.20), (s2, 0.25), (s3, 0.35), (s4, 0.00)} {(s0, 0.00), (s1, 0.35), (s2, 0.40), (s3, 0.00), (s4, 0.25)} {(s0, 0), (s1, 0), (s2, 1), (s3, 0), (s4, 0)}


Part 1: Consistency improvement
Step 1. Based on Theorem 1 and Equation (2), we construct three DLFPRs H̃k =

(h̃k
ij)3×3

(k = 1, 2, 3) with multiplicative consistency.

Step 2. Check the consistency index CI of three DLFPRs Hk = (hk
ij)3×3

(k = 1, 2, 3)

with CI = 0.1, δ = 0.4. According to Equation (10), we can have CI(H1) = 0.1157,
CI(H2) = 0.0741, CI(H3) = 0.1237. Therefore, CI(H1) > CI, CI(H2) < CI, CI(H3) > CI.

Step 3. Generate the DLFPRs H1 and H3 on the basis of Algorithm 1. The updated
DLFPRs H1 and H3 are shown below:

H1 =

 {(s0, 0), (s1, 0), (s2, 1), (s3, 0), (s4, 0)} {(s0, 0.14), (s1, 0.13), (s2, 0.07), (s3, 0.48), (s4, 0.18)} {(s0, 0.00), (s1, 0.20), (s2, 0.00), (s3, 0.45), (s4, 0.35)}
{(s0, 0.18), (s1, 0.48), (s2, 0.07), (s3, 0.13), (s4, 0.14)} {(s0, 0), (s1, 0), (s2, 1), (s3, 0), (s4, 0)} {(s0, 0.2), (s1, 0.3), (s2, 0.4), (s3, 0.1), (s4, 0.0)}
{(s0, 0.35), (s1, 0.45), (s2, 0.00), (s3, 0.20), (s4, 0.00)} {(s0, 0.0), (s1, 0.1), (s2, 0.4), (s3, 0.3), (s4, 0.2)} {(s0, 0), (s1, 0), (s2, 1), (s3, 0), (s4, 0)}



H2 =

 {(s0, 0), (s1, 0), (s2, 1), (s3, 0), (s4, 0)} {(s0, 0.1), (s1, 0.1), (s2, 0.2), (s3, 0.3), (s4, 0.3)} {(s0, 0.2), (s1, 0.5), (s2, 0.1), (s3, 0.1), (s4, 0.1)}
{(s0, 0.3), (s1, 0.3), (s2, 0.2), (s3, 0.1), (s4, 0.1)} {(s0, 0), (s1, 0), (s2, 1), (s3, 0), (s4, 0)} {(s0, 0.3), (s1, 0.2), (s2, 0.3), (s3, 0.2), (s4, 0.0)}
{(s0, 0.1), (s1, 0.1), (s2, 0.1), (s3, 0.5), (s4, 0.2)} {(s0, 0.0), (s1, 0.2), (s2, 0.3), (s3, 0.2), (s4, 0.3)} {(s0, 0), (s1, 0), (s2, 1), (s3, 0), (s4, 0)}
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H3 =

 {(s0, 0), (s1, 0), (s2, 1), (s3, 0), (s4, 0)} {(s0, 0.10), (s1, 0.13), (s2, 0.13), (s3, 0.46), (s4, 0.18)} {(s0, 0.00), (s1, 0.35), (s2, 0.25), (s3, 0.20), (s4, 0.20)}
{(s0, 0.18), (s1, 0.46), (s2, 0.13), (s3, 0.13), (s4, 0.10)} {(s0, 0), (s1, 0), (s2, 1), (s3, 0), (s4, 0)} {(s0, 0.25), (s1, 0.08), (s2, 0.32), (s3, 0.30), (s4, 0.05)}
{(s0, 0.20), (s1, 0.20), (s2, 0.25), (s3, 0.35), (s4, 0.00)} {(s0, 0.05), (s1, 0.30), (s2, 0.32), (s3, 0.08), (s4, 0.25)} {(s0, 0), (s1, 0), (s2, 1), (s3, 0), (s4, 0)}


In addition, CI(H1) = 0.0949 < CI, CI(H3) = 0.0850 < CI.
Step 4. Let H1 = H1, H3 = H3, then H1, H2, H3 are three DLFPRs with acceptable

consistency.
Part 2: Consensus facilitation
Step 5. Construct the distance matrix SMpq = (smpq

ij )3×3
, p, q = 1, 2, 3 in line accor-

dance with the adjusted DLFPRs H1, H2, H3 of acceptable consistency.
Step 6. Calculate GCD of three DLFPRs, then compare it with the group consensus

index threshold θ = 0.85. Based on Equation (13), we have: GCD = 0.814 < θ.
Step 7. Apply Algorithm 2 to ameliorate the consensus level. Among elements in

B = (bpq)3×3, the smallest element is b12.
Step 8. Chase down the smallest element sm12

13 in SM12, then we need to make
adjustments to d1

13 because the adjustment cost of e1 is lower than e2.
Step 9. Output the adjusted DLFPR H′1 as follows:

H′1 =

 {(s0, 0), (s1, 0), (s2, 1), (s3, 0), (s4, 0)} {(s0, 0.14), (s1, 0.13), (s2, 0.07), (s3, 0.48), (s4, 0.18)} {(s0, 0.10), (s1, 0.40), (s2, 0.05), (s3, 0.25), (s4, 0.20)}
{(s0, 0.18), (s1, 0.48), (s2, 0.07), (s3, 0.13), (s4, 0.14)} {(s0, 0), (s1, 0), (s2, 1), (s3, 0), (s4, 0)} {(s0, 0.2), (s1, 0.3), (s2, 0.4), (s3, 0.1), (s4, 0.0)}
{(s0, 0.20), (s1, 0.25), (s2, 0.05), (s3, 0.40), (s4, 0.10)} {(s0, 0.0), (s1, 0.1), (s2, 0.4), (s3, 0.3), (s4, 0.2)} {(s0, 0), (s1, 0), (s2, 1), (s3, 0), (s4, 0)}

,

with GCD′ = 0.855 > θ. Let H1 = H′1, then H1, H2, H3 are three consensus matrices.
Part 3: Stock incentive models selection
Step 10. Utilize DLWA operator to integrate three DLFPRs into the comprehensive

DLFPR H′ with known expert weights ω = (0.33, 0.35, 0.32)T . H′ is as shown below:

H′ =

 {(s0, 0), (s1, 0), (s2, 1), (s3, 0), (s4, 0)} {(s0, 0.12), (s1, 0.12), (s2, 0.13), (s3, 0.41), (s4, 0.22)} {(s0, 0.10), (s1, 0.42), (s2, 0.13), (s3, 0.18), (s4, 0.16)}
{(s0, 0.22), (s1, 0.41), (s2, 0.13), (s3, 0.12), (s4, 0.12)} {(s0, 0), (s1, 0), (s2, 1), (s3, 0), (s4, 0)} {(s0, 0.25), (s1, 0.20), (s2, 0.34), (s3, 20), (s4, 0.01)}
{(s0, 0.16), (s1, 0.18), (s2, 0.13), (s3, 0.42), (s4, 0.10)} {(s0, 0.01), (s1, 0.20), (s2, 0.34), (s3, 0.20), (s4, 0.25)} {(s0, 0), (s1, 0), (s2, 1), (s3, 0), (s4, 0)}


Step 11. Use DLAA operator to integrate the adjusted LDTSs of alternatives based

on the adjusted DLFPR H′. Then, we obtain the comprehensive DLFEs of stock incentive
models as follows:

H∗ =

 {(s0, 0.07), (s1, 0.18), (s2, 0.42), (s3, 0.20), (s4, 0.13)}
{(s0, 0.16), (s1, 0.20), (s2, 0.49), (s3, 0.11), (s4, 0.04)}
{(s0, 0.06), (s1, 0.14), (s2, 0.48), (s3, 0.20), (s4, 0.11)}


Step 12. Rank three stock incentive models X = {x1, x2, x3}, we have x1 � x3 � x2.

Therefore, the best equity incentive mode is x1.

6.2. Comparative Discussion

In this subsection, we compare our proposed DLFGDM method with other methods
in [10,38].

6.2.1. Application of the Method in Zhang et al.

Zhang et al. [10] utilized the concept of distribution assessments in a LDTS and
explored the consistency and consensus measures, then a consensus model is developed to
help DMs ameliorate the consensus level among DLFPRs.

Step 1. Check that the group consensus level meets the requirements. Based on

C̃I(Hp, Hq) = 1− d̃(Hp, Hq) = 1− 1
2n2

n
∑

j=1

n
∑

i=1

2τ

∑
ξ=0
|p(ξ)ij(p) − p(ξ)ij(q)|, we can have C̃I(H1, H2) =

0.867, C̃I(H1, H3) = 0.944, C̃I(H2, H3) = 0.928. Let the threshold θ̃ = 0.9, then
C̃I(H1, H2) < θ̃, C̃I(H1, H3) > θ̃, C̃I(H2, H3) > θ̃, which means the DLFPRs of e1 and e2
need to be adjusted.
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Step 2. Calculate identification rules IR(1), IR(2) according to IR(k) =
1
z

z
∑

q=1
C̃I(H(k), H(q)),

then we can obtain IR(1) = 0.937, IR(2) = 0.932 and IR(1) > IR(2). Therefore, the DLFPR
of e2 need to be adjusted.

Step 3. Assume that the adjustment parameter β of e2 is 0.4, then on the basis of w = 1−β
z−1 ,

we have: w2 = (0.3, 0.4, 0.3)T. Let H2 = (hij,2)3×3, where hij,2 = DAWAw2

{
hij,1, . . . , hij,4

}
.

After calculation, the H2 is listed as below:

H2 =

 {(s0, 0), (s1, 0), (s2, 1), (s3, 0), (s4, 0)} {(s0, 0.12), (s1, 0.12), (s2, 0.09), (s3, 0.52), (s4, 0.15)} {(s0, 0.05), (s1, 0.33), (s2, 0.12), (s3, 0.27), (s4, 0.23)}
{(s0, 0.15), (s1, 0.52), (s2, 0.09), (s3, 0.12), (s4, 0.12)} {(s0, 0), (s1, 0), (s2, 1), (s3, 0), (s4, 0)} {(s0, 0.24), (s1, 0.16), (s2, 0.38), (s3, 0.22), (s4, 0.00)}
{(s0, 0.23), (s1, 0.27), (s2, 0.12), (s3, 0.33), (s4, 0.05)} {(s0, 0.00), (s1, 0.22), (s2, 0.38), (s3, 0.16), (s4, 0.24)} {(s0, 0), (s1, 0), (s2, 1), (s3, 0), (s4, 0)}



In addition, C̃I
′
(H1, H2) = 0.933 > θ, let H2 = H2 then three DLFPRs are consensus

matrices.
Step 4. Use DLWA operator with known expert weight ω = (0.33, 0.35, 0.32)T , we can

obtain a new comprehensive DLFPR H:

H =

 {(s0, 0), (s1, 0), (s2, 1), (s3, 0), (s4, 0)} {(s0, 0.12), (s1, 0.12), (s2, 0.06), (s3, 0.57), (s4, 0.13)} {(s0, 0.02), (s1, 0.29), (s2, 0.12), (s3, 0.31), (s4, 0.26)}
{(s0, 0.13), (s1, 0.57), (s2, 0.06), (s3, 0.12), (s4, 0.12)} {(s0, 0), (s1, 0), (s2, 1), (s3, 0), (s4, 0)} {(s0, 0.23), (s1, 0.16), (s2, 0.39), (s3, 0.22), (s4, 0.00)}
{(s0, 0.26), (s1, 0.31), (s2, 0.12), (s3, 0.29), (s4, 0.02)} {(s0, 0.00), (s1, 0.22), (s2, 0.39), (s3, 0.16), (s4, 0.23)} {(s0, 0), (s1, 0), (s2, 1), (s3, 0), (s4, 0)}



Step 5. Use DLAA operator with H to integrate DLFEs, then we have:

H
∗
=

 {(s0, 0.05), (s1, 0.14), (s2, 0.40), (s3, 0.29), (s4, 0.12)}
{(s0, 0.12), (s1, 0.24), (s2, 0.49), (s3, 0.11), (s4, 0.04)}
{(s0, 0.09), (s1, 0.18), (s2, 0.49), (s3, 0.15), (s4, 0.09)}


Therefore, we can conclude that x1 � x3 � x2, and x1 is the best equity incentive

mode.

6.2.2. Application of the Method in Tang et al.

Tang et al. [38] used different types of numerical scale to connect DLPRs with FRL and
multiplicative preference relation, and then gave the excepted consistency, and based on
this, established the goal programming model to deduce the numerical scale of language
terms.

Suppose that the scale functions of three DLFPRs H1, H2, H3 are multiplicative. The
optimization model can be established using the following methods:

For DLFPR H1,

Min M1 = π−12 + π+
12 + π−13 + π+

13 + π−23 + π+
23

s.t.

ŵ2 · (0.15q(l0) + 0.15q(l1) + 0.6q(l2) + 0.1q(l3))− ŵ1 + λ−12 − λ+
12 = 0

ŵ3 · (0.20q(l0) + 0.45q(l3) + 0.35q(l4))− ŵ1 + λ−13 − λ+
13 = 0

ŵ3 · (0.20q(l0) + 0.30q(l1) + 0.40q(l2) + 0.10q(l3)− ŵ2 + λ−23 − λ+
23 = 0

λ−12, λ+
12, λ−13, λ+

13, λ−23, λ+
23 ≥ 0

q(l0) = 1/3 and q(l4) = 3
q(l1−α) · q(lα) = 1, α = 0, 1, 2, 3, 4
α ≤ q(lα) ≤ (α + 2), α = 3, 4
1/(2− α) ≤ q(lα) ≤ 1/(−α), α = 0, 1
0 < ŵi ≤ 1, ∑3

i=1 ŵi = 1, i = 1, 2, 3

By solving it, we can obtain that:

λ−12 = λ+
12 = λ−13 = λ+

13 = λ+
23 = 0, λ−23 = 0.263, M1 = 0.263; ŵ1 = (ŵ1, ŵ2, ŵ3)

T = (0.388, 0.420, 0.192)T

and q(l0) = 0.333, q(l1) = 0.5, q(l2) = 1, q(l3) = 2, q(l4) = 3



Mathematics 2021, 9, 2457 15 of 19

For DLFPR H2,

Min M2 = π−12 + π+
12 + π−13 + π+

13 + π−23 + π+
23

s.t.

ŵ2 · (0.1q(l0) + 0.1q(l1) + 0.2q(l2) + 0.3q(l3) + 0.3q(l4))− ŵ1 + λ−12 − λ+
12 = 0

ŵ3 · (0.2q(l0) + 0.5q(l1) + 0.1q(l2) + 0.1q(l3) + 0.1q(l4))− ŵ1 + λ−13 − λ+
13 = 0

ŵ3 · (0.3q(l0) + 0.2q(l1) + 0.3q(l2) + 0.2q(l3)− ŵ2 + λ−23 − λ+
23 = 0

λ−12, λ+
12, λ−13, λ+

13, λ−23, λ+
23 ≥ 0

q(l0) = 1/3 and q(l4) = 3
q(l1−α) · q(lα) = 1, α = 0, 1, 2, 3, 4
α ≤ q(lα) ≤ (α + 2), α = 3, 4
1/(2− α) ≤ q(lα) ≤ 1/(−α), α = 0, 1
0 < ŵi ≤ 1, ∑3

i=1 ŵi = 1, i = 1, 2, 3

By solving it, we can obtain that:

λ+
12 = λ−12 = λ−13 = λ+

13 = λ−23 = 0, λ+
23 = 0.158, M2 = 0.158; ŵ2 = (ŵ1, ŵ2, ŵ3)

T = (0.377, 0.212, 0.411)T

and q(l0) = 0.333, q(l1) = 0.5, q(l2) = 1, q(l3) = 2, q(l4) = 3.

For DLFPR H3,

Min M2 = π−12 + π+
12 + π−13 + π+

13 + π−23 + π+
23

s.t.

ŵ2 · (0.10q(l0) + 0.10q(l1) + 0.10q(l2) + 0.60q(l3) + 0.10q(l4))− ŵ1 + λ−12 − λ+
12 = 0

ŵ3 · (0.35q(l1) + 0.25q(l2) + 0.20q(l3) + 0.20q(l4))− ŵ1 + λ−13 − λ+
13 = 0

ŵ3 · (0.25q(l0) + 0.40q(l2) + 0.35q(l3)− ŵ2 + λ−23 − λ+
23 = 0

λ−12, λ+
12, λ−13, λ+

13, λ−23, λ+
23 ≥ 0

q(l0) = 1/3 and q(l4) = 3
q(l1−α) · q(lα) = 1, α = 0, 1, 2, 3, 4
α ≤ q(lα) ≤ (α + 2), α = 3, 4
1/(2− α) ≤ q(lα) ≤ 1/(−α), α = 0, 1
0 < ŵi ≤ 1, ∑3

i=1 ŵi = 1, i = 1, 2, 3

By solving it with similar methods, we can learn that:

λ+
12 = λ−12 = λ+

13 = λ−23 = λ+
23 = 0, λ−13 = 0.060, M3 = 0.060; ŵ3 = (ŵ1, ŵ2, ŵ3)

T = (0.518, 0.308, 0.174)T ,
and q(l0) = 0.333, q(l1) = 0.5, q(l2) = 1, q(l3) = 2, q(l4) = 3.

Using the direct evaluation method to determine the expert weights ω = (0.33, 0.35,
0.32)T , the following ranking matrix is obtained.

ŵ1 ŵ2 ŵ3 ω ŵ′

x1
x2
x3

→
→
→

 0.388 0.377 0.518
0.420 0.212 0.308
0.192 0.411 0.174

×
 0.33

0.35
0.32

 =

 0.423
0.329
0.248


Therefore, we can obtain the final ranking x1 � x2 � x3, and consider x1 as the best

equity incentive mode.
On the basis of the above results, we can obtain that the three methods make the

same decision and all choose x1 as the best equity incentive mode. Therefore, the method
developed in this paper is effective and has certain practical significance. In the following,
we summarize the advantages of this method through comparative discussion:

1. It is essential to improve the level of consistency and consensus in GDM. However,
Zhang et al. [10] did not check the consistency of the original DLFPRs, but directly car-
ried out the consensus degree test by defining C̃I, ignoring the consistency adjustment
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within the experts, and then directly used the weighted average method to update and
adjust, which results in insufficient retention of the original language information of
the experts and a large range of changes. Therefore, the developed DLFGDM method
includes not only the consistency identification but also the consistency improvement
method, so the application of it will be more reliable.

2. Compared to the method of Tang et al. [38], our scheme has a different ranking.
However, Tang et al. [38] only use the goal programming model based on expected
consistency for adjustment, without consensus test and consensus improvement.
Due to the influence of subjective and objective factors, the evaluation information
proposed by experts may differ greatly, and there may be differences between them.
Therefore, the direct application of the established expert weight to the final evaluation
ranking may lead to the results being not reliable and lack of rationality. Our DLFGDM
method measures and adjusts the consensus degree, and uses the weighted average
operator to form a comprehensive consensus matrix to comprehensively deal with the
experts’ opinions, which is more reasonable, more reliable and has a wider application
prospect.

In addition, due to the focus of the paper and the convenience of calculation, this paper
only selects the situation where three experts make decisions. When the number of DMs
increases, more DLFPRs will be provided. We will conduct the identification adjustment
of consistency level and consensus degree, so that the internal and external consensus of
experts can be reached, and the final scheme ordering will be formed to make the optimal
decision. When decisions are made in large groups, consistency and consensus are greatly
improved, and the results are more reasonable and reliable. In the future, we will also take
large-scale group decision making as one of the research directions.

7. Conclusions

Nowadays, consistency and consensus decision-making are very important to elimi-
nate internal and external differences among experts and form reliable decision results. In
this study, we introduce the concept of DLFPRs, consider the distance between expert eval-
uation and constructed consistency evaluation, and propose a new consistency recognition
and adjustment algorithm. After ensuring the acceptable consistency, the consensus degree
can be improved to reach a higher acceptable consensus level. Then DLWA operator is
used to obtain the comprehensive evaluation matrix. Finally, DLAA operator is used to
obtain fuzzy distributed language elements and order them.

The results of this study are divided into the following aspects:

1. Based on the new distance formula, a new consistency index is introduced.
2. The definition of multiplicative consistency of DLFPR is presented to include only the

variation of distributed language evaluation probability. A new consistency adjust-
ment algorithm is proposed, which preserves the original appraisement information
as far as possible and adjusts the lowest consistency element each time.

3. A new consensus degree and a consensus promotion algorithm are developed by
considering the costs of experts.

4. Two operators are used to integrate the distribution linguistic elements to derive
alternative sorting.

In general, the DLFGDM method developed by us can transform and analyze the
evaluation information provided by experts. In case of internal and external differences
between experts, we utilize the identifying and adjusting algorithm to improve the internal
consistency and external consensus, including the cost of experts considered. This is so that
we can solve GDM problems better and make the most reasonable and reliable decision.

At the same time, this study also has some deficiencies:

1. Without considering the limited knowledge and complex problems in real decision
making, the evaluation information may be incomplete.
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2. The predetermined expert weights and attribute weights remain unchanged, which
lacks certain rationality.

Therefore, in the future, we should further study the multi-granularity terms of
different experts [56], multi-standard decision-making methods [57], large-scale group
decision-making [58,59], and consider the psychological characteristics of regret aversion
of experts [49], so that we can expand the application scope of decision support model and
apply it to more complex and diverse situations.
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