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Abstract: A novel multi-server vacation queuing model is considered. The distinguishing feature of
the model, compared to the standard queues, is the self-sufficiency of servers. A server can terminate
service and go on vacation independently of the system manager and the overall situation in the
system. The system manager can make decisions whether to allow the server to start work after
vacation completion and when to try returning some server from a vacation to process customers.
The arrival flow is defined by a general batch Markov arrival process. The problem of optimal choice
of the total number of servers and the thresholds defining decisions of the manager arises. To solve
this problem, the behavior of the system is described by the three-dimensional Markov chain with
the special block structure of the generator. Conditions for the ergodicity of this chain are derived,
the problem of computation of the steady-state distribution of the chain is discussed. Expressions
for the key performance indicators of the system in terms of the distribution of the chain states are
derived. An illustrative numerical result is presented.

Keywords: multi-server vacation queuing model; self-sufficient servers; optimization; multi-dimensional
Markov chains

1. Introduction

Queuing theory is one of the most quickly developing branches of applied probability
due to the intensive appearance of new queuing models of real-world systems, telecommu-
nication networks, in particular. As a consequence of the creation of various new schemes
of resource sharing and multiplexing, the role of multi-server systems grows. The most
common assumption made in the literature about multi-server queues is that there exists a
finite or infinite pool of servers that provide service to arriving customers under the control
of the system manager. The simplest, traditional, case assumes the existence of the fixed
finite number of servers. The arriving customer occupies one of the idle servers to receive
service. If all servers are occupied, the arrived customer is lost or stored into the buffer of
a finite or infinite capacity or temporarily leaves the system and makes retrials to find a
free server.

The process of servers’ occupation is usually completely defined by the arrival of
customers. The arrival of a new customer implies the occupation of one more server if
some server is free. The traditional service disciplines for the systems with a buffer are
so-called conservative. This means that the situation when the input buffer is not empty
while some servers are idle is not possible. The extreme diversity of real-world systems and
processes that can be modeled by multi-server queuing systems gave raise to consideration
of other scenarios of involvement of the servers into the processing of customers. Some of
them are briefly listed below.

• Systems with unreliable servers in which any server (or all servers together) can
be broken after a random period of time and require recovering. During the server
recovering, it is not able to provide service. After the end of the recovering, the server
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resumes service if the input buffer is not empty. The literature about unreliable
queuing systems (or queues with service interruption) is huge. We can mention,
e.g., [1–10].

• Systems with server vacation in which in some situations the server can temporally
stop operation and go to so-called vacation. Usually, the decision of whether or not to
go on vacation does not depend on the wish of the server. Vacation is automatically
taken if the buffer is empty or restriction on the continuous time of operation of
the server or the number of sequentially provided services is violated. The existing
literature about queuing systems with server vacation is also huge. We can mention,
e.g., [11–16]; however, it is worth noting that the research of queuing systems with
vacations mainly focuses on the analysis of single-server queues, e.g., [17].

• Systems with randomly varying number of available servers as the partial case of
queues operating in the random environment, see, e.g., [18,19] and references therein.
Note that in the majority of the papers devoted to the queues operating in the random
environment the number of the servers does not change. Only the arrival, service
and other rates are changed at the epochs of the change of the state of the random
environment. These systems can be regarded as the generalization of unreliable
queues to the cases of more flexible mechanisms of server activation and deactivation
as well as partial reliability of the servers. The study of systems operating in a random
environment was apparently initiated in [20] under the name of systems with partial
failure of the device. Links to numerous more recent publications can be found,
e.g., in [10,21–23].

• Systems with a controllable number of active servers in which a certain part of existing
servers is switched-off and is activated (one-by-one or in blocks) only when the
number of customers in the system grows above some fixed threshold values, see,
e.g., [24–27].

• Systems in which arriving customers require occupation of a random number of
servers, see, e.g., [28], or when all servers not engaged currently into service have to
start service of an arriving customer, see, e.g., [29,30].

• Systems with additional resource required for service, see, e.g., [31–36]. Such systems
are called in the literature as queuing-inventory systems, assembly-like systems,
double-sided or queues with paired customers. These systems are non-conservative
because the servers can stay idle in the presence of a non-empty buffer if some
additional resource required for service is currently unavailable.

The model considered in this paper combines certain features of systems with va-
cations and systems with a controllable number of active servers. The common features
are an opportunity of taking a vacation by a server and the possibility of influence, to
some extent, on these vacations. The distinguishing feature of the considered model is the
self-sufficiency of the servers. This self-sufficiency manifests itself as follows.

(i) Any server that just finished service of a customer may decide to take a vacation
or start a new service, independently of the situation in the system and desire of the
system manager;

(ii) The server being on vacation (we refer to such a server as the vacated server)
that obtains an invitation (offer) of the system manager to terminate a vacation, due to
accumulation of a long queue, can accept this offer and start service or decline this offer
and continue its vacation.

Note that the leverage of influence of the system manager on the servers is the option
not to allow to finish a vacation and start service if the queue length in the system is small.

The goal of this paper is to apply the matrix-analytical methods of queuing theory for
analysis of the queuing system with self-sustained servers, which have many important
applications. Analysis is far from being easy due to the space-inhomogeneous behavior of
the multi-dimensional Markov chain describing the dynamics of the system. Nevertheless,
the stability condition of the system is obtained in a nice analytically tractable form,
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algorithms for computation of the main performance measures of the system are elaborated
and numerically verified.

The novelty of this paper is defined by the fact that, to the best of our knowledge,
the systems with the self-sufficiency of servers defined in this paper are not considered in
the existing literature.

One of the numerous possible practical applications of the considered queuing model
is as follows. Let us consider a manufacturing company that produces some product. Prod-
ucts arrive at the warehouse from where they need to be delivered to consumers by trucks.
The business model of the company does not assume the purchase, storage and mainte-
nance of trucks. Instead, the company hires some pool of independent individual cargo
carriers (freelancers, individual entrepreneurs) having their own truck for delivering the
products. The contract between the company and the truck driver (server) assumes the
obligation of the driver to finish any started service and its right not to provide further
services for a while. The obligation of the company may be providing an opportunity to
each server to implement a certain minimum average number of services during a fixed
period of time. The company has the right to ignore the wish of the server to provide a
service (if the queue is empty or short) and to invite the vacated server for resuming the
service (if the queue becomes long).

A similar system arises in modeling Internet-based taxi companies in which the
majority of engaged taxi drivers work only part-time in comfortable periods of time
for them.

The proposed model can be used by the company owner for managerial goals. Namely,
he/she can decide the optimal number of contracts with servers to be signed, conditions of
proposing to the server to interrupt vacation and declining the attempt of the server to start
working after vacation completion. Various costs can be taken into account, e.g., average
waiting time in the queue, queue length, probability of a customer loss due to impatience,
and charge for not providing the chances to implement the negotiated number of services.
The problem of optimization of the number of required servers is far from trivial. If this
number is too small, a queue may be pretty high. Customers may leave the queue without
service (if the products are perishable or must be delivered to the consumer by a certain
time), which may provoke substantial losses for the company. If this number is too
large, problems with providing enough work to the servers can arise. The solution of the
optimization problem requires the computation of the values of the various performance
indicators of the system under the fixed values of the system parameters and the thresholds
of defining decisions about sending invitations to the vacated servers and declining their
offers to start working. As the mandatory step to make this computation, it is necessary to
describe the behavior of the system by the multi-dimensional Markov chain and analyze
its stationary distribution. Taking into account the nice properties of the Kronecker product
of matrices, it is possible to write down the generator of the Markov chain describing the
operation of the transportation company in a transparent form. Then, it is necessary to
analyze the stationary behavior of the chain, compute performance measures of the system
and implement numerical analysis of these indicators.

Correspondingly, the outline of the content of the sections of the paper is as follows.
Section 2 contains a precise description of the queuing system under study. The process
describing the behavior of the system is defined in Section 3 as the three-dimensional
Markov chain. The infinitesimal generator of this Markov chain is written down. Section 4
is devoted to the derivation of the ergodicity condition of this Markov chain. Section 5
concerns the problem of computation of the stationary distribution of this Markov chain.
Formulas for computing the values of several performance indicators of the system based
on the known stationary distribution of the Markov chain are presented in Section 6.
Section 7 contains numerical illustrations and Section 8 concludes the paper.

2. Mathematical Model

We consider a queuing system having the structure presented in Figure 1.
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Figure 1. Structure of queuing system under study.

The system has N identical and independent of each other servers. All arriving
customers are temporarily placed into the buffer of an infinite capacity. The service
discipline is First-In-First-Out. The arrival of customers is described by the batch Markov
arrival process (BMAP). The BMAP is a rich class of point processes that allows to
adequately model the majority of real-world processes, including those having correlated
inter-arrival times and (or) large variance of these times. This makes them valuable for
modeling real-world arrival flows. A detailed description of the BMAP can be found,
e.g., in [37–39]; therefore, we present only very dense information about the BMAP that is
necessary for the goals of this paper.

Arrivals of customers in the BMAP occur under control of an irreducible Markov
chain νt, t ≥ 0, with a finite state space {1, . . . , W} were W is the fixed integer number.
Intensities of transitions of the process νt, which are accompanied by the arrival of a batch
of k customers, are given by the entries of the matrix Dk, k ≥ 0. Here we assume that
Dk = O for k > K where K is the maximum batch size. This assumption is just a technical
one. It is non-necessary and made just for receiving a possibility to use for further analysis
the numerically more efficient algorithms from [40] along with the algorithms from [41].

The diagonal entries of the matrix D0 are negative and define, up to the sign, the in-

tensity of departing of process νt from the corresponding states. The matrix D =
K
∑

k=0
Dk is

the generator of Markov chain νt. The stationary distribution of Markov chain νt is defined
by the row vector θ that is the unique solution to the system

θD = 0, θe = 1.

Here and in the sequel, e is a column vector of appropriate size consisting of 1 s, 0 is a
row vector of appropriate size consisting of 0 s.

The average rate λ of customers arrival is defined by

λ = θ
K

∑
k=0

kDke.

The average rate λb of batches arrival is defined by

λb = θ
K

∑
k=0

Dke.

We assume that the service time of a customer is exponentially distributed with the
parameter µ, µ < ∞. If during the service completion epoch at some server the buffer is
idle, the server takes a vacation. If the buffer is not idle, the server starts a new service
with probability p, 0 ≤ p ≤ 1, and with the complementary probability takes a vacation
independently on the number of customers in the buffer. We assume that the vacation
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times of different servers are independent and have an exponential distribution with the
parameter γ, 0 < γ < ∞. When the vacation time of a server expires, the server tries to
start work. If during the vacation completion moment the number of customers in the
buffer is greater than or equal to the predefined threshold J1, 0 < J1 < ∞, the server picks
up the customer from the head of the queue and starts its service. In the opposite case,
i.e., the queue length is less than J1, the server has to repeat vacations until it will obtain
permission to resume service.

We assume that when the number of customers in the buffer becomes greater or equal
to another predefined threshold J2 such that J1 < J2 < ∞, the system starts searching
a server being on vacation and offers to the server to terminate a vacation ahead of the
schedule and start service. The search time has the exponential distribution with the
parameter β, 0 < β < ∞. During each search, the system offers to start working to vacated
servers sequentially. If any server agrees to start work, the search is stopped. If a server
declines the offer, the system makes an offer to another vacated server. We assume that
each vacated server declines the offer with probability q, 0 ≤ q ≤ 1, and accepts the offer
with the complementary probability. Thus, with the probability qn, where n is the number
of servers on the vacation, no one vacated server wants to interrupt the vacation and start
working. With the complementary probability, the search results function by finding the
server who accepts the offer. This server starts to work immediately. After the end of any
search, the system starts the new search if the number of customers in the buffer is still
greater or equal to the threshold J2. Otherwise, new searches are not implemented until the
queue length increases again to the level J2.

Customers can be impatient and leave the buffer without service, independently of
other customers. A customer leaves the system without service after an exponentially
distributed patience time with the parameter α, α ≥ 0.

Our goal is to analyze the described queuing model.

3. Process of the System States

The behavior of the system under study can be described by the regular irreducible
continuous-time Markov chain

ξt = {it, nt, νt}, t ≥ 0,

where, during the epoch t,

• it is the number of customers in the buffer, it ≥ 0;
• nt is the number of busy servers, nt = 0, N;
• νt is the state of the underlying process of the BMAP, νt = 1, W.

Here and further, the notation such as n = 0, N means that the parameter n admits
values from the set {0, . . . , N}.

To formally define the continuous-time Markov ξt, it is necessary to write down,
for any pair of the states (i, n, ν) and (i′, n′, ν′), the intensities of transition between
these states.

To avoid bulky denotations, following the standard methodology of investigation of
multi-dimensional Markov chains having one denumerable component, we enumerate
the states of the Markov chain ξt = {it, nt, νt} in the direct lexicographic order of the com-
ponents {nt, νt} and combine the set of states (i, 0, 1), . . . , (i, 0, W), (i, 1, 1), . . . , (i, 1, W), . . . ,
(i, N, 1), . . . , (i, N, W) into the level i, i ≥ 0.

Let Qi,j be the matrix constituted by the transition intensities from level i to level j
and let Q be the block matrix constituted by the blocks Qi,j, i ≥ 0, j ≥ 0. It is clear that the
matrix Q is the infinitesimal generator of the Markov chain ξt, t ≥ 0.
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Theorem 1. The generator Q of the Markov chain ξt, t ≥ 0, has the following block upper-
Hessenbergian structure

Q =


Q0,0 Q0,1 Q0,2 Q0,3 . . . Q0,K O O . . .
Q1,0 Q1,1 Q1,2 Q1,3 . . . Q1,K Q1,K+1 O . . .
O Q2,1 Q2,2 Q2,3 . . . Q2,K Q2,K+1 Q2,K+2 . . .
...

...
...

...
...

...
...

...
. . .

.

The non-zero blocks are defined as follows:

Q0,0 = IN+1 ⊗ D0 − µC⊗ IW + µCE− ⊗ IW ,

Qi,i = IN+1 ⊗ D0 − iαI(N+1)W − µC⊗ IW + µ(1− p)CE− ⊗ IW , 0 < i < J1,

Qi,i = IN+1 ⊗ D0 − iαI(N+1)W − µC⊗ IW + µ(1− p)CE− ⊗ IW−

−γ(NIN+1 − C)⊗ IW , J1 ≤ i < J2,

Qi,i = IN+1 ⊗ D0 − iαI(N+1)W − µC⊗ IW + µ(1− p)CE− ⊗ IW−

−γ(NIN+1 − C)⊗ IW − β(IN+1 − Q̃)⊗ IW , i ≥ J2,

Qi,i+k = IN+1 ⊗ Dk, k = 1, K,

Qi,i−1 = iαI(N+1)W + µpC⊗ IW , 0 < i ≤ J1,

Qi,i−1 = iαI(N+1)W + µpC⊗ IW + γ(NIN+1 − C)E+ ⊗ IW , J1 ≤ i < J2,

Qi,i−1 = iαI(N+1)W + µpC⊗ IW + γ(NIN+1 − C)E+ ⊗ IW + β(IN+1 − Q̃)E+ ⊗ IW , i ≥ J2,

where
⊗ indicates the symbol of the Kronecker product matrices, see [42];
C = diag{0, 1, . . . , N};
diag{. . . } denotes the diagonal matrix with the diagonal entries listed in the brackets;
I. is the identity matrix having size indicated in the suffix (if the size of the matrix is clear from

the context, it can be omitted);

E− =


0 0 0 . . . 0 0
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0

, E+ =


0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1
0 0 0 . . . 0 1

;

Q̃ = diag{qN , qN−1, qN−2, . . . , , q1, 0}.

Proof. The proof of Theorem 1 is implemented via careful analysis of all possible transitions
of the Markov chain ξt, t ≥ 0, and further combining the intensities of these transitions
into the blocks of the generator.

The diagonal entries of the matrix Q are negative. The modulus of each diagonal entry
defines the intensity of leaving the corresponding state of the Markov chain ξt, t ≥ 0. If the
number of customers in the buffer is equal to zero, the Markov chain ξt, t ≥ 0, can leave
its state only if the underlying process of the BMAP makes a transition without generation
of a customer (the intensities of such transitions are given by the diagonal entries of the
matrix D0) or the service of a customer is finished (the intensities of such events are given
as the diagonal entries of the matrix µC⊗ IW). When the number of customers in the buffer
is more than zero, additionally the Markov chain ξt, t ≥ 0, can leave its state due to the
departure of a customer from the buffer due to impatience (the intensities of such events
are given as the diagonal entries of the matrix iαI(N+1)W). If the number of customers
in the buffer is greater than or equal to J1, the Markov chain ξt can also change its state
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when a vacant server decides to start work (the intensities of such events are given as
the diagonal entries of the matrix γ(NIN+1 − C)⊗ IW). If the number of customers in the
buffer is greater than or equal to J2, the system can find a vacant server who agrees to start
working, which also leads to the change of the state of the chain ξt (the intensities of such
events are given as the diagonal entries of the matrix β(IN+1 − Q̃)⊗ IW).

The non-diagonal entries of the matrix Qi,i define the intensities of the transition of
the chain ξt that do not lead to the change of the number of customers in the buffer. In the
case i = 0, such intensities are the intensity of service completion in one busy server (such
intensities are the entries of the matrix µCE− ⊗ IW). In the case i > 0, such intensities are
the intensity of service completion and unwillingness to continue the work in one busy
server (such intensities are the entries of the matrix µ(1− p)CE− ⊗ IW). Note, that in these
cases the number of busy servers decreases by one. This explains the appearance of the
matrix E− in the corresponding formulas. Further, the transitions of the BMAP underlying
process without generation of batches of customers (the intensities of such transitions
are given as the non-diagonal entries of the matrix D0) does not imply the change of the
number of customers in the buffer.

Taking into account all the above reasonings, we obtain the form of the non-diagonal
blocks Qi,i, i ≥ 0.

The entries of the matrix Qi,i−1 define the intensities of the Markov chain ξt transitions
that lead to the decrease in the number of customers in the buffer by one. In the case i ≥ J2,
the events that lead to the decreasing the number of customers in the buffer by one are
the following:

1. The server finishes service and wants to continue the work (the corresponding intensi-
ties are given as the entries of the matrix µpC⊗ IW);

2. One of the customers staying in the buffer abandons it due to impatience (the corre-
sponding intensities are given as the entries of the matrix iαI(N+1)W);

3. One of the vacant servers decides to start working (the corresponding intensities are
given as the entries of the matrix γ(NIN+1 − C)E+ ⊗ IW);

4. The system finds a vacant server who agrees to work (the corresponding intensities
are given as the entries of the matrix β(IN+1 − Q̃)E+ ⊗ IW);

Note that the occurrence of events 3 and 4 leads to an increase in the number of
working servers by one, which is indicated by the matrix E+ in the corresponding formulas.
In the case 0 < i ≤ J1, only events 1 and 2 are possible. In the case J1 ≤ i < J2, possible
events are 1, 2 and 3.

Taking these reasons into account we obtain the presented above form of the blocks
Qi,i−1, i ≥ 1.

The entries of the matrix Qi,i+k define the intensities of the Markov chain ξt transitions
that lead to the increase in the number of customers in the buffer by k, k = 1, K. This can
happen only in the case of the arrival of a batch of customers of size k. The corresponding
intensities are given as the entries of the matrices IN+1 ⊗ Dk, which explains the form of
the blocks Qi,i+k, i ≥ 0, k = 1, K.

4. Ergodicity Condition

Before computing the stationary distribution of the Markov chain ξt, it is necessary to
find the conditions that have to be imposed on the parameters of the system to guarantee
the existence of this distribution (ergodicity conditions).

Theorem 2. If the customers in the buffer are impatient, i.e., α > 0, then the stationary distribution
of the considered Markov chain ξt exists for any set of the system parameters.

If the customers in the buffer are patient, i.e., α = 0, then the necessary and sufficient
condition of the existence of the stationary distribution of the considered Markov chain is defined by
the inequality

λ <
N

∑
n=0

xn[npµ + (N − n)γ + β(1− qN−n)] (1)
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where xn is the probability that at an arbitrary moment when the system is overloaded, i.e., the
number of customers in the buffer is huge, the number of busy servers is equal to n, n = 0, N.

The probabilities xn are defined by formulas:

xn = x0

n

∏
l=1

δl−1
εl

, n = 1, N, (2)

x0 =

(
1 +

N

∑
n=1

n

∏
l=1

δl−1
εl

)−1

(3)

where
δn = γ(N − n) + β(1− qN−n), n = 0, N − 1, (4)

εn = n(1− p)µ, n = 1, N. (5)

Proof. Let us firstly consider the case α > 0. In this case, the Markov chain ξt belongs to
the class of asymptotically quasi-Toeplitz Markov chains, see [41]. This follows from the
fact that the following limits exist:

Y(k) = lim
i→∞

R−1
i Qi,i+k−1 + δk,1 I, k = 0, K + 1, (6)

where Ri is the diagonal matrix with the diagonal entries equal to the corresponding
diagonal entries of the matrix Qi,i, i ≥ 0, taken with the opposite sign, and δk,1 is the
Kronecker delta.

Let the matrix Y be defined as Y =
K
∑

k=0
Y(k). The matrix Y can be reducible. We denote

as Yl the irreducible blocks of the canonical normal form of the matrix Y, and let Y(k)
l be

the corresponding blocks of the matrices Y(k), k = 0, K + 1.
For the ergodicity of an asymptotically quasi-Toeplitz Markov chain, it is required

that for each irreducible block Yl the following inequality

ylY
(0)
l e > yl

K

∑
k=1

kY(k+1)
l e (7)

holds true.
Here, the vectors yl are the unique solutions to the equations

ylYl = yl , yle = 1. (8)

One can verify that in the considered case the matrix Y(0) = I(N+1)W and the matrices
Y(k) = O, k = 1, K + 1. Thus, ergodicity conditions (7) is transformed to the inequalities
1 > 0 which are true for all possible system parameters.

Now, let us consider the case α = 0. In this case, the matrices Qi,i−1, Qi,i and Qi,i+k, i ≥
J2, k = 1, K, do not depend on the value i and are defined as

Qi,i−1 = Q0 = µpC⊗ IW + γ(NIN+1 − C)E+ ⊗ IW + β(IN+1 − Q̃)E+ ⊗ IW , i ≥ J2,

Qi,i = Q1 = IN+1 ⊗ D0 − µC⊗ IW + µ(1− p)CE− ⊗ IW−

−γ(NIN+1 − C)⊗ IW − β(IN+1 − Q̃)⊗ IW , i ≥ J2,

Qi,i+k = Qk+1 = IN+1 ⊗ Dk, k = 1, K.

Thus, the Markov chain ξt belongs to the class of quasi-Toeplitz (or M/G/1 type)
Markov chains. The sufficient and necessary condition for the ergodicity condition of a
quasi-Toeplitz Markov chain, see, e.g., [39], is the fulfillment of the following inequality:
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y
K+1

∑
k=1

kQke < 0

or

yQ0e > y
K

∑
k=1

kQk+1e. (9)

Here, the vector y is the unique solution of the system

yQ̂ = 0, ye = 1, (10)

where Q̂ =
K+1
∑

k=0
Qk.

It is easy to verify that the matrix Q̂ has the form

Q̂ = IN+1 ⊗ D(1) + A⊗ IW ,

A = −(1− p)µC + µ(1− p)CE− + γ(NIN+1 − C)(E+ − I) + β(IN+1 − Q̃)(E+ − I).

Using the so-called mixed product rule for the Kronecker product of matrices, see [42],
it is not difficult to verify by the direct substitution that the vector y that is the solution of
the system (10) can be computed in the form

y = x⊗ θ (11)

where θ is the invariant probability vector of the stationary distribution of the underlying
process of the BMAP.

The vector x is the unique solution to the system

xA = 0, xe = 1.

The vector x is the vector of the stationary distribution of the number of busy servers when
the system is overloaded and defines the stationary distribution of the birth-and-death
process with the state space {0, 1, . . . , N}. The intensities of the birth δn and the death εn
in the state n are defined, correspondingly, by Formulas (4) and (5). From the theory of
the birth-and-death processes, it is well known that the vector x in the partitioned form
x = (x0, . . . , xN) is defined by its components given by Formulas (2) and (3). By substituting
the vector y in form (11) into inequality (9), after some algebraic transformations, including
the use of mixed product rule, we obtain inequality (1).

Remark 1. Ergodicity condition (1) is intuitively clear. The left-hand side of (1) is the rate of
customers’ arrival to the system. The right-hand side of (1) is the rate of customers’ departure
from the buffer when the system is overloaded. Indeed, as it was stated above, xn, n = 0, N,
is the probability that n servers are busy at an arbitrary moment when the system is overloaded
(correspondingly, N − n servers are on vacation). Under the condition that n servers are busy,
the rate of customers departure from the queue is the sum of:

(i) The rate npµ of service completion without taking a vacation by the server that finished the
service;

(ii) The rate (N − n)γ of vacation completion (and starting service) by one of the N − n
vacated servers;

(iii) The rate β(1− qN−n) of finishing a search of a server having a vacation that is accompa-
nied by an agreement of one of N − n vacated servers to interrupt vacation and start service.

Then (1) reflects the evident condition of stability of the system: when the system is overloaded,
customers’ arrival rate must be less than the average customers’ departure rate from the buffer.

Remark 2. Ergodicity condition (1) can be used for the preliminary, rough, choice of the system
parameters, in particular, the number N of servers. If for the given (or evaluated by some experts)
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intensity λ of arrival, rates of service µ, vacations γ and successful invitations to interrupt vacation,
and the fixed value N inequality (1) is not fulfilled, then the number of servers must be increased.

Remark 3. It is easy to see that the statement of Theorem 2 is valid under assumptions that the
following inequalities are fulfilled: γ+ β > 0 and p 6= 1. In the case of violation of these inequalities,
the birth-and-death process with the generator A becomes the death process and x0 = 1 (all servers
are permanently vacated) or the birth process and xN = 1 (in the overloaded system all servers are
permanently busy). Note that the imposed assumption (from the beginning) that γ > 0 and β > 0
can be weakened. One of the rates γ and β can be equal to 0 if another one is positive. If p = 1 (the
server cannot take a vacation before the queue is exhausted), the servers are no longer self-sustained
and the considered queuing system is the usual multi-server queue with vacations. The ergodicity
condition is trivial λ < Nµ.

5. Computation of the Stationary Distribution of the Markov Chain

Let us assume that the ergodicity condition of the Markov chain ξt is fulfilled. Then,
the stationary probabilities

π(i, n, ν) = lim
t→∞

P{it = i, nt = n, νt = ν}, i ≥ 0, n = 0, N, ν = 1, W,

exists.
Enumerating the states of the Markov chain ξt = {it, nt, νt} in the direct lexicographic

order of the components {nt, νt} and combining the stationary probabilities π(i, n, ν) of
the states included into the level i, we obtain the row vectors πi, i ≥ 0.

It is well-known that the vectors πi, i ≥ 0, can be found as the solution to so-called
Chapman–Kolmogorov equations:

(π0, π1, . . . )Q = 0, (π0, π1, . . . )e = 1. (12)

In the case α = 0, as it was mentioned above, the generator Q of this Markov chain has
an upper-Hessenbergian quasi-Toeplitz structure. The methods for computation of the
stationary distribution of such Markov chains are well-known, see, e.g., [39,43]. To make
computations for the queuing system under study, we propose the algorithm presented in
Section 2.4.4 in [39].

In the case α > 0, the solution of (12) encounters tremendous difficulties and we
cannot cite any reference in the existing literature where system (12) is solved. Because the
generator Q has the upper-Hessenbergian structure, it is possible to write down the recur-
sion by which all the vectors πi, i ≥ 1, can be calculated via the vectors π j, j = 0, i− 1,
and, eventually, via the vector π0; however: (i) this recursion is not numerically stable
due to multiple sequential implementations of subtraction of sub-stochastic vectors and
(ii) what is more important, the impossibility to compute the vector π0. Even in the case
of M/G/1 type Markov chains, the problem of computation of the vector π0 is solved
based on some additional considerations, e.g., it was offered to use the interpretation of the
stationary probability of a state of a discrete-time Markov chain in terms of the average
time between the successive visits of the chain to this state. Alternatively, the reasonings of
the analyticity of the generating function of the vectors πi, i ≥ 0, in the unit disc of the
complex plane are exploited. In the case of the chain with the non-quasi-Toeplitz structure
of the generator, both these approaches do not work and no other approach is offered in
the literature.

In such a situation, a very popular approach among the researchers in the matrix
methods in queuing theory is to make some kind of truncation (rough or soft) of the
state space of the chain, for more details see, e.g., [44]. The evident disadvantages of this
approach consist of the difficulty of choosing the proper level of truncation and, as a rule,
the high dimension of the finite system of equations for the stationary probabilities, which
has to be solved numerically.
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The analysis of Markov chains having the generator of a structure similar to the
generator defined by Theorem 1, which are called in [41] as asymptotically quasi-Toeplitz
Markov chains, is very important from the perspective of modeling various systems with
customer retrials, see, e.g., [44], systems with impatient customers, systems and tandems
of queues with an infinite number of servers; therefore, in [41], a new approach for the
computation of the vectors πi, i ≥ 0, is offered. This approach suggests that the vectors
πi, i ≥ 0, are computed not via solving the system (12) but by means of a solution of
another, specially constructed, system of equations for the vectors πi, i ≥ 0. The procedure
of constructing this another system is described in detail in [41]. In two words, this
procedure assumes the construction of series of so-called censored Markov chains with
respect to the original Markov chain ξt with different censoring levels. By means of varying
the censoring levels, a new, alternative, system of equations for the vectors πi, i ≥ 0,
is obtained.

To solve this system, again, as it was described above with respect to the initial
system (12), all vectors πi, i ≥ 1, are recursively expressed via the vector π0. This recursion
is numerically stable; however, more important is the fact that using the censoring level 0,
it is possible to derive the system of equations for the components of the vector π0. Under
fulfillment of the ergodicity condition, this system supplemented by one more equation
derived via the use of normalization condition has a unique solution. The problem of
computation of the vectors πi, i ≥ 0, is completely solved.

In [41], more or less comprehensive analysis is implemented for continuous and
discrete-time Markov chains, including the account of the possibility of irreducibility and
reducibility of certain matrices arising during analysis. Ergodicity conditions and stable
numerical algorithms for computation of the stationary distribution of Markov chains
are presented.

It is worth mentioning that recently several papers by Japanese authors appeared in
which the Markov chains having the upper-Hessenbergian non-quasi-Toeplitz structure
of the generator appeared, see, e.g., [45,46]. They also use the idea of derivation of the
system of equations for the stationary probabilities or conditional probabilities via the
construction of the family of the censored Markov chains; however, in contrast to [41]
where the states with large values of a denumerable component are censored, they censor
other groups of states. The advantage of [45] over [41] is that no assumption about the
form of heterogeneity in the generator is made while in [41] suggestion about the existence
of the limiting behavior of the blocks Qi,i+k−1 of the generator when i tends to infinity
is imposed; however, this advantage turns into a disadvantage because the problem of
the derivation of the ergodicity condition is completely solved in [41] and is not touched
in [45]. Further, the results from [45] are applicable only if the sub-diagonal blocks Qi,i−1 of
the generator are non-singular matrices while in [41] they are allowed to be singular. This
is very important for the application of the results to the analysis of multi-server queues
where these blocks are usually singular.

For the implementation of the numerical experiments described below, we used the
algorithms from the recent paper [40] in which the Markov chains having the upper-
Hessenbergian non-quasi-Toeplitz structure of the generator are considered. In [40], no
assumptions about the form of heterogeneity are made and the presented algorithm for
computation of the stationary distribution is much faster than the algorithm based on the
results of [41].

6. Performance Indicators

Having computed the row vectors πi, i ≥ 0, and sub-vectors π(i, n) defined by
πi = (π(i, 0), . . . , π(i, N)), we can compute various performance measures of the system.
Expressions for some of them are presented below.
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The average number of customers in the buffer Nbu f f er can be found as

Nbu f f er =
∞

∑
i=1

iπie.

The average number of busy servers Nserver is computed as

Nserver =
∞

∑
i=0

N

∑
n=1

nπ(i, n)e.

The average number of servers on vacation Nvacant is computed as

Nvacant = N − Nserver.

The average intensity λout of the output flow of successfully serviced customers can
be found as

λout =
∞

∑
i=0

N

∑
n=1

nµπ(i, n)e = µNserver.

The loss probability Ploss of an arbitrary customer due to impatience is computed as

Ploss =
1
λ

∞

∑
i=1

iαπie =
αNbu f f er

λ
= 1− λout

λ
.

The probability Psucc that the system’s search for a vacant server who agrees to inter-
rupt the vacation will be successful is computed as

Psucc =

∞
∑

i=J2

N−1
∑

n=0
(1− qN−n)π(i, n)e

∞
∑

i=J2

N−1
∑

n=0
π(i, n)e

.

The intensity σno-work of forced vacation of a working server due to empty buffer
during service completion epoch can be found as

σno-work =
N

∑
n=1

pnµπ(0, n)e.

The probability Pno-work that after the service completion moment the server would
like to start a new service but is forced to take a vacation because the buffer is empty can
be found as

Pno-work =
σno-work

∞
∑

i=0

N
∑

n=1
pnµπ(i, n)e

=

N
∑

n=1
nπ(0, n)e

∞
∑

i=0

N
∑

n=1
nπ(i, n)e

.

The intensity σenough-servers of the refuses to the servers who would like to start work
after vacation completion due to the presence of less than J1 customers in the buffer can be
found as

σenough-servers =
J1−1

∑
i=0

N−1

∑
n=0

(N − n)γπ(i, n)e.
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The probability Penough-servers that the server would like to start work after vacation
completion but the system does not give permission to start due to the presence of less
than J1 customers in the buffer can be found as

Penough-servers =
σno-work

∞
∑

i=0

N−1
∑

n=0
(N − n)γπ(i, n)e

=

J1−1
∑

i=0

N−1
∑

n=0
(N − n)π(i, n)e

∞
∑

i=0

N−1
∑

n=0
(N − n)π(i, n)e

.

7. Numerical Examples

We assume that the arrival flow at the system is the BMAP, which is defined by the
following matrices

D0 =

(
−5 0
0 −1

)
, D1 =

(
0.2 0.02
0 0.2

)
, D2 =

(
0.08 0.1

0.012 0.58

)
,

D3 =

(
0.58 0

0.002 0.2

)
, D4 =

(
2 0.02

0.002 0

)
, D5 =

(
2 0

0.002 0.002

)
,

and has the following characteristics:
The average arrival rate of customers λ = 4.11215;
The average arrival rate of batches λb = 1.4557;
The coefficient of correlation of successive inter-arrival times ccor = 0.187215;
The squared coefficient of variation of inter-arrival times cvar = 1.64605.
The service intensity µ is assumed to be equal to 0.3. The intensity of each customer’s

impatience is α = 0.01.
The parameter γ of the exponential distribution of the vacation time is equal to 0.1.

The intensity of each customer’s impatience is α = 0.01. The probability p that the server
starts a new service after the service completion, if the buffer is not idle, is equal to 0.5. The
parameter β of the exponential distribution of the search time is β = 0.5. The probability
that each vacated server declines the offer to interrupt the vacation and start to work is
q = 0.7.

The aim of the numerical example is to define the control parameters N, J1 and J2,
which maximize the following economical criterion:

E(N, J1, J2) = aλout − bλPloss − cσno-work − dσenough-servers.

Here, a is a profit gained by the system from the service of one customer, b is a charge
for the loss of one customer, c is a charge paid by the system when the server wants to start
a new service after the service completion, but the buffer is empty and d is a charge paid
by the system when the vacant server wants to start work, but the number of customers in
the buffer is less than J1.

In the numerical example, we fix the following values of costs coefficients:

a = 2, b = 5, c = 1, d = 0.5.

Let us assume that the number of servers N can take the value from the range [5, 200],
the parameter J1 can vary from 1 to 20, and the parameter J2 can vary from J1 to 25.

Computations implemented under the fixed above values of parameters of the system
and values N, J1, J2 show that the maximal value E∗ of the economical criterion E(N, J1, J2)
is E∗ = E(65, 3, 11) = 4.38728. Thus, to maximize the profit of the system it is required
to have N∗ = 65 servers, allow for the vacant server to start work when at least J∗1 = 3
customers stay in the buffer and start the search of a server who wants to work among
vacant servers when the number of customers in the buffer is more or equal to J∗2 = 11.
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Note, that if the manager of the system does not perform any control, i.e., the parameter
J1 = 1 (each vacant server can start work if the buffer is not empty) and the intensity β = 0
(the system never searches servers who wants to start work), the optimal value of the cost
criterion is E∗ = 4.10935 and achieved for N = 68.

Because it is not possible to present 4D figures, let us fix the value of the parameter
J2 = J∗2 = 11, and vary the number of servers N over the interval [5, 200] and the parameter
J1 over the interval [1, J2].

Figure 2 illustrates the dependence of the average number of customers in the buffer
Nbu f f er on the number of servers N and the parameter J1.
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Figure 2. Dependence of the average number of customers in the buffer Nbu f f er on N and J1.

As it is seen from Figure 2, the average number of customers in the buffer Nbu f f er
decreases with the increase in the number of servers N and increases with the increase in
the parameter J1.

Figure 3 illustrates the dependence of the average number of busy servers Nserver on
the number of servers N and the parameter J1.
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Figure 3. Dependence of the average number of busy servers Nserver on N and J1.

As it is seen from Figure 3, the average number of busy servers Nserver decreases with
the increase in the parameter J1 and increases with the increase in the number of servers N.

Figure 4 illustrates the dependence of the loss probability Ploss on the number of
servers N and the parameter J1.
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Figure 4. Dependence of the loss probability Ploss on N and J1.

As it is seen from Figure 4, the loss probability Ploss increases with the increase in the
parameter J1 and decreases with the increase in the number of servers N.

The dependence of the probability Pno-work that after the service completion moment
the server would like to start a new service but is forced to take a vacation because the
buffer is empty on the number of servers N and the parameter J1 is illustrated in Figure 5.
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Figure 5. Dependence of the probability Pno-work on N and J1.

One can see from Figure 5 that the probability Pno-work grows with the increase in the
number of customers and decreases when the parameter J1 increases.

Figure 6 illustrates the dependence of the probability Penough-servers that the server
would like to start work after vacation completion but the system does not give permission
to start due to the presence of less than J1 customers in the buffer on the number of servers
N and the parameter J1.
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Figure 6. Dependence of the probability Penough-servers on N and J1.

As it is seen from Figure 6, the probability Penough-servers increases with the increase in
the parameter J1 and the number of servers N.

The dependence of the values of the cost criterion E on the number of servers N and
the parameter J1 is illustrated in Figure 7.

Some of the dependencies presented in Figures 2–7 are quite qualitatively clear. The val-
ues of Figures 2–7 characterize these dependencies quantitatively, which allows to solve
various optimization problems.
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Figure 7. Dependence of the probability Penough-servers on N and J1.

8. Conclusions

In this paper, we introduce into consideration a new kind of multi-server queuing
systems with servers vacation. A novel feature of the model is a high degree of indepen-
dence of servers of the decision-maker of the system. Any server from the finite pool
of servers can stop operation after service completion of another customer and go for
vacation. The manager of the system can implicitly influence performance of the system
via the proper choice of the thresholds defining the providing to a server an opportunity
to start work after vacation completion. Further, the manager can use the right to try to
interrupt the ongoing vacation of a server if congestion occurs. The arrival flow is assumed
to be defined by the BMAP that allows fitting modern flows. Such a type of model can
have potential applications for the investigation of real systems with low centralization of
operation of the system and the possibility of flexible choice of a working schedule by the
servers, e.g., some modern systems with workers that are the freelancers that work at their
free time when they wish, e.g., transportation systems, in particular, taxi drivers.

The model deserves to be generalized in many directions including consideration of
the phase-type distribution of service or search times (which allows to more exactly fit the
statistics about the values of these times, comparing the exponential distribution suggested
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in this paper), more involved strategies of control by beginning/finishing vacations, pres-
ence of a certain pool of permanent servers that completely obey the manager, account of
retrial phenomenon (see [44,47,48]), random fluctuation of the system parameters, etc.
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