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1. Introduction

As it is known [1], the calculation of the Lyapunov exponents is used for the clas-
sification of attractors of dynamical systems. The combinations of signs of such values
determine the attractor type: an equilibrium position, limit cycle, multidimensional torus
or strange attractor. The dynamics of the corresponding solutions are called static, periodic,
quasiperiodic, or chaotic. The computational procedure for determining the Lyapunov
exponents is mainly based on Benettin’s algorithm [2]. However, in [3,4] the points of
limiting solutions were investigated for the Poisson stability, which made it possible to
understand whether we have a quasiperiodic or chaotic regime. In [4], it was done for the
Jafari–Sprott system [5].

It is noteworthy [6] that a point y of the phase space is called positively Poisson stable
(P+) if for any neighborhood U of the point y and for any TP > 0, there is a time value
t ≥ TP for which the trajectory of the dynamical system enters into the neighborhood U.
Similarly, if there is t ≤ −TP such that the trajectory enters into the neighborhood U, then
the point y is negatively Poisson stable (P−). A point is called Poisson stable if it is P+ and
P−–stable.

The boundedness of the limiting solutions of dissipative systems implies [6–10] that
any steady-state oscillation mode is described by Poisson-stable trajectories. This also
applies to dynamical chaos. A trajectory different from the equilibrium position is said to be
Poisson stable if it verifies the property of returning in an arbitrarily small ε-neighborhood
of each of its points an infinite number of times. Such returns are called the Poincaré
recurrences. In [10] (p. 146), the author notes that “the study of the statistics of the
Poincaré recurrences is a powerful tool for the analysis and classification of dynamic
modes. Apparently, the potentialities of this approach have not yet been fully exhausted
in modern nonlinear dynamics”. For example, the returns follow one another regularly
for quasiperiodic regimes. Then, [10] (p. 145) “the dynamic chaos is a situation when the
Poincaré recurrences to the ε-neighborhood of the initial point do not show regularity, the
time interval between two successive returns turns out to be different each time, and some
statistical distribution of the times of return is arised” [11,12]. An example of the Poincaré
recurrences analysis based on the Kac’s theorem [13–18] for a discrete dynamical system
with a chaotic non-hyperbolic attractor is given in [16].
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As it is known, for the most of dissipative systems, the formulas for a general solution
of the system in a class of any known functions with well-studied properties have not yet
been found. Therefore, numerical methods are used. The use of classical numerical methods
(such as the Euler method, Runge–Kutta 4th order method, Adams methods, etc.) for
constructing approximate solutions in attractors of dynamical systems leads to significant
errors over large sections of time, due to the instability of the studied chaotic regimes.
In general, the problem of numerical modeling with control of the accuracy of obtained
solution and the choice of a platform for computer implementation is relevant today [19]
since small errors introduced at each integration step cause exponential divergence of close
trajectories. More recently, the numerical FGBFI method (Firmly Grounded Backward–
Forward Integration) was proposed in [3,4,20], based on the power series method for
dynamical systems with quadratic nonlinearities. The main advantages of this method are
as follows:

1. The recurrence relations are obtained for calculating the coefficients of the expansion
of solutions in a power series for any dynamical system with quadratic nonlinearities
in a general form;

2. The convergence of the power series is studied. A simple formula for calculations
is derived (in comparison with that of [21] obtained in the known literature) for
calculating the length of the integration step in a general form;

3. The criteria for checking the accuracy of the approximate solution are obtained. The
control of the accuracy and configuration of the approximate solution of a dynamical
system uses forward and backward time, which makes the numerical method reliable
(degrees of piecewise polynomials, the value of the maximum integration step, etc.);

4. The FGBFI method allows to construct high-precision approximations to non-extendable
solutions of a system of autonomous differential equations with a quadratic right-
hand side, like, for instance, the system of the following form:

ẋ = 1 + x2.

In this case, the numerical solution computed with FGBFI will never cross the asymp-
tote and will approach it arbitrarily closely.

Thus, it is a high-precision method for constructing the trajectory arc of the system
for any time interval. This makes it possible to track the Poincaré recurrences to any
neighborhood of the trajectory points since the resulting computational error can be smaller
than the radius of the monitored neighborhoods.

This article considers a fourth-order dissipative system [22] in which, in the opinion
of its authors, there is hyperchaos. The goals of the research are as follows: (1) to find the
Poincaré recurrences in the attractor of this system for the approximate solutions obtained
by the FGBFI method and to analyze the statistics of return times; and (2) to apply the
modified Benettin’s algorithm [20] to refine the computation of the Lyapunov exponents.

2. Bohr’s Almost Periodic Functions

It is noteworthy [23] (pp. 368, 418, 419) that the function (trajectory of a dynamical
system) F(t) ∈ Rn is called Bohr’s almost periodic in the sense that, if for any ε > 0 there
exists a relatively dense set of almost periods τF = τF(ε) of the function F(t) with ε-accuracy,
i.e., there is the positive number L = L(ε) such that any interval [α; α + L] contains at least
one number τF for which the inequality

|F(t + τF)− F(t)| < ε

holds at t ∈ R. Note that for an almost periodic function (and, in general, for a Poisson
stable trajectory), different from a periodic function, with decreasing number ε, the number
L(ε) must increase indefinitely; otherwise, the function would be periodic.

Usually (see, for example [10]) in nonlinear dynamics, almost periodic functions are
called quasiperiodic.
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Note an important theorem in the theory of dynamical systems [10] (p. 147): if a
non-periodic trajectory is Poisson and Lyapunov stable, then it is almost periodic.

Since we will be investigating the Poincaré recurrences, it is noteworthy that for an
almost periodic trajectory (as follows from the above definition), such returns must form
a relatively dense set. An example of a sequence that is not a relatively dense set is the
following:

0, 12, 22, 32, . . . ,

since
sup

q
|(q + 1)2 − q2| = ∞,

i.e., in the given example, the distance between neighboring elements grows with the
growth of q. A similar situation was observed in a numerical experiment for the Poincaré
recurrences in the case of a chaotic solution of the Chen system [3].

3. Dissipative System of the Fourth Order

Let us consider a fourth-order system [22]:
ẋ1 = ax2 − ax1 − ex4,
ẋ2 = bx1 − x2 − x1x3 − f x4,
ẋ3 = x1x2 − cx3,
ẋ4 = kx2x3 − dx4,

(1)

where a, b, c, d, e, f and k are positive parameters. The divergence of the vector field G
defined by the right-hand side of the system (1) is equal to

div G = −(a + 1 + c + d) < 0.

Then, the system (1) is dissipative. Hence, there is the ball Ba ⊂ R4, into which each
trajectory of the system (1) is immersed forever, after a while. Therefore, there is a limit set
(attractor) such that all trajectories of the dynamical system are attracted when t→ ∞ [6].

Let us investigate the dynamics of the system (1) for the values of the parameters a = 7,
b = 50, c = 3, d = 10, e = 5, f = 5 and k = 1.5. In this case, it is possible to determine
the position and radius of the ball Ba from the data obtained in [22]. Additionally, in this
article, the Lyapunov exponents are determined as LE1 = 2.1040, LE2 = 0.3563, LE3 = 0
and LE4 = −23.4508, indicating a hyperchaos in the system (1). Therefore, its solutions
are highly unstable, which requires the use of special numerical procedures for large
time intervals.

Let us consider the application of the FGBFI method for constructing approximations
to the solutions of the system (1), using high-precision calculations.

4. The FGBFI Method

Following [4], we will rewrite the system (1) as follows:

Ẋ = AX + Φ(X), (2)

where
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X(t) = [x1(t) x2(t) x3(t) x4(t)]
T, Φ(X) = [ϕ1(X) ϕ2(X) ϕ3(X) ϕ4(X)]T,

ϕp(X) = 〈QpX, X〉, p = 1; 4, A =


−a a 0 −e

b −1 0 − f
0 0 −c 0
0 0 0 −d

,

Q1 = 0, Q2 =


0 0 −1 0
0 0 0 0
0 0 0 0
0 0 0 0

,

Q3 =


0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

, Q4 =


0 0 0 0
0 0 k 0
0 0 0 0
0 0 0 0

.

Let us expand the following solution:

X(t) =
∞

∑
i=0

Υiti, (3)

where X(0) = Υ0 is an initial condition for the system (2), and the vector Υ0 is given
as follows:

Υi = [υi,1 υi,2 υi,3 υi,4]
T, υi,p ∈ R, p = 1; 4.

Let the following hold:
Ψi = [ψi,1 ψi,2 ψi,3 ψi,4]

T

and

ψi,p =
i

∑
j=0
〈QpΥj, Υi−j〉, p = 1; 4.

The recurrence relations for calculating the coefficients of the power series have the
following form [4]:

Υj =
AΥj−1 + Ψj−1

j
(4)

for j ∈ N.
Since the criteria for checking the accuracy of the obtained numerical solution require

repeated calculations in forward and backward time, we need to have a guaranteed estimate
of the convergence interval of the power series (3) for a given vector Υ0. In [4], a theorem is
proved on the estimate of this interval for systems with a quadratic right-hand side.

The norms are calculated as follows:

‖A‖ = ‖A‖1 = max{a + b, a + 1, c, e + f + d} = 57,

‖Q1‖ = 0, ‖Q2‖ = ‖Q3‖ = 1, ‖Q4‖ = k,

µ = 4 · max
p=1;4

‖Qp‖ = 4 · 1.5 = 6.

Next, two auxiliary numbers are calculated as functions of Υ0:

h1(Υ0) = ‖Υ0‖ =
4

∑
p=1
|υ0,p|,

h2(Υ0) =

{
µh2

1(Υ0) + (‖A‖+ 2µ)h1(Υ0), if h1 > 1,
‖A‖+ µ otherwise,
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or

h2(Υ0) =

{
6 · ‖Υ0‖2 + 69 · ‖Υ0‖, if ‖Υ0‖ > 1,
63 otherwise.

Then, the series (3) converges for t ∈ [−τ, τ], where

τ = τ(Υ0) =
1

h2(Υ0) + δ
, (5)

δ is any positive number (can be taken very small).
It can be seen from Formula (5) that the length of the convergence interval depends on

the choice of the initial condition for the system (2). This fact is confirmed by computational
experiments, for example, for the Lorenz system [24].

It is worth noting that a similar approach can be applied to systems with cubic
nonlinearities but when the derivative on the left side of the system is of the second (or
higher) order. For example, in [25] this was done for the Duffing equation.

Usually, in calculations, many researchers work with subnormal real numbers of
single or double precision, presented in the IEEE 754 format [26]. The main drawback
here is the fixed accuracy of the representation of real numbers, which may not allow us
to numerically construct approximations to unstable solutions of systems of differential
equations on the large time intervals. Therefore, for high-precision calculations, the GNU
MPFR library [27,28] is used.

Next, consider the algorithm [20] for the numerical construction of an approximate
solution of a dynamical system in forward and backward time:

1. Set the number bm of bits under the mantissa of a real number and the precision εpw
for an estimate of the common term of the power series. Note that bm defines the
machine epsilon εm. Let us choose bm so that the precision of representation of the
real number is with a margin, i.e.,

εm � εpw;

2. t := 0;
3. Set X(0) ∈ Ba for the system (2) and value the number way that determines the

direction in time: way = 1 is gone forward in time, way = −1 is gone backward
in time;

4. Set T as the length of the time interval on which the numerical integration will be
performed;

5. ended := false;
6. Calculate the integration step ∆t := τ(X(0)) by Formula (5);
7. If ∆t > T − t, then ∆t := T − t, t := T

Else t := t + ∆t;
8. ∆t := way · ∆t;
9. Let Υ0 := X(0);
10. Calculate the approximate value X(∆t) by summing the terms of the series (3) to

such a value i, where the following inequality holds:

‖Υi‖ · |∆t|i < εpw; (6)

11. Print way · t, X(∆t);
12. If X(∆t) /∈ Ba, then we got out the compact Ba. Then, write "Decrease the value εpw

and/or εm"; ended := true;
13. If t = T, then ended := true;
14. If ended, then terminate the algorithm;
15. X(0) := X(∆t);
16. Go to step 6.
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As can be seen, the algorithm is universal in the direction of numerical integration
in time.

Next, we consider the criteria for verifying the accuracy of the resulting solution. For
this we assume the following:

Ω = [t0, t1] ∪ [t1, t2] ∪ . . . ∪ [tN−1, tN ],

t0 = 0, tN = way · T,

∆t{way}
l = tl − tl−1 = τ

(
Xl−1

(
∆t{way}

l−1

))
, X0 ≡ X(0), l = 1; N{way},

where l is an index of the interval [tl−1, tl ], on which the series (3) is converged, and N{way}

is a number of such intervals for the direction way on time. Since on each interval [tl−1, tl ],
during calculations we truncate the series (3) to some polynomial Xl(t) approximating
the solution of the system (2) on it (i.e., locally), we denote by n{way}

l the degree of the
polynomial Xl(t). Then, we introduce the following notation:

n{way}
max = max

l
n{way}

l , l{way}
max = indmax

l
n{way}

l , ∆t{way}
max = way ·max

l

∣∣∣∆t{way}
l

∣∣∣, d{way}
max = indmax

l

∣∣∣∆t{way}
l

∣∣∣. (7)

In [4], the following criteria for checking the accuracy of the obtained solution
were proposed:

1. The accuracy εa of approximation at way = 1 is a frequently used criterion in applica-
tions of numerical methods for solving differential equations. When the inequality (6)
is true, it is necessary to increase the degrees of all polynomials n{1}l , obtaining the
next approximation, and compare the distance δa between the obtained approximate
solutions on the interval [0, T] with the value εa. If δa > εa, then we increase the
powers of nl ; otherwise, we have to use the obtained solution;

2. The radius εR of the neighborhood of the initial point, to which the approximate
solution should return in backward time, is another criterion. In other words, we
need to select the accuracy of εpw so that the following inequality holds:∣∣∣X{−1}

N̂

(
∆t{−1}

N̂

)
− X(0)

∣∣∣ < εR,

where N̂ = N{−1}. Note here that we do not know the exact solution to the system
(2), but we do know its initial point. Then, we can set how many digits are in each
component of the vector X{−1}

N̂

(
∆t{−1}

N̂

)
after the point must match the digits of the

corresponding components X(0). The problem is that a large amount of computation
is required (due to repetitions of the forward and backward traverse in time). The
solutions of the system (2), as a rule, are highly unstable in backward time: they
immediately leave from the attractor, because in our calculations, we are near it, no
matter how accurately εpw is taken. Therefore, in the above algorithm, we control the
finding of the trajectory within the boundaries of the set Ba;

3. The comparison of configurations of approximate solutions in forward and backward
time is necessary to determine the numbers (7), describing approximate solutions.
Next, check the following:

N ≈ N̂, n{1}max ≈ n{−1}
max , t

l{1}max
+
∣∣∣t

l{−1}
max

∣∣∣ ≈ T,

d{1}max + d{−1}
max ≈ N, t

d{1}max
+
∣∣∣t

d{−1}
max

∣∣∣ ≈ T.

Unlike criteria 1 and 2, we control here the arguments of the approximate solutions.
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5. Analysis of the Poincaré Recurrences for a Fourth-Order System

In [22] (p. 3221), the authors indicated that there is hyperchaos for the consid-
ered parameters of the system (1). For example, the authors found it for the following
initial condition:

x1(0) = 10, x2(0) = 50 · sin 10 ≈ −27.2011, x3(0) = 10, x4(0) = 10. (8)

Let us verify it.
Using the numerical method FGBFI, we construct the trajectory arc from the point

(8) on the time interval [0, T], T = 15 getting close to the attractor. Let us indicate the
parameters of the numerical method:

bm = 128, εm = 5.87747 · 10−39, εpw = 10−20.

We obtain the next point at the end time:

X(15) = [6.2355509634533960831 2.0140572482317481452 35.4929323328531102196 − 43.5507482101916799734]T. (9)

Note that in the numerical experiment by to the first criterion for checking the ac-
curacy, decreasing the value of εpw, the number of indicated correct signs in coordinates
is preserved.

Next, we take the point (9) as the initial point and track the Poincaré recurrences for
it. In order to reduce the number of calculations without moving backward in time (so
as not to take too small a value of εpw), we look at the times when there is a return to the
neighborhood of the initial point for different values εpw. This is necessary to control the
accuracy of the obtained points, choosing such value of εpw that these moments of time do
not differ significantly.

To determine the Poincaré recurrences, we choose the small time step ∆tP > 0. Let
us divide the time interval [0, TP], where TP is the end time at which the search for the
Poincaré recurrences is terminated, into intervals of length ∆tP (let NP be the number of
such intervals). Let us denote Xk as the coordinates of the k-th point of the considered
trajectory arc, corresponding to the following time moment:

tk = k∆tP, k = 1; NP.

We introduce the distance
dk = |Xk − X(0)|.

To track the Poincaré recurrences, we fix such values k = k∗, moving in the trajectory
arc, when there are the local rapprochements with the point X(0), i.e.,

dk∗−1 > dk∗ & dk∗ < dk∗+1 & dk∗ < 1.

For the point (9) for TP = 10 and ∆tP = 10−4, the returns are shown in Table 1. As can
be seen from this table, the rapprochement with the initial point occurs at approximately
the same time (i.e., we have regularity), which suggests the idea of a limit cycle in the
system (1). Decrease in the value of ∆tP does not cause significant changes in Table 1.

In this case, to show the absence of chaos in the system (1), we take the time value
T = 40 (instead of T = 15, which was used to obtain the coordinates of the point (9)) to
reach the attractor. We obtain the following point at the end time:

X(40) = [1.6321991613781496393 8.7300523565474285155 39.6961687172415982460 54.8461996449311966025]T. (10)

Similarly, for the point (10), the Poincaré recurrences are shown in Table 2 for TP = 10
and ∆tP = 10−4. As can be seen from this table, returns are getting closer. Therefore, we
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will decrease the value ∆tP, setting it equal to ∆tP = 10−7. We obtain the returns shown in
Table 3.

Table 1. The Poincaré recurrences for the point (9), ∆tP = 10−4, T = 15 for reachingthe attractor.

Time Moment tk∗ Value dk∗

0.3655 0.0423764

0.7310 0.0157840

1.0965 0.0323213

1.4620 0.0196461

1.8275 0.0173865

2.1930 0.0209083

2.5585 0.0135900

2.9240 0.0206764

3.2895 0.0194286

3.6550 0.0197196

4.0205 0.0237665

4.3860 0.0213908

4.7515 0.0263917

5.1170 0.0259931

5.4825 0.0288078

5.8480 0.0311426

6.2135 0.0320319

6.5790 0.0356643

6.9445 0.0362604

7.3101 0.0340862

7.6756 0.0325096

8.0411 0.0305410

8.4066 0.0280697

8.7721 0.0268155

9.1376 0.0243143

9.5031 0.0231314

9.8686 0.0211890
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Table 2. The Poincaré recurrences for the point (10), ∆tP = 10−4, T = 40 for reaching the attractor.

Time Moment tk∗ Value dk∗

0.3655 0.00133861

0.7310 0.00267728

1.0965 0.00401586

1.4620 0.00535439

1.8275 0.00669292

2.1930 0.00803134

2.5585 0.00936979

2.9240 0.01070810

3.2895 0.01204650

3.6550 0.01338470

4.0205 0.01472300

4.3860 0.01606120

4.7515 0.01739930

5.1171 0.01774010

5.4826 0.01640090

5.8481 0.01506170

6.2136 0.01372250

6.5791 0.01238330

6.9446 0.01104430

7.3101 0.00970522

7.6756 0.00836622

8.0411 0.00702727

8.4066 0.00568835

8.7721 0.00434949

9.1376 0.00301067

9.5031 0.00167189

9.8686 0.00033316



Mathematics 2021, 9, 2057 10 of 18

Table 3. The Poincaré recurrences for the point (10), ∆tP = 10−6, T = 40 for reaching the attractor.

Time Moment tk∗ Value dk∗ · 10−5

0.365504 1.105410

0.731007 1.096510

1.096510 0.348186

1.462010 0.752419

1.827520 1.799740

2.193020 0.697982

2.558530 0.397935

2.924030 1.498770

3.289530 1.051780

3.655040 0.048264

4.020540 1.146250

4.386040 1.403530

4.751550 0.304245

5.117050 0.793828

5.482550 1.754720

5.848060 0.656571

6.213560 0.442487

6.579070 1.541010

6.944570 1.008280

7.310070 0.091034

7.675580 1.189060

8.041080 1.359960

8.406580 0.261577

8.772090 0.837369

9.137590 1.711900

9.503100 0.613282

9.868600 0.485547

From this iterative procedure, we see that the limiting trajectory in this case is a cycle
with a period Tc ≈ 0.3655. Its projections are shown in Figures 1 and 2.

To select the value ∆tP, this step must be reduced until the rapprochement distance
dk∗ changes significantly.

This approach is also applied for other initial conditions. As a result, we obtain the
same cycle.

Next, we investigate the stability of the resulting cycle by calculating the
Lyapunov exponents.
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Figure 1. Projection of the cycle of the system (1) with the period Tc ≈ 0.3655 into the space x1 − x2 − x3.
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Figure 2. Projection of the cycle of the system (1) with the period Tc ≈ 0.3655 into the space x1 − x2 − x4.

6. Calculation of the Lyapunov Exponents

In [20], a modification of the algorithm for calculating the Lyapunov exponents for a
model describing the growth of a cancerous tumor was considered. Next, we consider a
generalization of this algorithm for dynamical systems with a quadratic right-hand side of
the n-th order. Note that another algorithm for calculating the Lyapunov exponents based
on calculating the fundamental matrix of the dynamical system and its QR decomposition
is proposed in [29]. The procedure described below can also be applied to it.

First, we define the form of the linearized system of equations. Let us denote the
perturbations by the following:

xn+1(t), xn+2(t), . . . , x2n(t).
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We define the form of the following expression using the rule for differentiating the
sums and products:

∂〈QpX, X〉
∂xj

· xn+j =
∂

∂xj

(
n

∑
i=1

n

∑
k=1

q(p)
i,k xixk

)
· xn+j =

=

(
n

∑
k=1

q(p)
j,k xk +

n

∑
i=1

q(p)
i,j xi

)
· xn+j =

n

∑
i=1

(
q(p)

i,j + q(p)
j,i

)
xixn+j,

where p = 1; n, j = 1; n. Let us find the product as follows:

[
∂〈QpX, X〉

∂x1

∂〈QpX, X〉
∂x2

. . .
∂〈QpX, X〉

∂xn

]
·


xn+1
xn+2

...
x2n

 =

=
n

∑
j=1

n

∑
i=1

(
q(p)

i,j + q(p)
j,i

)
xixn+j =

n

∑
i=1

2n

∑
j=n+1

(
q(p)

i,j−n + q(p)
j−n,i

)
xixj.

(11)

Next, we extend the system (1) by adding to it a linearized system, which also has a
quadratic right-hand side. To do this, we introduce the extended matrix Ã:

Ã =
[
ãi,j
]

2n×2n, ãi,j =


ai,j, if i = 1; n & j = 1; n,
ai−n,j−n, if i = n + 1; 2n & j = n + 1; 2n,
0 otherwise.

The vector function X̃(t) is equal to the following:

X̃(t) = [x1(t) x2(t) . . . xn(t) xn+1(t) . . . x2n(t)]
T.

Based on Formula (11), we have a quadratic form on the right-hand side of the
linearized system for each equation. Then, to reduce the system to a general form, we
introduce the following extended matrix:

Q̃l =
[
q̃(l)i,j

]
2n×2n

,

for l = 1; n : q̃(l)i,j =

{
q(l)i,j , if i = 1; n & j = 1; n,
0 otherwise,

for l = n + 1; 2n : q̃(l)i,j =

{
q(l−n)

i,j−n + q(l−n)
j−n,i , if i = 1; n & j = n + 1; 2n,

0 otherwise.

We get an extended system similar to the system (2):

˙̃X = ÃX̃ + Φ̃(X̃), (12)

where
Φ̃ =

[
ϕ̃1(X̃) . . . ϕ̃2n(X̃)

]T,

ϕ̃l(X̃) = 〈Q̃l X̃, X̃〉, l = 1; 2n.

To obtain the domain of convergence of the power series that is a solution to the
system (12), the norms of the matrices are calculated as follows:

‖Ã‖, ‖Q̃1‖, ‖Q̃2‖, . . . ‖Q̃2n‖
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and the number
µ̃ = 2n max

p=1;2n
‖Q̃p‖.

Let

X̃(t) =
∞

∑
i=0

Υ̃iti, (13)

where Υ̃0 = X̃(0) is the initial condition for the system (12),

Ψ̃i = [ψ̃i,1 . . . ψ̃i,2n]
T

and

ψ̃i,p =
i

∑
j=0
〈Q̃pΥ̃j, Υ̃i−j〉, p = 1; 2n.

By analogy with the system (2), two auxiliary numbers are calculated as functions of Υ̃0:

h̃1(Υ̃0) = ‖Υ̃0‖,

h̃2(Υ̃0) =

{
µ̃h̃2

1(Υ̃0) + (‖Ã‖+ 2µ̃)h̃1(Υ̃0), if h̃1 > 1,

‖Ã‖+ µ̃ otherwise.

Then, the power series (13) converges for t ∈ [−τ̃, τ̃], where the following holds:

τ̃ = τ̃(Υ̃0) =
1

h̃2(Υ̃0) + δ
,

and δ is any positive number.
Let us consider a modification of Benettin’s algorithm for calculating the Lyapunov

exponents using the Gram–Schmidt orthogonalization [10] (pp. 163–165):

1. Divide a given time interval [0, T] (usually the value T is large) into short intervals
by the following length:

τM =
T
M

,

where M is the number of such intervals.
2. Let X∗ be a point of the researched solution, e.g., (10);
3. k := 0;
4. Y(k) := X∗;

5. Let Z(k)
(p) be the column vectors of initial perturbations from n-components (the real

numbers), p = 1; n (p is a number of the perturbation vector);
6. Assign to each component of the vector Z(k)

(p) random number in the range [0, 1];

7. LEp := 0, p = 1; n (the initial values of the sums at calculating the Lyapunov expo-
nents);

8. Orthogonalize and normalize to unity the system of vectors Z(k)
(1), Z(k)

(2), ..., Z(k)
(n);

9. k := k + 1;
10. For p from 1 to n with step 1:

Beginning of cycle
Let

X̃(0) :=

[
Y(k−1)

Z(k−1)
(p)

]
.
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Find X̃(τM) for the system (12) on the algorithm, described in Section 4.
Assign to vectors Y(k) and Z(k)

(p) the matching vector blocks X̃(τM), i.e.,[
Y(k)

Z(k)
(p)

]
:= X̃(τM).

Note that for all values of p the vector Y(k), is the same.
End of cycle

11. For p from 1 to n with step 1:
Beginning of cycle

S := Z(k)
(p) −

p−1

∑
i=1

〈
Z(k)
(p), Z(k)

(i)

〉
· Z(k)

(i) ;

LEp := LEp + log |S|;

Z(k)
(p) :=

S
|S| .

End of cycle
12. If k < M, then Goto step 9;

13. LEp :=
LEp

M · τM
, p = 1; n;

14. Print LEp, p = 1; n.

For the point (10), the Lyapunov exponents were found using the described algo-
rithm for T = 100, M = 20,000 and τM = 0.005. Next, we give them the following
approximate values:

LE1 ≈ 0, LE2 ≈ −0.498, LE3 ≈ −0.499, LE4 ≈ −20.002.

As can be seen, their signature corresponds to a stable limit cycle in the system
(1), which confirms the presence of the cycle, found through the study of the Poincaré
recurrences. Note that in [30] an alternative numerical–analytical scheme for constructing
periodic solutions of systems with a quadratic right-hand side was proposed using an
example of the Lorenz system. Now, this scheme is being actively developed in [31–33] to
find periodic solutions of nonlinear systems of differential equations.

The graphs of changes in the Lyapunov exponents over time are shown in Figures 3–6.
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Figure 3. The graph of the change in time of the Lyapunov exponent LE1.



Mathematics 2021, 9, 2057 15 of 18

-12

-10

-8

-6

-4

-2

 0

 2

 0  10  20  30  40  50  60  70  80  90  100

la
m

b
d
a
2

t

Figure 4. The graph of the change in time of the Lyapunov exponent LE2.
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Figure 5. The graph of the change in time of the Lyapunov exponent LE3.
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Figure 6. The graph of the change in time of the Lyapunov exponent LE4.

7. Conclusions

In this article, the author investigates the limiting regimes corresponding to differ-
ent initial points of the phase space. As a result, we obtain the same cycle shown in
Figures 1 and 2. Consequently, there is no hyperchaos in system (1).

The analysis of the Poincaré recurrences, described in the goals of research, showed
that the rapprochement with the initial point occurs approximately at the same time (i.e.,
we have a regularity). This indicates a limit cycle in system (1).

Stabilization of the behavior of the values of the Lyapunov exponents in Figures 3–6
indicates the correctness of finding their limiting values over a relatively short time interval
[0, 100].

Thus, the limiting trajectory investigated using the analysis of the Poincaré recurrences
and the high-precision calculation of the Lyapunov exponents (i.e., different methods) is
the limit cycle, which contradicts the results in [22] for the values of the parameters a = 7,
b = 50, c = 3, d = 10, e = 5, f = 5 and k = 1.5 of system (1). The obtained data are
available at [34]. Most likely, the authors of the article [22] made a typo indicating such
values of the parameters at which they found a hyperchaos.

A significant novelty of the article is the high-precision method for searching for the
Poincaré recurrences on attractors of dynamical systems with a quadratic right-hand side,
as well as a modification of Benettin’s algorithm for finding the Lyapunov exponents in
order to check the found limiting regimes.

The methods described in the article can be used to study not only periodic regimes,
but also quasiperiodic and chaotic regimes for dynamical systems with a quadratic right-
hand side. According to the statistics of Poincaré recurrences, we can determine the
dimension of the attractor and compare it with the dimension obtained when calculating
the Lyapunov exponents (for example, the articles [17,18]).

The advantage of the considered algorithm for calculating the Lyapunov exponents is
the combination of the linearized system of equations and the original dynamical system
in a general form (12) for finding the state and perturbation vectors together.

Funding: The reported study was funded by RFBR for the research project No. 20-01-00347.
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