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Abstract: By using three equivalence relations, we characterize the behaviour of the elements in a
hypercompositional structure. With respect to a hyperoperation, some elements play specific roles:
their hypercomposition with all the elements of the carrier set gives the same result; they belong to the
same hypercomposition of elements; or they have both properties, being essentially indistinguishable.
These equivalences were first defined for hypergroups, and here we extend and study them for
general hyperrings—that is, structures endowed with two hyperoperations. We first present their
general properties, we define the concept of reducibility, and then we focus on particular classes
of hyperrings: the hyperrings of formal series, the hyperrings with P-hyperoperations, complete
hyperrings, and (H, R)-hyperrings. Our main aim is to find conditions under which these hyperrings
are reduced or not.

Keywords: general hyperring; reducibility; fundamental relation; equivalence

1. Introduction

Algebraic hypercompositional structures, i.e., structures where the result of the synthe-
sis of two elements is a subset of the carrier set, are natural generalizations of the classical
algebraic structures, and thus many properties of groups, rings, fields, modules, vector
spaces, etc., are extended to hypergroups, hyperrings, hyperfields, hypermodules, vector
hyperspaces, etc., more or less in a canonical way. The powerful Hypercompositional
Algebra, i.e., the theory of algebraic hypercompositional structures, is given by concepts
that do not exist in classical Algebra, and reducibility is one of them.

In 1990, James Jantosciak had the idea to describe the behaviour of the elements of
a hypergroup with respect to the hyperoperation by defining three equivalence relations,
that emphasize the interchangeable role of the elements with respect to the hyperoperation.
If two elements in a hypergroup always belong to the same hyperproducts and their
hypercomposition with all the elements of the carrier set is the same, then they are called
essentially indistinguishable [1]. A hypergroup is reduced if the equivalence class of each
element is a singleton with respect to the essentially indistinguishable relation.

In addition, Jantosciak noticed also that factorizing the hypergroup by this equiva-
lence one obtains a reduced hypergroup, called the reduced form of the initial hypergroup.
Therefore, he proposed to divide into two parts the study of the hypergroups: the study
of the reduced hypergroups and the study of the hypergroups having the same reduced
form [1]. Due to this important property, he named as fundamental the three equivalences
used in the definition of the concept of reducibility.

Inspired by this pioneer paper and the further results obtained by researchers on
the reducibility of various types of hypergroups [2–5], we extend here this property to
hyperrings. These are algebraic structures containing an additive and a multiplicative part
connected by the distributivity law, where at least one of them is a hypercompositional
structure. The first type of hyperring was introduced by Krasner [6] as a hypercomposi-

Mathematics 2021, 9, 2037. https://doi.org/10.3390/math9172037 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-5182-4136
https://orcid.org/0000-0002-6955-7443
https://doi.org/10.3390/math9172037
https://doi.org/10.3390/math9172037
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9172037
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9172037?type=check_update&version=2


Mathematics 2021, 9, 2037 2 of 14

tional structure whose additive part is a canonical hypergroup, and the multiplicative one
is a semigroup.

Currently, this structure is known as Krasner hyperring and considered as an additive
hyperring, in order to emphasize that the addition is a hyperoperation. If one considers the
multiplication to be a hyperoperation, while the addition stays an operation, the notion of
multiplicative hyperring was introduced in 1982 by Rota [7], where the additive part is an
abelian group and the multiplicative one is a semihypergroup. If both the addition and the
multiplication are hyperoperations, then we talk about general hyperrings.

There are several types of general hyperrings: one studied by Corsini [8] in 1975 in
connection with feebly hypermodules; one defined in 1973 by Mittas [9,10] and called
superring, having as additive part a canonical hypergroup; another one studied in 1989
by Spartalis [11], where the additive part is a hypergroup and the multiplicative one is
a semihypergroup. Expository and survey articles on this topic have been published by
Nakassis [12] in 1988 and recently by Massouros [13,14].

The aim of this manuscript is to define and study the concept of reducibility in the class
of hyperrings. We will do this in a very natural way, by extending the three fundamental
relations defined by J. Jantosciak to both addition and multiplication. It is clear that it
makes sense to do this only in a general hyperring, where the carrier set is endowed with
two hyperoperations, because these fundamental equivalences are equivalent with the
equality relation when they are considered with respect to an operation.

Thus, the study of the reducibility in a Krasner hyperring or in a multiplicative
hyperring is not relevant since it reduces to the study of the reducibility of a hypergroup.
This study, covered in Section 4, was conducted first in a general way and then for particular
classes of general hyperrings, as the hyperring of formal series, or hyperrings with P-
hyperoperations. Particular attention is given to the complete hyperrings and (H, R)-
hyperrings. The paper ends with some conclusive remarks and ideas for future work.

2. Preliminaries on Hypergroups and Hyperrings

For a non-empty set H, we denote, by P∗(H), the family of all non-empty subsets of H.
A binary hyperoperation, also called a hyperproduct, is an application ◦ : H× H → P∗(H)
and the pair (H, ◦) is called a hypergrupoid. It is important to stress that, in a hypergrupoid,
the hyperproduct x ◦ y between two arbitrary elements x and y in H is a non-empty
subset of H. This is a property that we cannot find in classical algebraic structures, such
as groupoids and semigroups.

The hyperoperation is extended to non-empty subsets of H as A ◦ B =
⋃

a∈A,b∈B
a ◦ b.

If the hyperoperation is associative, then the hypercompositional structure (H, ◦) is a
semihypergroup, which becomes a hypergroup when the reproducibility property also
holds: x ◦ H = H ◦ x = H for all x ∈ H.

The link between groups and hypergroups is established by the fundamental relation
β defined on a semihypergroup (H, ◦) as follows: β = ∪n≥1βn where β1 is the diagonal
relation on H and for any n > 1, and x, y ∈ H, xβny ⇔ ∃a1, a2, . . . , an ∈ H such that

{x, y} ⊆
n

∏
i=1

ai = a1 ◦ a2 ◦ · · · ◦ an. It is clear that β is a reflexive and symmetrical relation,

but generally not transitive. That is why we take its transitive closure β∗, which is an
equivalence relation. Recall that, for hypergroups, we have β = β∗ [15,16], and the quotient
(H/β∗,⊗) is a group with the operation β∗(x) ⊗ β∗(y) = β∗(z) for all x, y ∈ H and
z ∈ x ◦ y.

Considering now the canonical projection ϕH : H → H/β∗, which is a good homomor-
phism, i.e., ϕH(x ◦ y) = ϕH(x)⊗ ϕH(y), we may define the heart (or core) of a hypergroup
H as the set ωH = {x ∈ H|ϕH(x) = 1}, where 1 is the identity of the group H/β∗. This set
plays an important role for the structure of a hypergroup, because, if we know it, then we can
determine the complete closure of a subset of H.

More exactly, if A is a non-empty subset of H, it is called a complete part [17] of H if
for any natural number n and any elements a1, a2, . . . , an in H, the following implication
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holds: A ∩
n

∏
i=1

ai 6= ∅ ⇒
n

∏
i=1

ai ⊆ A. The intersection of all complete parts of H containing

the subset A is called the complete closure of A in H, and it is denoted by C(A). Moreover,
C(A) = ωH ◦ A = A ◦ωH . The complete closure of a set helps us to define a particular type
of hypergroups, called complete hypergroups.

We say that a hypergroup (H, ◦) is complete if x ◦ y = C(x ◦ y) for all x, y ∈ H.
Moreover, if (H, ◦) is a complete hypergroup, then x ◦ y = C({a}) = β(a) for every
x, y ∈ H and a ∈ x ◦ y. In practice, this definition is substituted with the representation
theorem, which we recall here below.

Theorem 1 ([18]). A hypergroup (H, ◦) is complete if and only if it can be partitioned as H =
⋃

g∈G
Ag,

where G and the subsets Ag of H satisfy the following conditions:

(1) (G, ·) is a group.
(2) For all g1 6= g2 ∈ G, there is Ag1 ∩ Ag2 = ∅.
(3) If (a, b) ∈ Ag1 × Ag2 , and then a ◦ b = Ag1g2 .

It is clear that any group is a complete hypergroup; however, this case is not interesting
for our study. This is why we will consider only proper complete hypergroups, i.e.,
complete hypergroups that are not groups. The heart ωH of a complete hypergroup (H, ◦)
has an interesting property: it coincides with the set of identities of H. The complete
hypergroups have been studied for their general properties [19], or in connection with their
fuzzy grade [20], for their commutativity degree [21], or in relation with their size [22].

General hyperrings are algebraic structures equipped with two hyperoperations,
i.e., hyperaddition and hypermultiplication that satisfy the distributivity condition. Here,
we will recall the definitions of some particular types of general hyperrings, which will be
considered further on in the paper.

Definition 1 ([23]). A hypercompositional structure (R,⊕,�) is called a hyperringoid if

1. (R,⊕) is a hypergroup.
2. (R,�) is a semigroup.
3. The operation “�” distributes on both sides over the hyperoperation “⊕.”

This algebraic hypercompositional structure was first introduced by Massouros [24]
in a study on languages and automata. If we request that both addition and multiplication
are hyperoperations, then the hyperringoid becomes a general hyperring.

Definition 2 ([25]). A triple (R,⊕,�) is a general hyperring if:

1. (R,⊕) is a hypergroup.
2. (R,�) is a semihypergroup.
3. The multiplication is distributive with respect to the addition, i.e., for all a, b, c ∈ R a�

(b⊕ c) = (a� b)⊕ (a� c) and (a⊕ b)� c = (a� c)⊕ (b� c).

The Hv-structures were introduced by Vougiouklis during the 4th AHA Congress in
1990 [26] as hypercompositional structures with weak associative hyperoperations.

Definition 3. The hyperstructure (H, ·) is an Hv-semigroup if x · (y · z) ∩ (x · y) · z 6= ∅ for all
x, y, z ∈ H. If also the eproducibility property is valid, i.e., a · H = H · a = H, then (H, ·) is called
an Hv−group.

Definition 4. A multi-valued system (R,⊕,�) is an Hv−ring if:

1. (R,⊕) is an Hv-group.
2. (R,�) is an Hv-semigroup.
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3. The multiplication weakly distributes with respect to the addition, i.e., for all a, b, c ∈ R (a�
(b⊕ c)) ∩ ((a� b)⊕ (a� c)) 6= ∅ and ((a⊕ b)� c) ∩ ((a� c)⊕ (b� c)) 6= ∅.

It is important to recall here one of the main properties of hypercompositional struc-
tures: the quotient of a group with respect to any of its subgroups is a hypergroup, while the
quotient of a group by any equivalence relation gives birth to an Hv-group [14]. A recently
published overview of the theory of weak-hyperstructures is covered in [26,27].

In the following, we will recall the construction of two types of hyperrings, which we
will study in the next section. The first one leads to an Hv-ring obtained from a ring. This
structure was principally studied by Spartalis and Vougiouklis [28,29], in connection with
homomorphisms and numeration.

Let (R,+, ·) be a ring and P1 and P2 be non-empty subsets of R. The hyperoper-
ations defined by xP∗1 y = x + y + P1 and xP∗2 y = x · y · P2 for all x, y ∈ R are called
P-hyperoperations [30].

Theorem 2 ([29]). Let (R,+, ·) be a ring, Z(R) be the center of the multiplicative semigroup
(R, ·) and P1, P2 be non-empty subsets of R. If 0 ∈ P1 and Z(R) ∩ P2 6= ∅, then (R, P∗1 , P∗2 ) is an
Hv-ring.

This kind of Hv-ring is called an Hv-ring with P-hyperoperations.
We end this section by recalling the construction of the hyperring of the formal

series [31,32]. Based on this, we studied the structure of the set of polynomials over a
hyperring.

Let (R,+, ·) be a general commutative hyperring. A formal series with coefficients in
R is an infinite sequence (a0, a1, a2, . . . , an, . . .) of elements ai in R. The set of all such series
is denoted by R[[x]]. We say that two series (a0, a1, a2, . . . , an, . . .) and (b0, b1, b2, . . . , bn, . . .)
are equal if and only if ai = bi for all indices i.

Let define on R[[x]] the addition by

(a0, a1, . . . , an, . . .)⊕ (b0, b1, . . . , bn, . . .) = {(c0, c1, . . . , cn, . . .), ck ∈ ak + bk}

and the multiplication by

(a0, a1, . . . , an, . . .)� (bo, b1, . . . , bn, . . .)={(c0, c1, . . . , cn, . . .), ck∈ ∑
i+j=k

ai · bj}.

The structure (R[[x]],⊕,�) is a general hyperring. We recall that the set of the poly-
nomials R[x] with coefficients in R is a superring with the same hyperoperations ⊕ and �
defined above [33]. This means that (R[x],⊕) is a canonical hypergroup, (R[x],�) is a semi-
hypergroup such that 0 is a bilaterally absorbing element and the multiplication is weakly
distributive on the left side with respect to the addition, i.e., f � (g⊕ h) ⊆ f � g⊕ f � h,
for f , g, h ∈ R[x].

3. Short Review of the Reducibility in Hypergroups

In this section, we briefly recall the notion of the reducibility of hypergroups. We start
with the three fundamental relations introduced by Jantosciak [1] on an arbitrary hyper-
group.

Definition 5 ([1]). Two elements x, y in a hypergroup (H, ◦) are called:

1. operationally equivalent or by short o-equivalent, and we write x ∼o y, if x ◦ a = y ◦ a,
and a ◦ x = a ◦ y, for any a ∈ H;

2. inseparable or by short i-equivalent, and we write x ∼i y, if, for all a, b ∈ H, x ∈ a ◦ b⇐⇒
y ∈ a ◦ b; and

3. essentially indistinguishable or by short e-equivalent, and we write x ∼e y, if they are
operationally equivalent and inseparable.
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Definition 6 ([1]). A hypergroup H is called reduced if, for any x ∈ H, the equivalence class of x
with respect to the essentially indistinguishable relation ∼e a singleton.

Proposition 1 ([5]). A total hypergroup is not reduced.

Theorem 3 ([5]). Any proper complete hypergroup is not reduced.

Proposition 2. Let φ be a good surjective homomorphism from the hypergroup (R,+) to the hy-
pergroup (T,⊕). If two elements are essentially indistinguishable with respect to the hyperoperation
+, then their images are essentially indistinguishable with respect to the hyperoperation ⊕.

Proof. Let x and y be elements from R such that x + a = y + a, where a ∈ R. This
gives {φ(l)|l ∈ x + a} = {φ(k)|k ∈ y + a}, and thus φ(x + a) = φ(y + a). From here,
φ(x)⊕ φ(a) = φ(y)⊕ φ(a). Denote φ(a) = b and φ(x) = x1, φ(y) = y1. Thus, x1 ⊕ b =
y1 ⊕ b. If the equality x + a = y + a holds for every a ∈ H, then the last equality holds
for all b ∈ T since {φ(a)|a ∈ R} = T. Assuming a + x = a + y for all a ∈ R, similarly, we
obtain φ(a)⊕ φ(x) = φ(a)⊕ φ(y) for all a ∈ R. Hence, if x ∼+

o y then φ(x) ∼⊕o φ(y).
Let x ∼+

i y, i.e., x ∈ a+ b if and only if y ∈ a+ b for all a, b ∈ R. From this equivalence,
we find that φ(x) ∈ {φ(l)|l ∈ a+ b} if and only if φ(y) ∈ {φ(k)|k ∈ a+ b}, and thus φ(x) ∈
φ(a + b) if and only if φ(y) ∈ φ(a + b). Since φ is homomorphism, φ(x) ∈ φ(a)⊕ φ(b) if
and only if φ(y) ∈ φ(a)⊕ φ(b). Let φ(x) = x1, φ(y) = y1 and φ(a) = a1, φ(b) = b1. Since
the mapping is surjective a1 ⊕ b1 covers whole set T. Hence, x1 ∈ a1 ⊕ b1 is equivalent to
y1 ∈ a1 ⊕ b1, for all a1, b1 ∈ T. Here, x ∼+

i y implies φ(x) ∼⊕i φ(y). The definition of the
essential indistinguishability relation, together with the above implications, concludes the
proof of our claim.

4. Reducibility in Hyperrings

In a semigroup, the equivalences ∼o and ∼i coincide with the diagonal relation,
i.e., x ∼o y ⇐⇒ x ∼i y ⇐⇒ x = y. Thus, in a Krasner hyperring or in a multiplicative
hyperring (when the referential set is equipped with a hyperoperation and an operation),
these two equivalences are not significant. Therefore, in this section, our first aim is to
study relationships between these equivalences in a general hyperring (R,⊕,�), where
addition and multiplication are both hyperoperations.

For any element x ∈ R, we denote, by x̂⊕r and x̂�r , the equivalence classes of x with
respect to the hyperoperations ⊕ and �, respectively, where r ∈ {o, i, e} denotes the type
of the equivalence that we consider in Definition 7. In the following, by hyperring, we
mean a general hyperring.

Definition 7. We say that two elements x and y in a hyperring (R,⊕,�) are operationally
equivalent, inseparable or essentially indistinguishable if they have the same property with respect
to both hyperoperations, i.e.,

1. x ∼o y if x⊕ a = y⊕ a, a ⊕ x = a⊕ y and a� x = a� y, x� a = y� a, for all a ∈ R.
2. x ∼i y if x ∈ a⊕ b ⇐⇒ y ∈ a⊕ b, for all a, b ∈ R and x ∈ c� d ⇐⇒ y ∈ c� d, for all

c, d ∈ R.
3. x ∼e y if x ∼o y and x ∼i y.

Definition 8. A hyperring R is called reduced if the equivalence class of each element x ∈ R with
respect to the essentially indistinguishable relation ∼e is a singleton, i.e., x̂e = {x} for any x ∈ R.

The equivalence class of any element x in R with respect to the essentially indis-
tinguishability relation ∼e is obtained as x̂e = x̂⊕e ∩ x̂�e = (x̂⊕o ∩ x̂⊕i ) ∩ (x̂�o ∩ x̂�i ). It is
important to stress on the following property. If at least one of the hypergroupoids (R,⊕)
or (R,�) is reduced, then the hyperring (R,⊕,�) is reduced, too. Reciprocally, if (R,⊕,�)
is reduced, then the hypergroupoids (R,⊕) and (R,�) can be reduced or not, as one can
see in the following examples.
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Example 1. Let (R,⊕,�) be a hyperring defined by the following Cayley tables:

⊕ e a
e R R
a R R

� e a
e e R
a R a

Since (R,⊕) is a total hypergroup, based on Proposition 1, it is not reduced. Here, â⊕e =
ê⊕e = {e, a}. However, it is easy to check that the hypergroup (R,�) is a reduced hypergroup,
and â�e = {a}, ê�e = {e}. All together, it gives that êe = {e} and âe = {a} which shows that
(R,⊕,�) is a reduced hyperring.

Example 2. Let the hyperring (R,⊕,�) be defined by the following Cayley tables:

⊕ x y z
x x, y x, y R
y x, y x, y R
z R R R

� x y z
x R R R
y R y, z y, z
z R y, z y, z

It is elementary to check that the algebraic hyperstructure (R,⊕,�) is a general hyperring.
Since the rows corresponding to x and y are equal in (R,⊕) and both x, y appear in the same
hyperproducts a⊕ b, it follows that x ∼⊕e y, which implies that (R,⊕) is not reduced. Similarly,
(R,�) is not a reduced hypergroup since y ∼�e z. But, x̂e = x̂⊕e ∩ x̂�e = {x, y} ∩ x = {x}.
Similarly, ŷe = {y}, and ẑe = {z}, which proves that (R,⊕,�) is a reduced hyperring.

4.1. Some Properties of the Reducibility in Hyperrings

In the following, subsections, we suppose that the ring (R,+, ·) has no zero divisors.
First, we will present some relationships between the operationally equivalence (in-

separability) with respect to the first hyperoperation of the hyperring and the operationally
equivalence (inseparability) with respect to the second hyperoperation of the considered
hyperring.

Proposition 3. Let (R,⊕,�) be a general hyperring, where the hypergroup (R,⊕) contains a
scalar identity. Then, the essentially indistinguishability with respect to the hyperoperation “⊕“
implies the essentially indistinguishability with respect to the hyperoperation “�”, i.e., x ∼⊕e y⇒
x ∼�e y, for all x, y ∈ R.

Proof. We denote by 0 the scalar identity in (R,⊕). Let x and y be two elements in R such
that x ∼⊕o y, i.e., x⊕ a = y⊕ a and a⊕ x = a⊕ y, for all a ∈ R. This means that, for any
u ∈ R such that u ∈ x ⊕ a, it holds u ∈ y ⊕ a. Let u in a � x. Then, since x = x ⊕ 0, it
follows that u ∈ a� (x⊕ 0). Now, using x⊕ 0 = y⊕ 0, we get u ∈ a� (y⊕ 0) = a� y. By
symmetry, we can conclude that a� x = a� y, and x � a = y� a, for all a ∈ R. Hence,
x ∼�o y.

Let us suppose that x ∈ a ⊕ b if and only if y ∈ a ⊕ b, for any a, b ∈ R. Let c and
d be elements in the hyperring such that x ∈ c � d. Thus, x ∈ (c ⊕ 0) � d. Using the
distributibivity, we obtain x ∈ c� d⊕ 0� d = {m⊕ n|m ∈ c� d, n ∈ 0� d}. Since x and
y appear in the same hyperproducts a⊕ b, for any a, b ∈ R, it follows that y also belongs
to the same hyperproduct, which gives y ∈ c� d⊕ 0� d, i.e., y ∈ c� d. This proves the
implication x ∼⊕i y⇒ x ∼�i y. Now the conclusion of the result is clear.

Corollary 1. Let (R,⊕,�) be a general hyperring such that (R,⊕) contains a scalar identity.
If (R,⊕) is not a reduced hypergroup, then the hyperring (R,⊕,�) is not reduced, too.

Proof. If (R,⊕) is not a reduced hypergroup, then there exist two distinct elements x and
y in R such that x ∼⊕e y. Based on Proposition 3, it follows that x ∼�e y, meaning that the
hyperring (R,⊕,�) is not reduced.
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In the second part of this section, we present some particular types of general hyper-
rings and highlight some of their properties related to the reducibility. We start with some
aspects regarding the reducibility of the hyperring of formal series.

Proposition 4. Let R[[x]] be the hyperring of the formal series with coefficients in the general
commutative hyperring (R,+, ·). The hyperring (R,+, ·) is reduced if and only if the hyperring
(R[[x]],⊕,�) is reduced.

Proof. Let us suppose that the hyperring R is not reduced, i.e., there exist elements a
and b such that a + x = b + x and x + a = x + b for all x ∈ R, and also a and b appear
in the same hyperproducts c + d, where c, d ∈ R. As a direct consequence, the formal
series (a, a, . . . , a, . . .) and (b, b, . . . , b, . . .) are operationally equivalent and inseparable with
respect to the hyperoperation ⊕. Analogously, the implication holds also if we consider the
multiplicative hyperoperation. Hence, if R is not reduced, then the hyperring (R[[x]],⊕,�)
is not reduced, too.

Let us prove now that the reducibility in (R,+, ·) implies the reducibility in (R[[x]],⊕,�).
For that purpose, let us assume that the hyperring R[[x]] is not reduced. Then, there exist two
formal series (a1, a2, . . . , an, . . .) and (b1, b2, . . . , bn, . . .), which are operationally equivalent
with respect to the hyperoperation ⊕. This implies that:

(a1, a2, . . . , an, . . .)⊕ (x1, x2, . . . , xn, . . .) = (1)

(b1, b2, . . . , bn, . . .)⊕ (x1, x2, . . . , xn, . . .), (2)

and

(x1, x2, . . . , xn, . . .)⊕ (a1, a2, . . . , an, . . .) = (3)

(x1, x2, . . . , xn, . . .)⊕ (b1, b2, . . . , bn, . . .), (4)

for any formal series (x1, x2, . . . , xn, . . .) ∈ R[[x]]. Using the definition of the hyperaddition
in (R[[x]],⊕,�), the previous equalities give that ai + xi = bi + xi and xi + ai = xi + bi for
any arbitrary xi ∈ R. Hence, ai ∼+

o bi for any elements ai, bi ∈ R, which are the coordinates
of the considered formal series.

Assuming now that the series (a1, a2, . . . , an, . . .) and (b1, b2, . . . , bn, . . .) are insepara-
ble with respect to the hyperoperation ⊕, it easily follows that ai and bi appear in the same
hyperproducts c + d, where c, d ∈ R, so they are inseparable with respect to the hyper-
product “+” on R. Similarly, we can prove that the essentially indistinguishability with
respect to the hypermultiplication “�” implies essentially indistinguishability with respect
to the hyperoperation “·”. We finally find that (R,+, ·) is not reduced, which concludes the
proof.

The next part of this subsection is dedicated to the study of reducibility of the hyper-
rings with P-hyperoperations.

Proposition 5. Let (R,+, ·) be a commutative principal ideal domain with two units, i.e., 1 and
−1. If P1 = nR, with n ∈ R, and P2 = R, then the structure (R, P∗1 , P∗2 ) is a commutative Hv-ring
with P-hyperoperations, which is a non-reduced hyperring.

Proof. Any principal ideal contains 0; therefore, 0 ∈ P1. As the ring R is commutative, it co-
incides with its center Z(R), and therefore the set P2 = R has a non-empty intersection with
Z(R), and thus the conditions of Theorem 2 are satisfied, proving that the hyperstructure
(R, P∗1 , P∗2 ) is a commutative Hv-ring.

Let x and y be distinct elements such that xP∗1 a = yP∗1 a for all a in R, meaning that
x + a + P1 = y + a + P1, i.e., x + a + nR = y + a + nR, for the fixed element n ∈ R and
any a ∈ R. Since the principal ideal nR is a subgroup, then the equality holds whenever
x− y ∈ nR. Therefore, the elements x and y are operationally equivalent with respect to
the hyperoperation P∗1 if and only if x− y ∈ nR.
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Let x and y be two elements such that x − y ∈ nR. Let us suppose that x ∈ aP∗1 b,
where a, b ∈ R. The element x belongs to a + b + nR, i.e., x = a + b + n · s, with s ∈ R.
Since x = y + n · k, with k ∈ R, it follows that y + n · k = a + b + n · s, meaning that
y ∈ a + b + nR. Hence, y ∈ aP∗1 b. Similarly, we can prove the other implication. Thus,

x ∼P∗1
i y. Conversely, if x ∼P∗1

i y, then it is clear that x− y ∈ nR = P1. Hence, for any two

distinct elements x, y ∈ R, x ∼P∗1
e y if and only if x− y ∈ P1.

Now, suppose that x and y are operational equivalent with respect to the hyperopera-
tion P∗2 . Thus xP∗2 a = yP∗2 a, i.e., x · a · P2 = y · a · P2, for any a ∈ R. Using the property that
two principal ideals are equal when their generators are associated, we obtain that there
exists a unit u such that ya = uxa, and similarly, there exists a unit v such that xa = vya.
Both together imply that ya = uvya, with uv = 1. Since the ring R contains only two units,
we have exactly two possibilities. If both units u and v are the multiplicative identity 1,
then we obtain that xa− ya = 0, i.e., (x− y)a = 0, which implies that x = y. The second
case is when u = v = −1 and we obtain ya = −xa, for any a ∈ R, thus y = −x.

Regarding the inseparability with respect to the hyperoperation P∗2 , we easily see that

for any x ∈ R, there is x ∼P∗2
i (−x) and, moreover, x ∼P∗2

e (−x).
Based on these two results, it follows clearly that x ∼e (−x), for any x ∈ P1 which

says that the Hv-ring (R, P∗1 , P∗2 ) is not reduced.

Example 3. An example of an Hv-ring with P-hyperoperations satisfying Proposition 5 can be
obtained taking R = Z, the ring of integers.

In the following, we will construct other examples of Hv-rings with P-hyperoperations
and study their reducibility.

Example 4. Let Z be the ring of integers and set P1 = nZ with n ∈ Z and P2 = Z+, the set
of positive integers. Then, the hyperstructure (Z, P∗1 , P∗2 ) is a commutative Hv-ring with P-
hyperoperations, which is reduced.

It is easy to see that the conditions of the Theorem 2 are all fulfilled, which implies that the
hyperstructure (Z, P∗1 , P∗2 ) is an Hv-ring. Similarly, as in Example 3, we conclude that x ∼P∗1

e y if
and only if x− y ∈ P1, i.e., x− y = ns for some s ∈ Z.

Let us suppose that xP∗2 a = yP∗2 a, i.e., x · a ·Z+ = y · a ·Z+, for any a ∈ Z. Choosing a = 1,
it follows that {xk | k ∈ Z+} = {yk | k ∈ Z+}. The equality is satisfied only in the case when
x = y. Thus, the Hv-ring (Z, P∗1 , P∗2 ) is reduced.

Example 5. Let (R, P∗1 , P∗2 ) be a commutative Hv− ring with P− hyperoperations such that (R, ·) is
a group and let P1 be a subgroup of (R,+) and P2 = R. Then, the Hv-ring (R, P∗1 , P∗2 ) is not reduced.

It is easy to check that the hyperstructure (R, P∗1 , P∗2 ) is an Hv-ring with P-hyperoperations.
Let us prove its non-reducibility. Indeed, following the procedure explained in Proposition 5, we
conclude that x ∼P∗1

e y if and only if x− y ∈ P1. Hence, for any two distinct elements x, y ∈ R, such
that x− y ∈ P1, there is x̂P∗1

e = ŷP∗1
e ⊇ {x, y}. Taking P2 = R we easily get that xP∗2 a = yP∗2 a,

for all a ∈ R, and if x belongs to aP∗2 b, obviously also y belongs to it. Therefore, for an arbitrary

element x in R, there is x̂P∗2
e = R.

Combining the two results, we get x ∼e y, whenever x− y ∈ P1, meaning that the considered
Hv-ring is not reduced.

Example 6. Let (R, P∗1 , P∗2 ) be a commutative Hv-ring with P-hyperoperations, such that (R,+, ·)
is a field and let K be a subfield of R. If P1 = P2 = K, then the Hv− ring (R, P∗1 , P∗2 ) is not reduced.

Let x and y be arbitrary elements from R. Analogously to Example 5, x ∼P∗1
e y if and only if

x− y ∈ P1.
Let us suppose that the equality xP∗2 a = yP∗2 a is satisfied for all a ∈ R, i.e., xaK = yaK for

any a ∈ R. This is equivalent to xK = yK, which is satisfied for any x, y ∈ K.
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Merging both conclusions, we get that the hyperring (R, P∗1 , P∗2 ) is not reduced, since any two
elements x and y in K are essentially indistinguishable.

We conclude this subsection with the study of the reducibility of the hyperrings con-
structed with Corsini hypergroups. Let us recall first the definition of such a hypergroup.

Definition 9 ([34]). A hypergroup (H, ◦) is called a Corsini hypergroup, if, for any two elements
x, y ∈ H, the following conditions hold:

1. x ◦ y = x ◦ x ∪ y ◦ y,
2. x ∈ x ◦ x,
3. y ∈ x ◦ x if and only if x ∈ y ◦ y,
4. for any (a, c) ∈ H2, c ◦ c ◦ c \ c ◦ c ⊆ a ◦ a ◦ a.

Proposition 6. Let (H, ◦) be a Corsini hypergroup and (H, ?) be a B-hypergroup, i.e., x ? y =
{x, y} for all x, y ∈ H. Then, the hyperring (H, ?, ◦) is a reduced hyperring.

Proof. Based on Al-Tahan and Davvaz [35], it is known that, if (H, ◦) is a Corsini hyper-
group and (H, ?) is a B-hypergroup, then the structure (H, ?, ◦) is a commutative hyperring.
Kankaraš has proved in [4] that any B− hypergroup is a reduced hypergroup, which easily
gives that the hyperring (H, ?, ◦) is reduced, too.

Example 7. Endow the set R = {x, y, z} with the hyperoperations ⊕ and � given by the
following tables:

⊕ x y z
x x, y x, y R
y x, y x, y R
z R R z

� x y z
x x x, y x, z
y x, y y y, z
z x, z y, z z

The hypergroup (R,⊕) is a Corsini hypergroup [35] and (R,�) is a B-hypergroup. Here,
x⊕ a = y⊕ a for any a ∈ R. Thus, x ∼⊕o y. x and y appear in the same hyperproducts, which
gives x ∼⊕i y. Considering the second hyperoperation, it easily follows that x̂�e = {x} for any
x ∈ R. Hence, (R,⊕,�) is a reduced hyperring.

Remark 1. If we consider that (R,⊕) is the hypergroup defined in Example 7 and (R,�) is the
total hypergroup, then both hypergroups are Corsini hypergroups; hwoever, the hyperring (R,⊕,�)
is not reduced since x̂e = ŷe = {x, y}.

4.2. Reducibility in Complete Hyperrings

The definition of complete hyperrings is based on the definition of complete hypergroups.

Definition 10 ([36]). Let (H,⊕,�) be a hyperring. If (H,⊕) is a complete hypergroup, then we
say that H is⊕-complete. If (H,�) is a complete semihypergroup, then we say that H is�-complete
and if both (H,⊕) and (H,�) are complete, then we say that H is a complete hyperring.

Following the construction of complete hypergroups, De Salvo [36] proposed a method
to obtain complete hyperrings starting with rings. Let us recall here this construction.

Let (R,+, ·) be a ring, and {A(g)}g∈R be a family of nonempty sets, such that:

1. ∀g, g
′ ∈ R, g 6= g

′ ⇒ A(g) ∩ A(g
′
) = ∅

2. g /∈ R · R⇒ |A(g)| = 1.
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Set HR =
⋃

g∈R A(g) and define on HR two hyperoperations ⊕ and � as follows: for

any a, b ∈ HR, there exist g, g
′ ∈ R such that a ∈ A(g), b ∈ A(g

′
) and define

a⊕ b = A(g + g
′
), a � b = A(gg

′
).

Lemma 1 ([36]). Using the previous notations, for all g, g
′ ∈ R and any a ∈ A(g), b ∈ A(g

′
)

we have:
a⊕ b = A(g + g

′
) = A(g)⊕ A(g

′
),

a� b = A(gg
′
) = A(g)� A(g

′
).

In [37] Corsini proved that (HR,⊕) and (HR,�) are, respectively, a complete commu-
tative hypergroup and a complete semihypergroup.

Remark 2. All complete hyperrings can be constructed by the above described procedure, since it is
known that any complete semihypergroup (hypergroup) can be constructed as the union of disjoint
sets A(g), g ∈ G (see Theorem 1).

Based on Theorem 3, any complete (semi)hypergroup is not reduced; however, this
property does not imply directly the non-reducibility of any complete hyperring. That’s
why we need to study its reducibility in a different way, as shown in the next result.

Theorem 4. Any complete hyperring (HR,⊕,�) is not reduced.

Proof. Let (HR,⊕,�) be a complete hyperring. Therefore the hypergroup (HR,⊕) and the
semihypergroup (HR,�) are both complete, so both are not reduced. It follows that there
exist a 6= b ∈ HR such that a ∼⊕e b. Now it is enough to prove that a ∼⊕e b implies a ∼�e b
for a, b ∈ HR, because in this case âe = â⊕e ∩ â�e ⊇ {a, b}, which shows that (HR,⊕,�) is
not reduced.

First, we will prove that the operational equivalence relation with respect to the
hyperoperation ⊕ implies the operational equivalence relation with respect to �. Let a, b
be elements from HR such that a⊕ c = b⊕ c, for all c ∈ HR. It follows that there exist
ga, gb, gc ∈ R such that a ∈ A(ga), b ∈ A(gb) and c ∈ A(gc). According to Lemma 1, we
have a⊕ c = A(ga + gc) and b⊕ c = A(gb + gc), which leads to the equality A(ga + gc) =
A(gb + gc), and so ga + gc = gb + gc in the group (R,+). Therefore, ga = gb, that implies
that ga · gc = gb · gc. Therefore, a� c = A(ga · gc) = A(gb · gc) = A(gb)� A(gc) = b� c.
Similarly, c⊕ a = c⊕ b implies that c� a = c� b. This means that a ∼⊕o b implies a ∼�o b
for all a, b ∈ HR.

Next, we will show that the indistinguishability relation with respect to ⊕ implies the
indistinguishability relation with respect to �.

Let us suppose a ∼⊕i b. This means that a and b appear in the same hyperproducts
d⊕ e, for d, e ∈ HR. Thus a ∈ A(gd)⊕ A(ge) ⇐⇒ b ∈ A(gd)⊕ A(ge), with gd, ge ∈ R such
that d ∈ A(gd), e ∈ A(ge). It follows that a ∈ A(gd + ge) ⇐⇒ b ∈ A(gd + ge), meaning
that a, b ∈ A(g), with g ∈ R. If we consider now a ∈ k � l, then a ∈ A(gk · gl), where
k ∈ A(gk), l ∈ A(gl). Since a and b are in the same Ag, it follows that b ∈ A(gk · gl) = k� l,
equivalently, b ∈ k� l. Similarly, if b ∈ k� l, then a ∈ k� l. Hence, a ∼�i b.

Example 8. Let the hyperring R = ({a, b, c, d, e},⊕,�) be defined as shown in the following tables:

⊕ a b c d e
a a b, c b, c d e
b b, c d d e a
c b, c d d e a
d d e e a b, c
e e a a b, c d

� a b c d e
a a a a a a
b a b, c b, c d e
c a b, c b, c d e
d a d d a d
e a e e d b, c



Mathematics 2021, 9, 2037 11 of 14

The hyperring (R,⊕,�) is a commutative complete hyperring [38]. Since the rows corre-
sponding to the elements b and c are exactly the same in both tables, we conclude that b ∼⊕o c
and b ∼�o c, which further gives b ∼o c, i.e., b̂o = ĉo ⊇ {b, c}. Furthermore, we notice that
b̂o = ĉo = {b, c}. In addition, the elements b and c appear together in the same hyperproducts in
(R,⊕), as well as in (R,�), whence b ∼i c, and thus b̂i = ĉi = {b, c}. Hence, b̂e = ĉe = {b, c},
which implies that the given hyperring is not reduced.

Remark 3. Since (R, ·) is generally a semigroup, and not a group, it may happen that the oper-
ational equivalence relation with respect to the hyperoperation � does not imply the operational
equivalence relation with respect to the hyperoperation ⊕.

4.3. Reducibility in (H,R)-Hyperrings

(H, R)-hyperrings were introduced by De Salvo in [36], when he generalized the
construction of (H,G)-hypergroups described in [39]. In the following, we will present
their construction.

Let (H, ◦, •) be a hyperring and {Ai}i∈R be a family of nonempty sets such that:

1. (R,+, ·) is a ring.
2. A0R = H.
3. For any i 6= j ∈ R, Ai ∩ Aj = ∅.

Set K =
⋃

i∈R
Ai and define on K the following hyperoperations:

for any x, y ∈ H, x⊕ y = x ◦ y (5)

and x� y = H (6)

For any x ∈ Ai and y ∈ Aj such that Ai × Aj 6= H × H, define

x⊕ y = Ak if i + j = k, (7)

x� y = Am if i · j = m. (8)

The structure (K,⊕,�) is a general hyperring, called an (H, R)-hyperring. Moreover,
if ω is the heart of the hypergroup (K,⊕), then ω = H and H � K = K� H = H [36].

In the following, we will better describe the operational equivalence and the insepara-
bility in an (H, R)-hyperring.

Lemma 2. Let (K,⊕,�) be an (H,R)-hyperring, where K =
⋃

i∈R
Ai, with (R,+, ·) a ring and

(H, ◦, •) a hyperring.

1. Two elements x and y in A0R = H are operationally equivalent with respect to the hyperoper-
ation ⊕ if and only if they are operationally equivalent with respect to the hyperoperation ◦
on H.

2. Two elements x and y in K \ A0R are operationally equivalent with respect to the hyperopera-
tion ⊕ if and only if they belong to the same subset Ai ⊂ K.

3. Two elements x and y in K are inseparable with respect to the hyperoperation ⊕ if and only if
they belong to the same subset Ai ⊂ K.

Proof. 1. Let x, y be in A0R = H such that x ⊕ a = y ⊕ a, for all a ∈ K. If a ∈ Aia ,
with ia 6= 0R, then the equality always holds. If a ∈ A0R , then x ⊕ a = y⊕ a whenever
x ◦ a = y ◦ a, and thus the result is proved.

2. Let x and y be in K \ H, such that x ∈ Aix and y ∈ Aiy , with ix, iy ∈ R and consider
x⊕ a = y⊕ a, for all a ∈ K. If a ∈ A0R , then x⊕ a = Aix and y⊕ a = Aiy ; therefore x and y
are operationally equivalent if and only if ix = iy. If a ∈ K \ A0R , for example a ∈ Aia , then
x⊕ a = y⊕ a is equivalent with ix + ia = iy + ia, meaning again ix = iy.

3. Let us consider x ∼⊕i y, meaning that x ∈ a⊕ b if and only if y ∈ a⊕ b. If a, b ∈ A0R ,
then a ⊕ b = a ◦ b, and therefore x ∼⊕i y whenever x, y ∈ a ◦ b ⊂ A0R . If a ∈ Aia and
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b ∈ Aib with Aia × Aib 6= H× H, then a⊕ b = Aia+ib = Ai, and therefore x ∼⊕i y whenever
x, y ∈ Ai, with i ∈ R. Combining the two cases, we find that x and y are inseparable if and
only if they are in the same subset Ai.

Lemma 3. Let (K,⊕,�) be an (H,R)-hyperring, where K =
⋃

i∈R
Ai, with (R,+, ·) an integral

domain and (H, ◦, •) a hyperring. Two elements x and y in K are essentially indistinguishable with
respect to the hyperoperation � if and only if they belong to the same subset Ai ⊂ K.

Proof. The proof is similar to the one of Lemma 2. The only difference here is in the
case of the relation “∼o”, where the condition regarding R to be an integral domain is
fundamental.

Proposition 7. Let (K,⊕,�) be an (H,R)-hyperring, where K =
⋃

i∈R
Ai, with (R,+, ·) an integral

domain and (H, ◦, •) a hyperring. Then, the hyperring (K,⊕,�) is not reduced if and only if there
exists i ∈ R, i 6= 0R, with |Ai| ≥ 2, or the hypergroup (H, ◦) is not reduced.

Proof. Let us suppose that the hyperring (K,⊕,�) is not reduced. Then, there exist two
distinct elements x and y in K such that x ∼e y, i.e., x ∼⊕e y and x ∼�e y. Based on Lemma 2
and and Lemma 3, if x and y belong to the same subset Ai, with i 6= 0R, we conclude
that |Ai| ≥ 2. Otherwise, if all sets Ai, i 6= 0R are singletons, then x, y ∈ A0R = H, which
implies that x ∼◦o y and x ∼◦i y, i.e., the structure (H, ◦) is not a reduced hypergroup.

Conversely, suppose there exists i ∈ R \ {0R} such that |Ai| ≥ 2. Then, there exist two
elements x and y in the set Ai, implying that x ∼⊕e y and x ∼�e y. In other words, x ∼e y,
meaning that the (H, R)-hyperring (K,⊕,�) is not reduced. Assuming that (H, ◦) is not
reduced, let x and y be two elements such that x ∼◦e y. According with Lemma 2 and and
Lemma 3, we further conclude that x ∼⊕e y. Due to the definition of the hyperoperation �,
for any x, y ∈ H, it easily follows that x ∼�e y. Hence, x ∼e y, i.e., (K,⊕,�) is not a reduced
hyperring.

Corollary 2. If (H, ◦, •) is a not reduced hyperring, then the (H, R)-hyperring (K,⊕,�) is not
reduced, too.

In the following, we will give an example of an (H,R)-hyperring and show its non-
reducibility.

Example 9. Let endow the set R = {0, a, b, c} with the following operations

+ 0 a b c
0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

· 0 a b c
0 0 0 0 0
a 0 0 a a
b 0 0 b b
c 0 0 c c

It easily follows that (R,+, ·) is a ring. Furthermore, let (H, ◦, •) be a hyperring given by the
tables

◦ c d
c c c, d
d c, d c, d

• c d
c c c, d
d c c, d

The structure (H, ◦, •) is a general hyperring [36]. It is easy to check that (H, ◦) is a reduced
hypergroup and thus, the hyperring (H, ◦, •) is reduced, too.

We will endow the set K = {c, d, a1, a2, a3, a4, a5, a6}, where A0 = H, Aa = {a1, a2}, Ab =
{a3, a4, a5}, Ac = {a6}, with an (H,R)-hyperstructure, by defining the hyperaddition x⊕ y = x ◦ y
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if both x, y belong to H, otherwise, let x⊕ y = Ak, with x ∈ Ai, y ∈ Aj and k = i + j. We define
x � y = H, where x, y ∈ H and x ⊕ y = Ak with x ∈ Ai, y ∈ Aj and k = i · j. Then, the
structure (K,⊕,�) is an (H,R)-hyperring.

Let us prove that a1 ∼e a2, i.e., a1 ⊕ x = a2 ⊕ x for all x ∈ K. Indeed, if x ∈ H, a1 ⊕ x =
Aa+0 = a2⊕ x. If x ∈ Aa, a1⊕ x = Aa+a = A0 = a2⊕ x = A0. For x ∈ Ab, a1⊕ x = Aa+b =
Ac = a2 ⊕ x. Finally, a1 ⊕ x = a2 ⊕ x = Aa+c = Ab for x ∈ Ac. Due to the commutativity of
the ring R, x⊕ a1 = x⊕ a2 for any x ∈ K. Similarly, a1 � x = a2 � x and x� a1 = x� a2 for
any x ∈ K. Thus, a1 ∼o a2.

Since x⊕ y ⊆ H if both x, y ∈ H = A0 = {c, d}, we conclude that the elements a1 and a2 do
not appear in such hyperproducts. All other hyperproducts x⊕ y are equal to some sets Ak, where
k ∈ {a, b, c}, with Aa, Ab and Ac being disjoint sets. Hence, a1 and a2 appear in the hyperproducts
which are equal to Aa, so they always appear together. Analogously, a1 and a2 appear in the same
hyperproducts x� y. Hence, a1 ∼i a2.

Similarly, one proves that â3e = â4e = â5e = {a3, a4, a5}. Thereby we conclude that the
(H,R)-hyperring (K,⊕,�) is not reduced.

5. Conclusions

In this paper, we defined and studied the reducibility of some particular types of gen-
eral hyperrings, thus, extending the concept of reducibility in hypergroups. We presented
some properties of the fundamental relations in general hyperrings, and we investigated
the reducibility for complete and (H, R)-hyperrings, hyperrings of formal series, and hy-
perrings constructed with Corsini hypergroups. In a future work, our goal is to extend this
study of reducibility to the fuzzy case, i.e., to define and investigate the fuzzy reducibility
in hyperrings.
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3. Cristea, I.; Ştefănescu, M.; Angheluţa, C. About the fundamental relations defined on the hypergroupoids associated with binary

relations. Eur. J. Combin. 2011, 32, 72–81. [CrossRef]
4. Kankaraš, M. Reducibility in Corsini hypergroups. An. Stiint. Univ. Ovidius Constanta Ser. Mat. 2021, 29, 93–109.
5. Kankaraš, M.; Cristea, I. Fuzzy reduced hypergroups. Mathematics 2020, 8, 263. [CrossRef]
6. Krasner, M. A class of hyperrings and hyperfields. Int. J. Math. Math. Sci. 1983, 6, 307–312. [CrossRef]
7. Rota, R. Sugli iperanelli multiplicativi. Rend. Mat. 1982, 2, 711–724
8. Corsini, P. Hypergroupes reguliers et hipermodules. Ann. Univ. Ferrara-Sez.VII Mat. 1975, 20, 121–135.
9. Mittas, J. Hyperanneaux canoniques. Math. Balk. 1972, 2, 165–179.
10. Mittas, J. Sur les hyperanneaux et les hypercorps. Math. Balk. 1973, 3, 368–382.
11. Spartalis, S. A class of hyperrings. Riv. Math. Pura Appl. 1989, 4, 55–64.
12. Nakasis, A. Expository and survey article: Recent results in hyperring and hyperfield theory. Int. J. Math. Math. Sci. 1988,

11, 209–220. [CrossRef]
13. Massouros, C.; Massouros, G. An overview of the foundations of hypergroup theory. Mathematics 2021, 9, 1014. [CrossRef]
14. Massouros, G.; Massouros, C. Hypercompositional Algebra, Computer Science and Geometry. Mathematics 2020, 8, 1338.

[CrossRef]
15. Freni, D. Une note sur le coeur d’un hypergroupe et sur la cloture transitive β∗ de β. Riv. Mat. Pura Appl. 1991, 8, 153–156.

http://doi.org/10.1016/j.ejc.2010.07.013
http://dx.doi.org/10.3390/math8020263
http://dx.doi.org/10.1155/S0161171283000265
http://dx.doi.org/10.1155/S0161171288000250
http://dx.doi.org/10.3390/math9091014
http://dx.doi.org/10.3390/math8081338


Mathematics 2021, 9, 2037 14 of 14

16. Freni, D. Strongly transitive geometric spaces: Applications to hypergroups and semigroups. Commun. Algebra 2004, 32, 969–988.
[CrossRef]

17. Koskas, M. Groupoides, demi-hypergroupes et hypergroupes. J. Math. Pure Appl. 1970, 49, 155–192.
18. Corsini, P. Prolegomena of Hypergroup Theory; Aviani Editore: Tricesimo, Italy, 1993.
19. De Salvo, M.; Lo Faro, G. On the n∗-complete hypergroups. Discret. Math. 1999, 208/209, 177–188. [CrossRef]
20. Cristea, I.; Hassani Sadrabadi, E.; Davvaz, B. A fuzzy application of the group Zn to complete hypergroups. Soft. Comput. 2020,

24, 3543–3550. [CrossRef]
21. Sonea, A.C.; Cristea, I. The class equation and the commutativity degree for complete hypergroups. Mathematics 2020, 8, 2253.

[CrossRef]
22. De Salvo, M.; Fasino, D.; Freni, D.; Lo Faro, G. 1-hypergroups of small sizes. Mathematics 2021, 9, 108. [CrossRef]
23. Massouros, G.G. The hyperringoid. Multi Val. Log. 1998, 3, 217–234.
24. Massouros, C.G.; Mittas, J. Languages and Automata and hypercompositional structures. In Proceedings of the 4th International

Congress on Algebraic Hyperstructures and Applications, Xanthi, Greece, 27–30 June 1990; Vougiouklis, T., Ed.; World Scientific:
Singapore, 1991; pp. 137–147.

25. Vougiouklis, T. The fundamental relation in hyperrings. The general hyperfield. In Proceedings of the 4th International Congress
on Algebraic Hyperstructures and Applications, Xanthi, Greece, 27–30 June 1990; Vougiouklis, T., Ed.; World Scientific: Singapore,
1991; pp. 203–211.

26. Vougiouklis, T. Fundamental relation in Hv-structures. The ’Judging from the results’ proof. J. Algebr. Hyperstructures Log. Algebr.
2020, 1, 21–36. [CrossRef]

27. Davvaz, B.; Vougiouklis, T. A Walk Through Weak Hyperstructures. Hv-Structures; World Scientific: Hackensack, NJ, USA, 2018.
28. Spartalis, S. On the number of Hv-rings with P-hyperoperations. Discret. Math. 1996, 155, 225–231. [CrossRef]
29. Spartalis, S.; Vougiouklis, T. The fundamental relations on Hv-hyperrings. Riv. Math. Pura Appl. 1993, 13, 7–20.
30. Vougiouklis, T. Isomorphisms on P-hypergroups and cyclicity. ARS Combin. 1990, 29A, 241–245.
31. Davvaz, B.; Koushky, A. On hyperrings of polynomials. Ital. J. Pure Appl. Math. 2004, 15, 205–214.
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