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Abstract: Preferences-involved evaluation and decision making are the main research subjects
in Yager’s decision theory. When the involved bipolar preferences are concerned with interval
information, some induced weights allocation and aggregation methods should be reanalyzed and
redesigned. This work considers the multi-criteria evaluation situation in which originally only
the interval-valued absolute importance of each criterion is available. Firstly, based on interval-
valued importance, upper bounds, lower bounds, and the mean points of each, we used the basic unit
monotonic function-based bipolar preference weights allocation method four times to generate weight
vectors. A comprehensive weighting mechanism is proposed after considering the normalization
of the given absolute importance information. The bipolar optimism–pessimism preference-based
weights allocation will also be applied according to the magnitudes of entries of any given interval
input vector. A similar comprehensive weighting mechanism is still performed. With the obtained
weight vector for criteria, we adopt the weighted ordered weighted averaging allocation on a convex
poset to organically consider both two types of interval-inducing information and propose a further
comprehensive weights allocation mechanism. The detailed comprehensive evaluation procedures
with a numerical example for education are presented to show that the proposed models are feasible
and useful in interval, multi-criteria, and bipolar preferences-involved decisional environments.

Keywords: aggregation operator; bipolar preference; multi-criteria evaluation; ordered weighted
averaging operator; weights allocation

1. Introduction

Information fusion theories and techniques are important in numerous comprehen-
sive evaluation problems [1–24] in which multiple criteria or data sources should be
considered rather than a single one. Aggregation operators [7] are powerful and strict
information fusion tools that have been systematically studied and developed during the
past decades [2,6,9,12,15]. In computational intelligence and intelligent decision making,
suitably chosen or designed aggregation operators are more efficient and flexible to address
different types of comprehensive evaluations.

As a typical multi-criteria evaluation problem, when several different criteria are
involved, some normalized weight vectors can be assigned to those criteria, presenting the
relative importance between different criteria. We say relative importance here rather than
absolute importance because those importances together should add up to a unit. This
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type of weight vector is usually determined before input vectors can be obtained. There are
some classical methods to determine this type of weight vector, including the subjective
weighting method or Analytic Hierarchy Process (AHP) method [17].

After the input vector (whose entries correspond to multiple criteria) has been ob-
tained, according to the magnitudes of the entries of the vector, some bipolar preferences
(such as the optimism–pessimism preference) can be embodied by another type of weight-
ing method. Yager introduced the ordered weighted averaging (OWA) operator [20], which
is a type of averaging aggregation operator and can well reflect the bipolar optimism–
pessimism preference of decision-makers. In decision analysis, when decision-makers are
faced with several individual evaluation values, the decision-makers with the strongest
optimism level will prefer the maximum of them, those with the strongest pessimism will
prefer the minimum of them, and those with the Laplace decision preference will take the
mean of them as the merging result they believe in. OWA operators are determined by some
associated normalized weight vectors which can be derived by some preferences-based
weighting methods [8–10,14,19]. Therefore, as a prefect generalization, OWA operators con-
nect the two extreme preferences and serve as a preference continuum from the strongest
optimism via the Laplace preference to the strongest pessimism.

An important extension of OWA operator and related weights allocation is the induced
ordered weighted averaging (IOWA) operator [22,23], in which the weighting process
can be based on the magnitudes of entries in some inducing vector rather than in the
input vector.

The inputs for information fusion and aggregation have become ever-increasingly
more complex and with more uncertainties with diverse types [3,11,18,25]. For exam-
ple, instead of the mere real values, more inputs faced in modern decision making and
evaluation problems are fuzzy information granules [25] and interval values. Hence, this
work will mainly concern the situation in which the relevant information, including inputs
information and inducing information, are both interval-valued.

With some given inducing of the vector which is real-valued, we may use the IOWA
weighting method to derive some suitable weight vectors for a collection of criteria (or a
group of experts, etc.). However, this method can only embody a single type of weighting
style. In practice, it is much better to comprehensively consider more possible weighting
styles. To make the weighting process more comprehensive, this work will provide some
different weighting styles based on given inducing vectors and then use ways to put them
all together, obtaining a resulting weight vector as a comprehensive and more desired one.

With an input real vector and an obtained weight vector, in multi-criteria evalua-
tion, the two basic deciding factors have already been satisfied to perform the weighted
arithmetic mean over the input vector using the weight vector. However, in practice,
there may be more complex decisional situations. On the one hand, as there are multi-
ple criteria and multiple inputs from different sources, it provides space to take bipolar
preference into account. Therefore, decision-makers’ optimism–pessimism preferences
(as some embodiments of their working experience, etc.) often should be embodied in
the weighted arithmetic mean. One effective method to model such preferences is to use
weighted ordered weighted averaging (WOWA) operators [19]. Nevertheless, when the
input vector is interval-valued, the WOWA cannot work in general. This is mainly because
WOWA is based on a linear order of inputs and it is possible that a collection of interval
numbers cannot form a linear order but rather a partial order. On the other hand, the
bipolar optimism–pessimism preference should also be embodied in the interval itself; that
is, with more optimism, a higher value in that interval is more preferred and vice versa. To
solve these problems, this work will apply some newly proposed techniques and propose
some integrated preference-involved models to appropriately embody all such concerns.

The remainder of this work is organized as follows. Section 2 reviews, rephrases, or
redefines some bipolar preferences-involved aggregations and related weight allocations.
In Section 3, we present the analysis for bipolar preferences-involved weighting and the
comprehensive evaluation. Section 4 provides the detailed comprehensive weighting
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and evaluation model with application in evaluation for university teachers. Section 5
concludes and comments on this work.

2. Bipolar Preferences-Involved Aggregations and Related Weight Allocations

Without the loss of generality, the real input a concerned in this work is within the
unit interval a ∈ [0, 1]. A real input vector (of dimension n) is denoted by a = (ai)

n
i=1 ∈

[0, 1]n. The interval inputs considered in this work are closed intervals (also called interval
numbers) within unit interval [0, 1], i.e., [a, b] ⊆ [0, 1]. When no confusion arises, sometimes
[a, a] is identified with real number a ∈ [0, 1], which reserves all related interval operations.
The set of all such interval numbers is denoted by I . A vector of interval numbers is denoted
by [a, b] = ([ai, bi])

n
i=1 ∈ In, where a, b ∈ [0, 1]n are real input vectors. For any two interval

numbers, namely [ai, bi], [aj, bj] ∈ I , we adopt the well-known interval order ≤Int such
that [ai, bi] ≤Int [aj, bj] occurs only if ai ≤ aj and bi ≤ bj; we write [ai, bi] <Int [aj, bj] if
[ai, bi] ≤Int [aj, bj] and [ai, bi] 6= [aj, bj].

The weighted arithmetic mean is one of the most representative aggregation op-
erators, which is widely applied in multi-criteria evaluations. For any weight vector
w = (wi)

n
i=1 ∈ [0, 1]n (∑n

i=1 wi = 1), recall that a real-valued weighted arithmetic mean
(with w) WAw : [0, 1]n → [0, 1] is defined by

WAw(a) = ∑n
i=1 wiai. (1)

An ordered weighted averaging (OWA) operator [20] OWAw : [0, 1]n → [0, 1] is de-
fined by

OWAw(a) = ∑n
i=1 wiaσ(i) (2)

where σ : {1, . . . , n} → {1, . . . , n} is any suitable permutation such that xσ(i) ≥ xσ(j)
whenever i < j. Note that both of the above operators can be equipped with a same weight
vector, but in the OWA operator, the input vector a = (ai)

n
i=1 is in a reordered form of

aσ = (aσ(i))
n
i=1

.
Yager proposed an important generalization of the OWA operator called the induced

ordered weighted averaging (IOWA) operator [22,23]. In IOWA aggregation, a new vector
d = (di)

n
i=1 (called the inducing vector) is attached to the input vector a = (ai)

n
i=1. Then,

with a different permutation, which is in direct relation to d, the IOWA operator with
weight vector w IOWAw : [0, 1]n → [0, 1] is defined by

IOWAw;d(a) = ∑n
i=1 wiaσ(i) (3)

where σ : {1, . . . , n} → {1, . . . , n} is any suitable permutation such that dσ(i) ≥ dσ(j)
whenever i < j.

Considering the involved weight vector w will mainly decide the represented bipolar

preference, Yager defined the orness [20] of any weight vector w by orness(w) ,
n
∑

i=1

n−i
n−1 wi

and dually the andness of it is defined by andness(w) , 1− orness(w). Cognitively, a
weight vector with larger orness will be considered to embody larger optimism in an
OWA-based evaluation (or larger preference extent in an IOWA-based evaluation). For
some new development and strict analysis in relation to orness/andness, we recommend
the Reference [16].

A BUM function Q : [0, 1]→ [0, 1] is monotonic and non-decreasing with Q(0) = 0
and Q(1) = 1. Yager [21] proposed a convenient method and effective mechanism to
derive weight vector w = (wi)

n
i=1 from a given BUM function, namely Q : [0, 1]→ [0, 1] ,

such that:
wi = Q(i/n)−Q((i− 1)/n). (4)

In general, a larger BUM will usually generate a weight vector with larger orness
and vice versa. For example, Q(y) = 1 − (1− y)2 represents an optimism preference
while Q(y) = y2 indicates a pessimism preference. The orness of any BUM Q is defined
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by orness(Q) ,
∫ 1

0 Q(t)dt, while the andness of it is defined dually by andness(Q) ,
1− orness(Q) [13]. BUM function-based weights allocation has some important extensions,
one of which is the three-set method [9] used to perform OWA aggregation on poset values.

In interval decision making and evaluation environments, the corresponding weighted
arithmetic mean can be defined with slight modification. For any weight vector w, interval-
valued weighted arithmetic mean (with w) (IvWA) IvWAw : In → I is defined by

IvWAw([a, b]) = ∑n
i=1 wi[ai, bi] = ∑n

i=1 [wiai, wibi]. (5)

However, OWA and IOWA operators are both based on some linearly ordered set being
inducing information and thus some new methods or formulations should be introduced
to provide the interval-valued OWA and IOWA. Here, we rephrase those definitions using
the three-set formulation [9].

The interval-induced ordered weight averaging (IvIOWA) operator IvIOWAw;d : In → I
with the inducing interval vector [u, v] = ([ui, vi])

n
i=1 and the BUM function Q : [0, 1]→ [0, 1]

is defined by the interval-valued weighted arithmetic mean (with w) IvWAw : In → I ,

IvIOWAQ;[u,v]([a, b]) = ∑n
i=1 wi[ai, bi] = ∑n

i=1 [wiai, wibi] (6)

in which w is defined in the following steps:
Step 1: for each [ui, vi], define three disjoint subsets of {1, . . . , n}: Ai, Bi, Ei ⊆ {1, . . . , n}

such that
Ai =

{
j ∈ {1, . . . , n} : [ui, vi] <Int [uj, vj]

}
,

Bi =
{

j ∈ {1, . . . , n} : [uj, vj] <Int [ui, vi]
}

, and
Ei = {1, . . . , n}\(A ∪ B).
Step 2: form the intermediate vector v = (vi)

n
i=1 ∈ [0, 1]n (which is not necessarily

normalized) such that

vi =
Q(1− |Bi |

n )−Q( |Ai |
n )

|Ei|
(7)

where |S| denotes the cardinality of any finite set S.
Step 3: it can be shown that v 6= 0 = (0, . . . , 0) [9] and then after normalizing v, we

obtain the normalized weight vector w = (wi)
n
i=1 by

wi =
vi

∑n
k=1 vk

. (8)

When the inducing interval vector [u, v] = [a, b], the IOWA defined in Equation (6) is
called the interval-ordered weight averaging (IvOWA) operator IvOWAw : In → I with
the BUM function Q : [0, 1]→ [0, 1] .

3. Some Analysis for Bipolar Preferences-Involved Weighting and
Comprehensive Evaluation

This section firstly analyzes the comprehensive weighting method for criteria with
a bipolar preference of inducing information that is an absolute importance vector for
criteria. Then, with the obtained weight vector for criteria, we will adjust it via the bipolar
preference of inducing information, which is the input vector.

3.1. Comprehensive Weights Determination for Criteria with Relative Importance Information

In a multi-criteria evaluation, given a collection of n criteria {Ci}n
i=1 without further

order information for criteria, we cannot use the bipolar preference weighting method.
When each criterion Ci is given an absolute importance degree of [ci, di] ∈ I which is the
interval number and determined independently from the importance degrees of other
criteria, we can use the three-set method in Equations (7) and (8) to determine the weight
vector s<I> = (s<I>

i )
n
i=1 for the collection of criteria.
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Alternatively, we may also allocate weights to the criteria according to the real-valued
inducing information that is derived from [c, d] = ([ci, di])

n
i=1. As three representative

real-value vectors serving as real-inducing information are derived from ([ci, di])
n
i=1, we

firstly consider c = (ci)
n
i=1 and d = (di)

n
i=1 obtained from the upper and lower bounds

of ([ci, di])
n
i=1. We also consider z = (zi)

n
i=1 = ( ci+di

2 )
n
i=1, obtained from the mean of

([ci, di])
n
i=1. Note those weight vectors derived from inducing vectors c, d, and z by

s<c> = (s<c>
i )n

i=1, s<d> = (s<d>
i )

n
i=1, and s<z> = (s<z>

i )n
i=1, respectively.

As another judging method, we may consider directly normalizing z to obtain the
weight vector s∗ = (s∗i ) for criteria. When z = 0 (i.e., [c, d] = [0, 0]), we may directly set
the corresponding weight vectors obtained from them using the Laplace principle with
s∗ = (s∗i ) = (1/n, . . . , 1/n).

Considering that both real-valued inducing information and interval-valued inducing
information can reasonably reflect some absolute importance extents of each criterion, as
mentioned above, we can comprehensively consider the weighting results obtained from
them by assigning some weights to these inducing sources. For example, by taking a weight
vector (0.3, 0.1, 0.1, 0.1, 0.4), we may have a comprehensive weighting result for criteria
s = 0.3s<I> + 0.1s<c> + 0.1s<d> + 0.1s<z> + 0.4s∗; note that in practice, decision-makers
can adopt any weight vectors according to their preferences or by some voting results from
a collection of decision-makers in group decision making.

Note that as it is reasonable that the criterion with a larger absolute importance should
obtain a larger weight, the BUM function Q1, used as preference indicator, should have
Q1(y) ≥ y. For example, we may take the concave BUM function Q1(y) = 1− (1− y)2,
indicating a moderate preference.

3.2. Comprehensive Weights Determination for Criteria with Optimism–Pessimism Preference

When the input vector for aggregation is [a, b] = ([ai, bi])
n
i=1 and the original weight

vector for criteria is not known, it is ideal to derive a weight vector from the IvIOWA
operator with the three-set method (that is, using Equations (7) and (8) with inducing
interval vector [u, v] = [a, b]). We denote the weight vector obtained in such way by
r<I> = (r<I>

i )
n
i=1. Similar to what has been discussed previously, we may consider the

real vectors as inducing information, namely a = (ai)
n
i=1, b = (ai)

n
i=1, and q = (qi)

n
i=1 =

( ai+bi
2 )

n
i=1, and obtain the corresponding three weight vectors r<a> = (r<a>

i )n
i=1, r<b> =

(r<b>
i )

n
i=1, and r<q> = (r<q>

i )
n
i=1, respectively. Analogously, we may consider directly

normalizing q to obtain the weight vector r∗ = (r∗i ) from inputs. When q = 0 (i.e.,
[a, b] = [0, 0]), we may directly set the corresponding weight vectors obtained from them
using the Laplace principle with r∗ = (r∗i ) = (1/n, . . . , 1/n). Similarly, we may also
take a combinational form to obtain a comprehensive weighting result embodying the
optimism–pessimism preference, i.e., r = 0.3r<I> + 0.1r<a> + 0.1r<b> + 0.1r<q> + 0.4r∗.

Note that with this type of optimism–pessimism-inducing formation, the BUM func-
tion Q2, adopted as a preference indicator, can be any function without restriction to
Q2(y) ≥ y. That is, the criterion corresponding to a larger input will be generally assigned
a larger weight and vice versa. For example, we may take the convex BUM function
Q2(y) = y2 whose orness is orness(Q2) = 1/3, indicating a moderately pessimistic prefer-
ence.

3.3. Adjusted Weights with the Optimism–Pessimism Preference under Known Weights

In spite of the fact that the previously obtained weight vectors s and r are reasonable
from different types of inducing information, it is necessary to consider the weights allo-
cation with the optimism–pessimism preference under the situation in which an original
weight vector for criteria has already been known and will matter.

An ideal method is to use weighted OWA allocation on a convex poset [9]. With
the background of the interval input vector, suppose the original known weight vector
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for criteria is the previously obtained vector s = (si)
n
i=1; we rephrase this method in the

following steps.
Step 1: for each [ai, bi], define three disjoint subsets of {1, . . . , n}: Ai, Bi, Ei ⊆ {1, . . . , n}

such that
Ai =

{
j ∈ {1, . . . , n} : [ai, bi] <Int [aj, bj]

}
,

Bi =
{

j ∈ {1, . . . , n} : [aj, bj] <Int [ai, bi]
}

, and
Ei = {1, . . . , n}\(A ∪ B).
Step 2: form the intermediate vector v = (vi)

n
i=1 ∈ [0, 1]n (which is not necessarily

normalized) such that

vi = si ·
Q2(1− ∑

k∈Bi

sk)−Q2( ∑
k∈Ai

sk)

1− ∑
k∈Bi

sk − ∑
k∈Ai

sk
(with the convention ∑

k∈∅
sk = 0). (9)

Step 3: it can be shown that v 6= 0 = (0, . . . , 0) [9] and then after normalizing v, we
obtain the normalized weight vector w = (wi)

n
i=1 by

wi =
vi

∑n
k=1 vk

. (10)

With the obtained weight vectors s, r, and w from different perspectives, we may
take a weighted average of them to yield a final resulting weight vector for criteria
u = 0.3s + 0.3r + 0.4w (note that the involved weight vector (0.3, 0.3, 0.4) can be changed
by any other weight vector according to different situations in practice) and finally perform
the interval-valued weighted arithmetic mean (with u) (IvWA) IvWAu : In → I with

IvWAu([a, b]) = ∑n
i=1 ui[ai, bi] = ∑n

i=1 [uiai, uibi].

Such evaluation results comprehensively and organically reflects two types of bipolar
preferences with known absolute importance for criteria.

4. Detailed Comprehensive Weighting and Evaluation Model with Bipolar Preferences

This section will provide the detailed evaluation procedures for what has been dis-
cussed in the previous section with a numerical evaluation case of university teachers.

Comprehensive evaluation for university teachers is important because in general,
there is a wider diversity in university teachers than in middle school teachers; for example,
some university teachers and educators mainly focus on teaching and education, while
some other scholars mostly conduct research or academic work. We cannot view scholars
as better and more important than educators and vice versa. For the illustrative purpose,
we consider three important roles of a university teacher: teaching, conducting research,
and providing social service. The detailed evaluation procedures are as follows.

Stage 1. Evaluation background determination and evaluation information collection
Step 1: list n = 4 criteria for evaluating the performance of a university teacher as

follows:
C1: teaching attitude and time;
C2: teaching effect;
C3: social service effect; and
C4: academic performance.
Step 2: Decision-maker invites some experts to access individual performance of each

criterion of that teacher with the interval vector [a, b] = ([ai, bi])
4
i=1 = ([0.3, 0.7], [0.5, 0.8],

[0.1, 0.9], [0.4, 0.8]). That is, the individual performance of C1 is [a1, b1] = [0.3, 0.7] and
so forth.

Step 3: Decision-maker invites some experts to judge the absolute importance for
each criterion, which can be represented by the interval vector [c, d] = ([ci, di])

4
i=1 =
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([0.2, 0.4], [0.2, 0.6], [0.1, 0.5], [0.5, 0.9]). That is, the absolute importance of C1 is [c1, d1] =
[0.2, 0.4] and so forth.

Step 4: Decision-maker determines two types of bipolar preferences expressed by
two BUM functions. BUM function Q1 is chosen to be concave with Q1(y) = 1− (1− y)2,
indicting the decision-maker prefers (also assigns more weight to) the criterion with
higher absolute importance. BUM function Q2 is chosen to reflect a moderate pessimistic
preference with Q2(y) = y2.

Stage 2. Comprehensive weights determination for criteria with relative importance
information

Step 1: Determine the weight vector s<I> = (s<I>
i )

4
i=1 for criteria with the BUM

function Q1 and inducing information [c, d] using Equations (7) and (8). We have the
intermediate vector v with

v1 =
Q1(1− 0

4 )−Q1(
2
4 )

2 =
1−(1−(1− 1

2 )
2
)

2 = 1
8 ,

v2 =
Q1(1− 2

4 )−Q1(
1
4 )

1 =

[
1−(1− 1

2 )
2]−[1−(1− 1

4 )
2]

1 = 5
16 ,

v3 = 1
8 , v4 = 15

16 .
Hence, after normalizing v, we obtain the weight vector s<I> = 1

24 (2, 5, 2, 15) .
=

(0.0833, 0.2084, 0.0833, 0.625).
Step 2: Determine the weight vector s<c> = (s<c>

i )4
i=1 for criteria with the BUM

function Q1 and inducing information [c, c] using Equations (7) and (8). We have the
intermediate vector v with

v1 =
1
4

, v2 =
1
4

, v3 =
1

16
, v4 =

7
16

.

Considering v is already normalized, we have s<c> = ( 1
4 , 1

4 , 1
16 , 7

16 ) = (0.25, 0.25, 0.0625,
0.4375).

Step 3: Determine the weight vector s<d> = (s<d>
i )

4
i=1 for criteria with the BUM

function Q1 and inducing information [d, d] using Equations (7) and (8). We have the
intermediate vector v with

v1 =
1
16

, v2 =
5
16

, v3 =
3
16

, v2 =
7
16

.

Considering v is already normalized, we have s<d> = ( 1
16 , 5

16 , 3
16 , 7

16 ) = (0.0625, 0.3125,
0.1875, 0.4375).

Step 4: Determine the weight vector s<z> = (s<z>
i )4

i=1 for criteria with the BUM
function Q1 and inducing information [z, z] = ([0.3.0.3], [0.4, 0.4], [0.3, 0.3], [0.7, 0.7]) (with

z = (zi)
4
i=1 = ( ci+di

2 )
4
i=1) using Equations (7) and (8). We have the intermediate vector v

with
v1 =

2
16

, v2 =
5
16

, v3 =
2
16

, v2 =
7
16

.

Considering v is already normalized, we have s<z> = ( 2
16 , 5

16 , 2
16 , 7

16 ) = (0.125, 0.3125,
0.125, 0.4375).

Step 5: directly normalize z into the weight vector s∗ = (s∗i )
4
i=1 = 1

17 (3, 4, 3, 7) .
=

(0.1765, 0.2352, 0.1765, 0.4118).
Step 6: obtain a comprehensive weighting result for criteria

s = 0.3s<I> + 0.1s<c> + 0.1s<d> + 0.1s<z> + 0.4s∗ = (0.13934, 0.2441, 0.13309, 0.48347).

Stage 3. Comprehensive weights determination for criteria with the optimism–
pessimism preference

Step 1: Determine the weight vector r<I> = (r<I>
i )

4
i=1 for criteria with the BUM

function Q2 and inducing information [a, b] using Equations (7) and (8). We have the
intermediate vector v with



Mathematics 2021, 9, 2002 8 of 10

v1 =
Q1(1− 0

4 )−Q1(
2
4 )

2 =
1−( 1

2 )
2

2 = 3
8 ,

v2 =
Q1(1− 2

4 )−Q1(
0
4 )

2 =
( 1

2 )
2−02

2 = 1
8 ,

v3 =
Q1(1− 0

4 )−Q1(
0
4 )

4 = 1
4 , v4 = 1

4 .
Considering v is already normalized, we have r<I> = ( 3

8 , 1
8 , 1

4 , 1
4 ) = (0.375, 0.125, 0.25,

0.25).
Step 2: Determine the weight vector r<a> = (r<a>

i )4
i=1 for criteria with the BUM

function Q2 and inducing information [a, a] using Equations (7) and (8). We have the
intermediate vector v with

v1 =
5
16

, v2 =
1
16

, v3 =
7
16

, v4 =
3
16

.

Considering v is already normalized, we have r<a> = ( 5
16 , 1

16 , 7
16 , 3

16 ) = (0.3125, 0.0625,
0.4375, 0.1875).

Step 3: Determine the weight vector r<b> = (r<b>
i )

4
i=1 for criteria with the BUM

function Q2 and inducing information [b, b] using Equations (7) and (8). We have the
intermediate vector v with

v1 =
7
16

, v2 =
4
16

, v3 =
1
16

, v4 =
4
16

.

Considering v is already normalized, we have r<b> = ( 7
16 , 4

16 , 1
16 , 4

16 ) = (0.4375, 0.25,
0.0625, 0.25).

Step 4: Determine the weight vector r<q> = (r<q>
i )

4
i=1 for criteria with the BUM

function Q1 and inducing information [q, q] = ([0.5.0.5], [0.65, 0.65], [0.5, 0.5], [0.6, 0.6])

(with q = (qi)
4
i=1 = ( ai+bi

2 )
4
i=1) using Equations (7) and (8). We have the intermediate

vector v with
v1 =

6
16

, v2 =
1
16

, v3 =
6
16

, v4 =
3
16

.

Considering v is already normalized, we have r<q> = ( 6
16 , 1

16 , 6
16 , 3

16 ) = (0.375, 0.0625,
0.375, 0.1875).

Step 5: directly normalize q into the weight vector r∗ = (r∗i )
4
i=1 = 1

2.25 (0.5, 0.65, 0.5, 0.6) .
=

(0.2222, 0.2889, 0.2222, 0.2667).
Step 6: obtain a comprehensive weighting result for criteria

r = 0.3r<I> + 0.1r<a> + 0.1r<b> + 0.1r<q> + 0.4r∗ = (0.31388, 0.19056, 0.25138, 0.24418).

Stage 4. Determine an adjusted weight vector with the optimism–pessimism prefer-
ence with the known weight vector s = (0.13934, 0.2441, 0.13309, 0.48347).

Step 1: For each [ai, bi], define three disjoint subsets of {1, . . . , n}: Ai, Bi, Ei ⊆ {1, . . . , n}
such that

Ai =
{

j ∈ {1, . . . , n} : [ai, bi] <Int [aj, bj]
}

,
Bi =

{
j ∈ {1, . . . , n} : [aj, bj] <Int [ai, bi]

}
, and

Ei = {1, . . . , n}\(A ∪ B).
In detail, A1 = {2, 4}, B1 = ∅, and E1 = {1, 3}; A2 = ∅, B2 = {1, 4}, and E2 = {2, 3};
A3 = ∅, B3 = ∅, and E3 = {1, 2, 3, 4}; and A4 = {2}, B4 = {1}, and E4 = {3, 4}.
Step 2: form an intermediate vector v = (vi)

4
i=1 ∈ [0, 1]4 by Equation (9) such that

v1 = s1 · Q2(1)−Q2(s2+s4)
1−(s2+s4)

.
= 0.2407,

v2 = s2 · Q2(1−s1−s4)−Q2(0)
1−s1−s4

.
= 0.0921,

v3 = s3 · Q2(1−0)−Q2(0)
1−0 = s3 = 0.13309, and

v4 = s4 · Q2(1−s1)−Q2(s2)
1−s1−s2

.
= 0.48347 · 0.7407−0.0596

0.61656
.
= 0.5341.
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Step 3: by normalizing v, we obtain the normalized weight vector w = (wi)
4
i=1 =

(0.2407, 0.0921, 0.1331, 0.5341) .
= v.

Stage 5. Obtain the final resulting weight vector for criteria and perform the interval-
valued weighted arithmetic mean (with u)

Step 1: obtain the final resulting weight vector for criteria u = 0.3s + 0.3r + 0.4w =
(0.232246, 0.167238, 0.168581, 0.431935).

Step 2: perform the interval-valued weighted arithmetic mean (with u) (IvWA)
IvWAu : I4 → I with

IvWAu([a, b]) = ∑4
i=1 [uiai, uibi] = [0.3429249, 0.7936335].

Step 3: report the evaluation result [0.3429249, 0.7936335] to help with further decision
making.

5. Conclusions

Both of the multiple criteria and the intervals have uncertainties in evaluation value
determinations and thus uncertainties provide space for further decision preferences, espe-
cially bipolar preferences. Therefore, the information fusion techniques and comprehensive
evaluation methods that can well-embody such bipolar preferences are important in both
theoretical studies and applications.

This work mainly discussed bipolar preference-involved weights allocation for in-
volved multiple criteria from three respects. The derived weight vector s for criteria is
comprehensively generated from five aspects with a given concave BUM function, four of
which are concerned with the absolute importance being inducing information and the fifth
with direct normalization of the absolute importance. In a similar way, we comprehensively
generate another weight vector, namely r, for criteria with any BUM function using interval
inputs as inducing information without the intervention of s. As the third suggested
method and in a tangled way, we successfully applied the weighted OWA allocation on
a convex poset in an interval environment and obtained the weight vector w for criteria
with the intervention of s. Finally, the resulting weight vector u for criteria is obtained by
comprehensively considering all the three types using a weighted form.

Considering interval information is one of the most representative uncertain infor-
mation types and the most commonly known uncertain data-type in real life, this work
actually proposed some paradigmatic preferences-involved evaluation models that can
well-handle interval information and multiple criteria. This work provided some prescrip-
tive and suggestive preference-involved comprehensive multi-criteria evaluation models
for both practitioners and theorists interested in aggregation and evaluation theory.

There are also some limitations of the proposed methods. For example, concerning
situations when the involved uncertain information is not interval information but rather
some other uncertain information (such as rough numbers, fuzzy numbers, or neutrosophic
numbers, as in the recently proposed basic uncertain information [11,15]), at present, we
have not discussed the corresponding evaluation models and frames that can handle those
types of uncertain information.
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