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Abstract: We consider distributed-order non-local fractional optimal control problems with controls
taking values on a closed set and prove a strong necessary optimality condition of Pontryagin type.
The possibility that admissible controls are subject to pointwise constraints is new and requires more
sophisticated techniques to include a maximality condition. We start by proving results on continuity
of solutions due to needle-like control perturbations. Then, we derive a differentiability result on
the state solutions with respect to the perturbed trajectories. We end by stating and proving the
Pontryagin maximum principle for distributed-order fractional optimal control problems, illustrating
its applicability with an example.

Keywords: distributed-order fractional calculus; optimal control; Pontryagin maximum principle;
needle-like variations

MSC: 26A33; 49K15

1. Introduction

The idea to consider fractional order systems of distributed order goes back to Caputo
and the study of anomalous diffusion in viscoelasticity [1]. The interest on the new
operator slowly increased, in particular with the works of Chechkin et al. [2], who applied
distributed order fractional derivatives to study retarding sub-diffusion and accelerating
super-diffusion; Naber [3] studied distributed-order fractional subdiffusion processes with
different decay rates; Kochubei [4] applied distributed-order operators to the study of
ultraslow diffusion; and Mainardi et al. [5] applied distributed order fractional derivatives
to study Gaussian diffusion. The subject is today under strong current research, partially
explained by their relation with physical processes lacking temporal scaling [6] and complex
non-linear systems [7]. Indeed, the distributed-order definition of the operator allows
considering superposition of orders and accounting for physical phenomena, such as
memory effects in composite materials and multi-scale effects. A typical example that
illustrates the capabilities of this class of operators is the mechanical behavior of viscoelastic
materials having spatially varying properties. The literature on experimental applications
of fractional order systems of distributed order is now vast, and we refer the interested
reader to the review paper of Reference [8]. For numerical aspects of fractional initial value
problems of distributed-order, we refer to Reference [9].

The calculus of variations is a field of mathematical analysis that uses variations,
which are small perturbations in functions to find maxima and minima of functionals.
The Euler-Lagrange equation is the main tool for solving such optimization problems,
and they have been developed in the context of fractional calculus to better describe
non-conservative systems in mechanics [10]. Necessary optimality condition of Euler—
Lagrange type for distributed-order problems of the calculus of variations were first
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introduced and developed in Reference [11]. The results were then further generalized by
the present authors in Reference [12], with the proof of several analytical results and a weak
maximum principle of Pontryagin type for distributed-order fractional optimal control
problems. Here, we extend and improve the theory of optimal control for distributed-order
fractional operators initiated in Reference [12] by proving a strong version of the Pontryagin
maximum principle, which allows the values of the controls to be constrained to a closed
set. The main novelty consists to extend the optimality condition proved in Reference [12]
to a maximality condition, which yields to the strong version of Pontryagin maximum
principle. For this purpose, and in contrast with Reference [11,12], we use the so-called
needle-like variations to the control perturbations.

The paper is organized as follows. In Section 2, we recall some necessary results
of the distributed-order fractional calculus. Our contribution is given in Section 3: we
formulate the distributed-order fractional optimal control problem under investigation,
and we prove the continuity of solutions (Lemmas 3 and 4), a result on the differentiability
of the perturbed trajectories (Lemma 5) and, finally, the Pontryagin maximum principle
(Theorem 1). We then give an illustrative example of application of the obtained necessary
optimality conditions in Section 4. We end with Section 5, indicating some conclusions, the
main achievements and novelty of the work, as well as some future research directions.

2. Preliminaries

In this section, we recall necessary results and fix notations. We assume the reader to
be familiar with the standard Riemann-Liouville and Caputo fractional calculi [13,14].
Let a be a real number in [0, 1]. In the sequel, we use the following notation:

L*([a,b],R") := {x € LY([a, 0], R") : I* x, I x € AC([a, b],R")},
where I7, and I represent, respectively, the left and right Riemann-Liouville integral

of order a. We also use the notation AC*([a,b], R") to represent the set of absolutely
continuous functions that can be represented as

x(t) =x(a) + I3 f(t) and x(t) =x(b) + I f(t),

for some functions f € L*.
Let ¢ be a non-negative continuous function defined on [0, 1] such that

/01 P(a)da > 0.

This function ¥ will act as a distribution of the order of differentiation.

Definition 1 (See Reference [15]). The left- and right-sided Riemann—Liouville distributed-order
fractional derivatives of a function x € L* are defined, respectively, by

D¥O 3 (p) —
Oxn = [

where D7, and Dy are, respectively, the left- and right-sided Riemann—Liouville fractional deriva-
tives of order w.

p(a) D x(t)de and  DYUx(r) = /Ollp(a).Dg,x(t)da,

Definition 2 (See Reference [15]). The left- and right-sided Caputo distributed-order fractional
derivatives of a function x € AC* are defined, respectively, by

DY Ox(t) = /()1¢(a) CD% x(t)de  and DYV x(t) = /()1¢(a) C D x(t)da,
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wl;ere CD{‘; and CDl‘;‘, are, respectively, the left- and right-sided Caputo fractional derivatives of
order .

As noted in Reference [11], there is a relation between the Riemann-Liouville and the
Caputo distributed-order fractional derivatives:

DYOx(t) = D x(1) - x(a) [ ' r(l'[lj(f)m)(t o) da
and

Dfx(t) = DY)~ x(0) [ pH s

Along the text, we use the notation

L= YOx(t) = / ' P(w) - 1% (t)da,

0

where I;f"‘ represents the right Riemann-Liouville fractional integral of order 1 — «.
The following results will be useful for our purposes. In concrete, integration by parts
will be used in the proof of the Pontryagin maximum principle (Theorem 1).

Lemma 1 (Integration by parts formula [11]). Let x € L* and y € AC*. Then,

b b b
. 1—w(- .
/a x(6) DIyt = [y 1, x(n)] + /ﬂ y(t) - DY Ox(t)dt.
It follows a generalized Gronwall inequality that will be used in Section 3.1.

Lemma 2 (Gronwall inequality [16]). Let a be a positive real number and let a(-), b(-), and u(-)
be non-negative continuous functions on [0, T| with b(-) monotonic increasing on [0, T). If

u(t) < a(t) + b(t) /t(t —5)*la(s)ds,

0

then
)3

n=0

u(t) < a(f) +/Ot

(b()T())" na—
W(t -9 1] ds
forallt € [0,T).

3. Main Results

In this work, we look for an essentially bounded control u € L*([a,b], R™) and the
corresponding state trajectory x € AC*([a, b], R"), solution to the following distributed-
order non-local fractional-order optimal control problem:

b
T1x(), ()] :/ﬂ L(t, x(t), u(t))dt —s max,

DYOx(t) = f(t,x(8),u(t)), t€ [ab]ae, (1)
x(-) € AC*, u(-) e L%,
x(a) =x, € R", u(t) e,
where () is a closed subset of R™. The data functions L : [2,b] x R" x R" — R and

f:[a,b] x R" x R™ — R" are subject to the following assumptions:

e The function f is continuous in all its three arguments.
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e The function f is continuously differentiable with respect to state variable x and, in
particular, locally Lipschitz-continuous, that is, for every compact B C R" and for all
x,y € B there is K > 0 such that

I £t xu) = f(ty,u) |[< K[ x =yl
*  With respect to the control u, there exists M > 0 such that

| f(t,x,u) [[<M V(tx)€ab] xR
e The cost integrand L satisfies the same assumptions as f.

3.1. Sensitivity Analysis

Now, our concern is to establish continuity and differentiability results on the state
solutions for any control perturbation (Lemmas 3-5), which are then used in Section 3.2
to prove a necessary optimality condition for the optimal control problem (1). With this
purpose, let us denote by L[F(-)] the set of all Lebesgue points in [, b) of the essentially
bounded functions ¢ — f(t,x(t),u(t)) and t — L(t, x(t), u(t)). Thus, let (t,v) € L[F(-)] X
O, and, for every 8 € [0,b — T), let us consider the needle-like variation u? € L®([a, b], R")
associated to the optimal control u*, which is given by

v if tel[t—6,1), @

ug(t>_{u*(t) if t¢[t—6,1),

for almost every t € [a, b].

Lemma 3 (Continuity of solutions). Forany (t,v) € L[F(-)] x Q, denote by x° the correspond-
ing state trajectory to the needle-like variation u®, that is, the state solution of

C]D)ﬁ')xe(t) = f(t, xe(t),ue(t)>, x¥(a) = x,.

Then, we have that x? converges uniformly to the optimal state trajectory x* whenever @ tends
to zero.

Proof. We have that
DI (+(6) = x" (1) = (2 (0,1 (1) = £t (1), 4" (1)).

Then, by definition of the distributed-order operator,

[ p@D (32(0) () ) = (1200, 0(0)) — (3 (1), (1),

Now, using the mean value theorem for integrals, there exists an & such that

DR (1)~ x (1)) = L [£(0,2(0),u (1)) — £ (6,2 (6), (1)

m
with )
m:/o P(a)da.

Therefore, by the left inverse property, we obtain the following integral representation:

K0 =2 (1) = I8 (F0 (0,00 (0) = Flox (0,07 (1),
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Moreover, note that
F&20 (0,18 (0) = f(tx7 (), (8) = {F(8,(8), 0 (1)) = F(1, 27 (1), (1))}
+{f(tx" (1), u® (1) — f(t,x*

With the help of the triangular inequality, we can write that

120 (t) — 2" (#) | < *1”‘ (II F(&20(8),ul(8)) = f (1,27 (1), u° (1)) H)

oty (I £ (0),6(6) = flbx (6,07 (1) ),

since u® and u* are different only on [t — 6, 7]. From the Lipschitz property of f and the
boundedness with respect to the control, it follows that

1200) = w0) 1< e (1600 =) 1) + - 2M s

Now, by applying the fractional Gronwall inequality (Lemma 2), it follows that

2M6* b K" - _

0 = § _ o\na—1 < X

IF () =27 (1) fl< ml (e +1) + /a = T'(na) (t—s) ds| < @0",
where @1 = 27E (K(b —a)%), and E, 1 is the Mittag-Leffler function of parameter

VT om(w+1) ! ’ ol & P

&. Hence, by taking the limit when 6 tends to zero, we obtain the desired result: x? — x*
forallt € [a,b]. O

The next result is a corollary of Lemma 3.
Lemma 4. There exists @, > 0 such that
| 2%(8) — x*(t) || < @20(t — (t—0))" ' Vte]r—6,b).

Proof. Using similar arguments of Lipschitz-continuity of f and its boundedness with
respect to the control u, we get

1 (6) =2 (1) || < ml{\?) /:,gu — )" lds
Hﬂ{(@/:eu—ﬂ“ | 2%(s) —x*(s) || ds + I{<(

x

| /Tt(t_s)ﬁéfl I xe(s)—x*(s) | ds.

T _ _
Note that / e(t —s) " s < 0(t— (1 —0))*!, and, as a consequence of Lemma 3,
.

we obtain that

M
mI'(&)

I 2% () = x* (1) || < (M + @1 K6%)6(t — (t—0))"

ot L= ) = ) .

We conclude the proof by applying again the fractional Gronwall inequality (Lemma 2),
in which we set @, = LM + @ K0*E, 1 (K(b—a)%). O

Lemma 5 (Differentiability of the perturbed trajectory). For all (t,v) € L[F(-)] x Q, we
x0() —x*()
0

have that the variational trajectory is uniformly convergent to 1(-) when 6 tends
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to zero, where 1(+) is the unique solution to the distributed-order left Caputo fractional Cauchy
problem

Dy = PR . refr

®)
I (7) = %[f(Trx*(T),U) — f(T, 2" (1), u(7))].

o 300 — X (1)
Proof. Setz’(t) = — 5(t) for all t € [t,b]. Our aim is to prove that z% con-

verges uniformly to zero on [7,b] whenever § — 0. The integral representation of z? is
given as follows:

(0 = — i 0= O 0 (0,0) = f(5, 2 (0,0 (0)
1 ! a1 [ f(5,X%(s), u*(s)) — f(s,x*(s), u*(s))
+m1"(5¢) /ﬁ(t—s) 1{ 0
X (00 E) | ) T O],
dx 0
+ ml"l(ﬁc) /Ti(t — )31 af(s,x*z(as;c),u*(s)) x 2%(s)ds  (4)

for every t € [t,D]. Let us investigate the two first terms of the right-hand side of (4). By
boundedness of f with respect to #, we have that

! x— * * * 2M &
=t = D (0,0) = f (o () (2) | < Fs b=

Further, using the classical Taylor formula with integral rest, we have

f(s,x%(s), u*(s)) — f(s,x*(s),u*(s)) _ 9f(s,x*(s),u*(s)) x"(s) —x*(s)

X

0 ox 0
_ /1 (E)f(s,x*(s) +w(x¥(s) — x*(s)), u*(s)) af(SJ*(SW*(S)))
0 ox ox
(He5x),,

x¥(s) — x*(s)

Hence, from Lemma 4, we deduce that 5

’ < @y(t— (T —0))" 1. Next,

we set

co(s) = /01

and, referring to Lemma A.3 in Reference [17], we get an estimate for the second term
of (11), and we end the proof by application of the fractional Gronwall inequality of
Lemma 2. [

3f (s,x*(5) + w(x®(s) — x*(s)),u*(s))  Af(s,x"(s),u*(5))
dx dx

3.2. Pontryagin’s Maximum Principle of Distributed-Order

It follows the main result of our work: a distributed-order Pontryagin maximum
principle for the fractional-order optimal control problem (1).

Theorem 1 (Pontryagin Maximum Principle for (1)). If (x*(-), u*(+)) is an optimal pair for
(1), then there exists A € L%, called the adjoint function variable, such that the following conditions
hold for all t in the interval [a, b):
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*  the maximality condition

H(t, x*(t),u*(t),A(t)) = max H(t,x*(t),w,A(t)); ®)
we
*  the adjoint system
‘ oH , .
DYYIA) = S (6 x" (1), " (1), A(1)); ©)
®  the transversality condition
L-"YA@b) =0, )

where the Hamiltonian H is defined by
H(t,x,u,A) = L(t,x,u) + A- f(t,x,u).

Proof. First of all, note that the regularity of function f with respect to the state variable
(recall that f is continuously differentiable with respect to x) is exactly as in our previous
paper [12]. For this reason, the adjoint system (6) and its transversality condition (7) remain
exactly the same as the ones proved in Reference [12]. Therefore, we only need to prove the
maximality condition (5), which is new due to less regularity of f with respect to control
functions and the fact that now the controls take values on the closed () set. We start by
using integration by parts (Lemma 1) for functions A € L* and 7 € AC* on [7, b]:

b b b
/ A(s) -© Df(')iy(s)ds = [17(5) ~]I;flp('))t(s)} —|—/ 17(s) -Dblp,('))\(s)ds, 8)
T T T
where A is the adjoint variable given in Reference [12]:

DYOA(E) = L (1, 2 (), u (£)) + A(E) - (57 (1), w0 (1)),
)

Substituting (9) and the variational differential system given in (3) into (8), we ob-
tain that

./T-b/\(s) . (af(s,x*gi),u*(s)) .n(s))ds — (1A

[0 (Ge @ e a0 Lis @) )as

T

which leads to ) i} .
pOR M) = [yt HEEED g (10)

Next, recall that, from the definition of distributed-order fractional integral and the
mean value theorem, we have the existence of an & such that

Hll;l!’(‘))\(—[) - /01 lp(a)lgf’j‘/\(’r)dtx = mI;fB‘)\(T), (11)

where m = fol {(a)da. Moreover, by the fundamental law of calculus and the duality of
the Riemann-Liouville integral operator, we have also that

17(1)1;_‘5‘)\(1) = % <— /Tb n(s)I;j&A(s)ds>

— (- [ o)
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Next, using the boundary condition from system (3), it yields
17 . = =
DL, "IAT) = my (D) R (T) = mA(T) I (1)

— mA(1) (Hf(w*(r»v) i, x*<r>,u*<r>>1),

m

thatis, (7)1, YVA(T) = A7) - (f(x, %" (7),0) — f(t,x* (), u*(1))). Finally, substituting
this expression into (10), we get

M) - (f(1,x%(7),0) = f(T,x7(7),u*(7))) = /jﬂ(S) : ds. (12

However, with respect to the cost functional ], the limit

o TE Q0] = T ()]

-0+ 0

<0 (13)
because, by assumption, (x*, u*) is an optimal pair. This limit can be written as

JE0C)u® ()] = Jlx* (), u ()]

lim

6—0+ 0
= lim % [ L6 (9),0) = Lis,° (5), 0 (5) s
+91ir5‘+ b L(s,x%(s),ub(s)) ;L(s,x*(s),ue(s))ds. (14)

Considering the fact that 7 is a Lebesgue point of

L(s,x%(s),0) = L(s,x7(s),u"(s)) := 9(s),
it follows from the Lebesgue differentiation property

HAR OIS

—6

=13 [ o)~y

—0

that

glirgl+ 7 T_g[L(s, x*(s),v) — L(s,x*(s),u"(s))]ds (15)

= L(t,x"(1),v) — L(t,x" (1), u" (7).

Moreover, with respect to the third limit in (14), we can apply the Lipschitz property
of L to obtain

6 *
X —X
<K

‘L(s, x9(s),u?(s)) — L(s, x*(s),u’(s)) '
0

xf — x*
Therefore, because

is a uniformly convergent series of functions, we conclude
that the integrand
L(s,x%(s),u%(s)) = L(s,x*(s), 1% (s))
0
is uniformly bounded. Furthermore, we have

L(s, x%(s), u®(t)) = L(s, x*(s),ue(s)>
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n (XB(S) B x*(s)) ) aL(S,X*ng)/Mg(S)) +0(||x9 o x*H)

Next, by the continuity Lemma 3, we have ||x? — x*|| — 0 whenever 8 — 0. Thus, we
can express the residue term only as function of 0, that is,

L(s,x(s),u’(5)) = L(5,x"(),u’(5) ) + (37 (s) = ¥"(5)) - 2222 4 0(6),
and the following expression yields for the second limit:

L(s,x%(s),u*(s)) — L(t,x*(t),u*(t))  9L(s,x*(s),u*(s))

Hm 0 - ox i 0
_ 0L(s,x*(s),u*(s))
- ax 77(5)

Hence, thanks to the Lebesgue bounded convergence theorem,

} b L(s,x%(s),u’(s)) — L(s,x*(s),u(s)) ,  OL(s,x*(s),u*(s))
913(% T 0 ds = ox ()

and, altogether, we get

o QO] = T () ()]

0—0+ 0

= L(t,x*(1),v) — L(t,x*(7),u*(1)) + 4 *axl -1(s).

Hence, using inequality (13) and (12), we obtain that

L(t,x"(1),0) — L(7,x" (1), u* (7)) + A(7) - [f (7, x7(7),0) = f(7,x"(7),u"(1))] <0,

meaning that
H(t,x*(1),u*(7),A(T)) > H(T,x*(7),0,A(T)),

where H = L(t,x,u) + A - f(t,x,u). Because T is an arbitrary Lebesgue point of the control
u* and v is an arbitrary element of the set (), it follows that the relation

H(t, x* (1), u* (), A(£)) = max H(t, x* (), w, A(t))

we

holds at all Lebesgue points, which ends the proof. O

4. An Illustrative Example

As an example of application of our main result, let us consider the following
distributed-order fractional optimal control problem:

5
TIx(), ()] :/1 (1= 3u(t))x(t)dt —> max,

]D)lJE x(t) =u(t)x(t), ae te][lL,5], (16)
u(t) € [0 2],
x(1) =x, >0,

where the distribution function of order of differentiation is given by

OEES
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Let u* be an optimal control to problem (16). Theorem 1 give us a necessary optimality
condition that #* must satisfy. The Hamiltonian function associated with this problem is
given by

H(t,x,u,A) = (1 —3u)x + uxA.

From the maximality condition (5), we know that u*(¢) maximizes a.e. in [0, 2] the
mapping
w — (1 —3w)x™(t) + wx™(t)A(t).
Due to the positiveness of the initial condition (x, > 0) and the linearity of the
distributed order derivative, we have that x*(t) > 0 for all € [1,5]. Thus, the mapping to
be maximized can be reduced to

w— (A(f) = 3)w,

and u* has the form

u*(t):{ 2 if At) >3,

0 if A(f) <3.

Now, it remains to determine the switching structure of the control through investiga-
tion of the adjoint boundary value problem given by (6) and (7), that is,

DYOA(E) = 1+ (A(E) = 3)ur(8),
1,-YYA(5) = 0.

Note that, because problem (16) does not have a terminal phase constraint, the frac-
tional transversality condition (7) is simplified to A(5) = 0. Moreover, since A(-) is a
continuous function, there is ¢ > 0 such that u*(t) = 0 for all t € [5 — ¢, 5]. With this, we

have that ]D)g,('))\(t) =1, and it follows, by backward integration, that

_ (B-b*
MO = rET )

1 1
where m = / %dtx =3 and & € [0, 1]. Noting that, for
0

ci=5-— (Bml(a+1))% € [7/2,5],
we get A(c) = 3, we conclude that

=2 fo<t<ec,
=Y 0 ife<t<s

5. Conclusions

Recent applications and experimental data-analysis studies have shown the impor-
tance of systems with “diffusing diffusivity” in anomalous diffusion, modeled with frac-
tional, standard Brownian motions and distributed-order operators [18-20]. The theory
of the calculus of variations for distributed-order fractional systems was initiated in 2018
by Almeida and Morgado [11], and it has been extended by the authors in 2020 to the
more general framework of optimal control [12]. There, we established a weak Pontrya-
gin Maximum Principle (PMP), under certain smoothness assumptions on the space of
admissible functions, where the controls are not subject to any pointwise constraint [12].
The objective of the present article was to state and prove a strong version of the PMP for
distributed-order fractional systems, valid for general non-linear dynamics and L* controls
and, in contrast with References [11,12], without assuming that the controls take values
on all the Euclidean space. Our statement is as general as possible, and it encompasses
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the distributed-order calculus of variations of [11] and the weak PMP of [12] as particular
cases. Moreover, in the analysis of a strong version of PMP, we emphasized the use of
needle-like variations to control perturbations, dealing with controls taking values on a
closed set in a much larger class of admissible functions than in References [11,12]. Our
approach began by proving results on continuity of solutions due to needlle-like variations,
and then followed by a differentiability result on the state solutions with respect to per-
turbed trajectories. The statement and the proof of the Pontryagin Maximum Principle are
rigorously given. Finally, the new necessary optimality conditions were illustrated by a
simple example for which an analytical solution could be found. To deal with real optimal
control problems of Nature, which are impossible to solve analytically, it is important to de-
velop numerical methods based on the fractional distributed-order Pontryagin maximum
principle here obtained. This will be subject of future research.
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