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Abstract: Research on hypercycles focuses on cooperative interactions among replicating species,
including the emergence of catalytic parasites and catalytic shortcircuits. Further interactions may be
expected to arise in cooperative systems. For instance, molecular replicators are subject to mutational
processes and ecological species to behavioural shifts due to environmental and ecological changes.
Such changes could involve switches from cooperative to antagonistic interactions, in what we call a
functional shift. In this article, we investigate a model for a two-member hypercycle model, considering
that one species performs a functional shift. First, we introduce the model dynamics without
functional shifts to illustrate the dynamics only considering obligate and facultative cooperation.
Then, two more cases maintaining cross-catalysis are considered: (i) a model describing the dynamics
of ribozymes where a fraction of the population of one replicator degrades the other molecular
species while the other fraction still receives catalytic aid; and (ii) a system in which a given fraction
of the population predates on the cooperating species while the rest of the population still receives
aid. We have characterised the key bifurcation parameters determining extinction, survival, and
coexistence of species. We show that predation, regardless of the fraction that benefits from it, does
not significantly change dynamics with respect to the degradative case (i), thus conserving dynamics
and bifurcations. Their biological significance is interpreted, and their potential implications for the
dynamics of early replicators and ecological species are outlined.

Keywords: cooperation; dynamical systems; functional shifts; ribozymes; origins of life; behavioural
ecology

1. Introduction

Hypercycles are catalytic networks of self-replicating species able to catalyse the
replication of another single species as they all form a closed loop (see Figure 1a,b) [1,2].
Originally, the hypercycle was suggested to allow for the cooperative selection of compet-
ing replicators in the origins of life, ensuring the stability of broad contents of information,
contrarily to non-catalytically joint replicators, i.e., quasispecies [3,4]. Hypercycles have
been suggested as a possible molecular network of prebiotic replicators involving a crucial
step from the transition from inanimate to living chemistry [3,4] due to their potential
capacity of maintaining larger stable genetic contents as compared to quasispecies popula-
tions under large mutations [1,3]. The interest in hypercycles goes beyond the origin of life
problem, being a canonical model to investigate different dynamical systems, including
cooperation. The generality of the hypercycle replicator equations has allowed using this
model to explore virus replication dynamics [5–8], neural networks [9,10], the immune
system [11], or the emergence of language [12]. Moreover, several hypercycle-like systems
have been implemented experimentally. These include coiled-coil peptides [13], yeast cell
populations [14], and engineered bacteria growing with catalytic parasites [15].
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It has been argued that hypercycle units may need two minimal conditions to be
evolutionary stable [4,16], namely, catalytic activity and capacity to store information.
Good candidates fulfilling these two conditions are catalytic RNA molecules (ribozymes).
RNAs with stem and loop structures, similar to transference RNAs [17], are known to be
resistant to hydrolysis [18] and also have replicability potential [19,20]. Ribozymes are short
RNA molecules with catalytic activity similar to protein enzymes [21,22] and have been
considered as potential candidates for forming the first autonomous, self-replicating molec-
ular systems involved in the origins of life [4,16,19,23–26]. Different activities have been
described for natural and in vitro (e.g., peptide-bond formation [27]) evolved ribozymes.
Certain introns can catalyse their own excision (self-cleavage) from single-stranded RNA
(ssRNA) [20] and ligase reactions by RNA catalysts can occur even with short RNA se-
quences [28]. Moreover, the same RNA sequences can catalyse trans-esterification reactions
for the elongation of one monomer [20], ligation of two independent ssRNAs [29,30], and
cleavage of RNA into smaller sequences [20,22,31,32] (see also [26,33] for reviews). Recent
experiments have revealed that the combination of RNAs with cold-adaptative mutations
enabled catalysing the synthesis of an RNA sequence longer than itself (adding about
200 nucleotides) [34]. Other experiments have shown the spontaneous formation of cat-
alytic cycles and networks from mixtures of RNA fragments able to self-assemble into
self-replicating ribozymes [35], providing evidence for selective advantage of cooperative
systems composed of ribozymes.

Hypercycle equations have also been suggested as a suitable modelling framework to
investigate the dynamics of cooperation in complex ecosystems [36]. More recently, the
hypercycle theory and the spatio-temporal dynamics of cooperative ecological interactions
have been reviewed in the framework of landscape ecology [37]. Cooperation arises in a
multitude of ecological systems [38–42]. These include alarm calls, coalition formation,
predator inspection, cooperative breeding, protection against attacks by predators or
conspecifics, or cooperative hunting, among others. Examples of intra-specific cooperation
(individuals of the same species cooperate) are found, for instance, in females of the
vampire species Desmodus rotundus [43–45], which perform cooperative breeding (i.e.,
reciprocal altruism) by sharing blood between themselves. Cooperative hunting, in which
the individuals of a given species cooperate to catch the prey, has been described in
lions (Panthera leo) [46], brown hyenas (Hyaena brunnea) [47], wild chimpanzees (Pan
troglodites) [48], or the fish species Caranx ignobilis [49]. Invertebrate species, such as
arthropods, can also hunt cooperatively: Golden-web spiders (Nephila clavipes) [50], the
Stegodyphid spider (Stegodyphus mimosarum) [51], or the heteroptera Microvelia douglasi
atrolineata [52]. Examples of inter-specific cooperation (cooperation between individuals of
different species) have been described in the deep-sea tube worm Lamellibranchia luymesi
and microbial symbionts [40], as well as in arbuscular-mycorrhizal fungi, which form an
obligate symbiosis with more than 80% of plant species in all terrestrial habitats [42].

Up to now, most of the research on hypercycles has focused on the dynamics arising
from the processes of cooperation between replicators, and some works have also included
competition for resources (e.g., available mononucleotides or available space) [3,53] and
mutation processes [54–56]. In this sense, different architectural changes in hypercycles
jeopardising their stability and persistence have been thoroughly investigated to date,
mainly considering the so-called catalytic parasites [15,57–60] and, to a lesser extent, cat-
alytic short-circuits [61,62]. Both catalytic parasites and short-circuits involve modifications
in the cyclic catalytic patterns. The former involves the emergence (e.g., via mutation) of
a replicator that receives catalysis but does not reciprocate the catalytic aid. The latter
involves an internal catalytic connection generating a smaller catalytic cycle within the
full system.

Some authors have recently been interested in possible shifts in cooperation among
species and have used the hypercycle equations to evaluate the dynamics arising from
such shifts [63]. For instance, molecular replicators are subject to mutational processes and
ecological species to behavioural shifts due to environmental or ecological changes, and one
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might expect such species to switch from cooperative to antagonistic interactions in what
we call a functional shift. The dynamics arising due to functional shifts in hypercycles are
still unexplored. The impact of a shift from catalytic cooperation to directed degradation
has recently been studied in small discrete-time hypercycles [63]. For this particular case, it
was assumed that one of the hypercycle replicators (ribozyme) became a degrading species
instead of being cooperative. To the extent of our knowledge, no works have investigated
how these shifts may affect the stability of small hypercycles in time-continuous systems.
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(a) Obligate two-member hypercycle (a) Facultative two-member hypercycle
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Figure 1. The different hypercycle architectures studied in this article: (a) obligate two-species
hypercycle with heterocatalysis; (b) facultative system with heterocatalysis and autonomous self-
replication; (c) hypercycle including directed degradation of S1 by S2 while still keeping some
fractions of the population receiving catalytic aid; (d) two-species ecological hypercycle (e.g., wader
and seagull) including opportunistic predation (especially on eggs and chicks). Here, S2 consumes
S1, while some individuals still receive cooperation from S1.

Examples of functional shifts between cooperating species are found in different
ecosystems. For instance, large fish and mammal pelagic predators (tuna, sharks, dolphins)
likely cooperate to locate and handle small pelagic shoals [64], and the predation of sharks
on dolphins and tuna has been recorded [65,66]. Seabirds form inter-specific flocks that
cooperate to locate food at sea, and the predation that occurs at land while breeding
in colonies. Body size drives the predatory matrix, which increases its values when
environmental conditions worsen [67,68]. Waterbirds form inter-specific mixed colonies to
protect against predators (they can contain several different species of waders, terns, and
gulls), but some species may predate opportunistically (especially on eggs and chicks) on
heterospecifics or may exert kleptoparasitism for food, especially when the environment
is harsher [69–75]. Although this may be anecdotal, and the cooperation may be subtle,
marine mammals may “cooperate” to locate and capture prey, and at the same time, larger
species may exert some predation, e.g., killer whales on elephant seals [76].
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In this article, we analyse two-species (labeled as S1 and S2) hypercycles considering,
together with cooperation, directed degradation and predation (see Figure 1). The paper is
organised as follows. In Section 2, we introduce the general model that considers crossed
cooperation, competition, and decay of the species and includes the interactions due to
the functional shifts. Section 3 contains the results of four different systems that can be
studied from the general model by removing some of the interactions. This allows a
better comprehension of the dynamics only considering cooperation (plus competition
and decay) between species and the dynamical changes arising from directed degradation
or predation. First, an obligate two-member hypercycle (Figure 1a), which has been
thoroughly investigated in Ref. [53] (see also [77]), is briefly commented. The same system
including autonomous self-replication for the two species (see Figure 1b) is explored. Then
we explore a hypercycle with a functional shift in a given fraction of S2 population, which
is able to degrade S1 while still providing catalytic aid to the first species (Figure 1c). This
system is inspired in two populations of ribozymes in which some molecules of one of
the species (the rest still receive catalysis) acquires the capacity to degrade the other one,
still maintaining the catalytic aid. Finally, we explore a similar system in an ecological
context considering that a given fraction of S2 population predates on S1 (the other fraction
receiving aid from S1) while maintaining the crossed cooperation. Section 4 is devoted to
some conclusions.

2. General Mathematical Model

Let us consider a two-member hypercycle with species S1 and S2, and let x1 and
x2 represent their respective concentrations (population numbers). The mathematical
model we investigate adds further interactions to a standard two-member hypercycle [53]
considering processes of directed degradation or predation between the two species while
keeping some degree of cooperation between the hypercycle members. This model is given
by the following dynamical system:





ẋ1 = (α1x1 + kx1x2)

(
1− x1 + x2

c0

)
− εx1 − (1− β)ε12x1x2,

ẋ2 = (α2x2 + βηkkx1x2)

(
1− x1 + x2

c0

)
− ηεεx2 + γ(1− β)ε12x1x2,

(1)

where all parameters except ηk and ηε are assumed to be bound in I = [0, 1] (see below),
and ηk, ηε ≥ 0. That is, parameters have non-negativity constraints: αi, k, ε, β, εij, ηk,ε, γ ≥ 0,
and c0 > 0, with i, j = 1, 2 and i 6= j. Each of the model parameters corresponds to the
following biological processes (see also Figure 1):

• αi: autonomous self-replication rate (Malthusian growth) of species i = 1, 2. αi 6= 0
implies that species can replicate themselves without the catalytic aid of the other replicator.

• k: the cross-catalytic replication parameter between S1 and S2. In the case of S2, the
term ηk allows considering a non-symmetric case in which both species are kinetically
different. The case ηk = 1 involves symmetric catalytic replication.

• c0: known as the carrying capacity, which limits the population of replicators due to
finite resources or (implicit) space. Due to the large number of parameters, we will set
c0 = 1.

• ε: density-independent spontaneous degradation or death of the species. Analogously
to the characteristics of ηk, ηε 6= 1 allows considering a non-symmetric decay scenario
for S1 and S2.

• ε12: the density-dependent degradation rate due to the cleavage (or predation, see
below) of species S1 by S2. We notice that the degradative and predatory dynamics are
exclusive. That is, we do not consider a case with directed degradation and predation
taking place at the same time (these two different cases will be considered with γ = 0
or γ 6= 0, respectively).
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• β: the fraction of the S2 population still receiving cooperation from S1 replication. The
term 1− β corresponds to the rest of the S2 population that exerts the degradation or
the predation of species S1.

• γ: the energetic efficiency coefficient from predation. It can be understood as the
amount of energy species S2 can gain from predating S1 and investing it for repro-
duction (due to energetic constraints γ < 1). As mentioned, the investigation of the
degradative model will be performed by setting γ = 0, while the predatory system
will consider 0 < γ < 1.

As previously mentioned, we focus on parameter values restricted to the interval
I = [0, 1], except for ηk, ηε since we are interested in asymmetric cases. Since the qualitative
dynamics mainly depends upon the relative relations between replication/growth and de-
cay/predation parameters, with such an interval we expect to gather all possible dynamics.
As mentioned, parameters β and γ are naturally found within this interval in order to be
biologically meaningful. Moreover, the carrying capacity has been set to 1 for simplicity.
The choice of a different value for c0 does not change dynamics qualitatively.

It is clear that for the system to hold biological meaning, the phase space is bounded
only to the first quadrant of R2. In general terms, the system Equation (1) is able to model
the directed degradation of S1 by S2 for values of 0 ≤ β < 1 and γ = 0 that becomes
fully predatory when γ > 0. The term 1− (x1 + x2)/c0 in Equation (1) is a logistic-like
function that introduces competition between the two hypercycle species, also bounding
the dynamics.

To provide a general modeling framework and investigate the interplay between
cooperation (plus competition and decay) and the functional shifts, i.e., directed degrada-
tion or predation, we have kept the cross-catalytic terms. A simpler system considering
that species S2 receives aid from S1 and a given fraction (1− β), with 0 ≤ β < 1, of the
S2 population only exerts directed degradation (or predation) on S1 and the rest of the
population catalyses S1 can be also investigated by changing kx1x2 to βkx1x2 in ẋ1; and
βηkkx1x2 to µηkx1x2 in ẋ2, µ being the rate of replication due to the catalysis performed by
S1 on S2.

3. Results and Discussion

In this Section, we will investigate the dynamics of Equation (1) considering four dif-
ferent systems. Section 3.1 summarises the results for the obligate two-member hypercycle
in which the two species can only replicate catalytically (Figure 1a, see [53,77] for a detailed
investigation of this system). Section 3.2 provides further results on this system, including
the exponential (non-catalytic) replication of each species. In Section 3.3, we investigate the
model considering directed degradation, while Section 3.4 provides further results on the
model with predation.

3.1. Obligate Two-Member Hypercycle

Before analysing the models of interest given by directed degradation and predation,
it is interesting to start the analysis at a much simpler level. Here, we briefly summarise the
dynamics of an obligate two-member hypercycle (Figure 1a). This system, which considers
that a species can only replicate due to catalytic (cooperative) processes, can be obtained
from Equation (1), setting α1 = α2 = γ = 0 and β = 1. This model is given by

{
ẋ1 = Φ1(x1, x2) = kx1x2(1− x1 − x2)− εx1,
ẋ2 = Φ2(x1, x2) = ηkkx1x2(1− x1 − x2)− ηεεx2.

(2)

This dynamical system was thoroughly investigated in Ref. [53] (see also [77]). The
system has three fixed points: the origin (0, 0) and the pair ((ηε/ηk)Γ±, Γ±), where

Γ± =
1

2ξ

(
1±

√
1− 4εξ

k

)
, (3)
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and ξ := 1 + ηε/ηk. Note, however, that the expression Γ± is well defined only for
ε ≤ k/4ξ =: εc. Otherwise, Γ± ∈ C. The origin is a locally asymptotically stable equilib-
rium, while Γ− is a saddle point and Γ+ can be either a stable node [53] or a weak stable
focus (see Appendix A). The pair Γ± suffers a saddle-node bifurcation at the critical value
εc. Above this threshold, the origin becomes globally asymptotically stable (see Ref. [53]
for further details and the study of this system using spatially-explicit models).

3.2. Facultative Two-Member Hypercycle

The obligate two-member hypercycle is a simple case in which species depend explic-
itly on the presence of the other to survive. For S1 to replicate, S2 must be present in the
system, and vice versa [53]. We shall extend the previous model to a system that considers
both exponential replication and cross-catalysis, i.e., facultative hypercycle, proposing a
setting that has not been analysed in detail so far (see Refs. [78–80] for two-species faculta-
tive hypercycles with mutation and error tail). The coupled system of ODEs now involves
a parameter of autonomous replication (Malthusian growth), which can be introduced
in (1) setting α1,2 > 0, while maintaining with β = 1 and γ = 0. We thus consider:

{
ẋ1 = Φ1(x1, x2) = (α1x1 + kx1x2)(1− x1 − x2)− εx1,
ẋ2 = Φ2(x1, x2) = (α2x2 + ηkkx1x2)(1− x1 − x2)− ηεεx2.

(4)

To understand this system, we may differentiate three cases depending on the relative
value of αi and ε. We will consider αi > ε for i = 1, 2, αi < ε < αj for i 6= j, and αi < ε for
i = 1, 2.

Solving Equation (4) for ẋ1 = ẋ2 = 0 gives five critical, i.e., equilibrium, points:

(0, 0),

(
0,

α2 − ηεε

α2

)
,

(
α1 − ε

α1
, 0

)
, (Γ±, Ω±),

where

Γ± =
ηεηkk + ηεηkα1 − ηεα2 − 2ηkα2 ± ηε

√
∆

2kηk(ηε + ηk)
, (5)

Ω± =
− 2ηεα1 + ηkk− ηkα1 + a2 ±

√
∆

2k(ηε + ηk)
, (6)

and
∆ = (k2 + (−4ε + 2α1)k + α2

1)η
2
k + ((−4ηεε + 2α2)k + sα1α2)ηk + α2

2. (7)

The nullclines of the system are the set of solutions of Φ1(x1, x2) = 0 and Φ2(x1, x2) = 0
and determine the direction of the flow in the phase space. Most of the results presented
below will be obtained from the nullclines, which are given by:

x1 = 0, x1 = − kx2
2 − kx2 + x2α1 + ε− α1

kx2 + α1
=: g(x2) (8)

for Φ1, and

x2 = 0, x2 = −ηkkx2
1 − ηkkx1 + x1α2 + ηεε− α2

ηkkx1 + α2
=: h(x1) (9)

for Φ2. The intersection point of a curve in Equation (8) with another in Equation (9) is
an equilibrium point, here denoted by (x∗1 , x∗2), where the flow vanishes. Hence, we are
interested in the existence of such equilibria in the phase space (x1, x2 > 0), as well as in
their stability.

Let us consider α1, α2/ηε > ε. The nullclines from Equations (8) and (9) allow for three
possible configurations, which are shown in Figure 2 and will be shown in the following
construction. These can be analytically separated by studying the relative position of each
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curve’s intersection with the axes. On one hand, g(x2) crosses the x1 axis at the critical
point ((α1 − ε)/α1, 0) and intersects with the x2 axis at (0, Θ±), where

Θ± =
k− α1 ±

√
k2 + (−4ε + 2α1)k + α2

1

2k
. (10)

Note that Θ± is well defined since for its square root to be real, it is needed that
ε < (k + α1)

2/4k, and this holds since ε < α1 ≤ (k + α1)
2/4k, indeed

(k + α1)
2 − 4kα1 = k2 + α2

1 − 2kα1 = (k− α1)
2 ≥ 0

⇒ α1 ≤
(k + α1)

2

4k
.

(11)

Similarly, h(x1) intersects with the x1 axis at (Λ±, 0) with

Λ± =
kηk − α2 ±

√
η2

k k2 + (−4ηεε + 2α2)kηk + α2
2

2ηkk
(12)

and at (0, (α2 − ηεε)/α2) with the x2 axis. Again, Λ± is well defined since for its square
root to be real we need

ε ≤ (kηk + α2)
2

4ηkkηε
(13)

and we have

(kηk + α2)
2 − 4ηkkηε

α2

ηε
= k2η2

k + α2
2 − 2kηkα2 = (kηk − α2)

2 ≥ 0

⇒ α2

ηε
≤ (hηk + α2)

2

4ηkkηε
.

(14)

Thus, as expected

ε <
α2

ηε
≤ (kηk + α2)

2

4ηkkηε
. (15)

In order for the case in Figure 2a to take place, the following conditions must be fulfilled:

α1 − ε

α1
< Λ+ ⇒ ε < ε1 :=

−α1(ηεα1 − ηkk− α2)

ηkk
, (16)

and
α2 − ηεε

α2
< Θ+ ⇒ ε < ε2 :=

α2(kηε + ηεα1 − α2)

η2
ε k

. (17)

Therefore, we will encounter Figure 2b if ε1 < ε < ε2 and Figure 2c when ε2 < ε < ε1.
Given the nature of the considered parameters and the curves g(x2) and h(x1), ε can not be
greater than both ε1 and ε2 simultaneously: Let us assume ε > ε1. We can express ε1 and
ε2 as

ε1 = α1

(
1 +

α2 − ηεα1

ηkk

)
,

ε2 =
α2

ηε

(
1− α2 − ηεα1

ηεk

)
,

(18)

and since ε < α1, we have α2 − ηεα1 < 0. This implies ε2 > α2/ηε, and since ε < α2/ηε, the
proof is finished. The negation of this statement allows us to justify the impossibility of
ε < ε1, ε2. Therefore, only the three scenarios presented in Figure 2 will be considered.
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Figure 7. Possible dynamical scenarios according to the shape of the isoclines. Solutions of ẋ1 = 0 are
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Figure 2. Possible dynamical scenarios according to the shape of the nullclines. Solutions of ẋ1 = 0 are plotted in black and
in red for ẋ2 = 0. The symmetry coefficients ηk and ηε have been set to 1 for the three plots.

The corresponding phase portraits of the three presented cases can be obtained by
further extending the study on the nullclines and the sign of Φ1 and Φ2 in the phase space,
as we show in Figure 3. It is interesting to note that the origin is a repulsive node for
all three scenarios, as its associated Jacobian matrix has positive eigenvalues α1 − ε and
α2 − ηεε. This implies that critical points located on each axis are attractive, i.e., there will
never be a complete extinction of both species simultaneously as they can survive without
the need of the other.
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Figure 3. The direction of the dynamical system vector field for all possible situations regarding ε < α1, α2/ηε together with
nullclines g(x2) and h(x1) plotted in black and red, respectively. Parameters used: (a) ε = 0.16, k = 0.74, α1 = 0.28, α2 = 0.4;
(b) ε = 0.17, k = 0.59, α1 = 0.96, α2 = 0.27; (c) ε = 0.17, k = 0.40, α1 = 0.28, α2 = 0.78. Below, we display all possible phase
portraits for the two-member hypercycle with exponential replication parameter higher than its decay rate in both species.
In particular, the plots have been obtained for the values: (a) α1 = 0.39, α2 = 0.94, ε = 0.14, k = 1, ηk = 3.6, ηε = 2.95;
(b) α1 = 0.77, α2 = 0.51, ε = 0.14, k = 0.28, ηk = 3.6, ηε = 2.95; (c) α1 = 0.27, α2 = 0.93, ε = 0.16, k = 0.3, ηk = 0.35, ηε = 1.45.
Stable equilibria are denoted with red solid circles.

In conclusion, parameters ε1 and ε2 allow us to have certain control on the ratio of
births versus deaths of each species. As long as they are both higher than ε, an attractive
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coexistence will take place without them being able to become extinct. However, as soon
as εi < ε (i = 1, 2), species Sj, j 6= i, will become extinct.

Let us now consider the case α1 > ε, α2 < ε/ηε. The nullclines allow the five qualitative
distributions represented in Figure 4. Since they cannot be all obtained only by variations of
ε, it is more adequate to use a different control parameter, specifically α1. Since α1 > ε, there
will always be at least another critical point apart from the origin located at ((α1− ε)/α1, 0).
This is a result of the exponential self-replication rate for species S1 being higher than its
decay and not needing species S2 for replication.

Figure 4. The direction of the dynamical system vector field for all possible situations regarding α1 > ε and α2 < ηεε.
Below, we display a phase portrait of the system in the five possible situations studied. Specifically, the plots have
been obtained using the following parameters: (a) α1 = 0.3, α2 = 0.18, ε = 0.23, k = 0.29, ηk = 5.5, ηε = 2.3; (b) α1 =

0.24, α2 = 0.05, ε = 0.21, k = 0.37, ηk = 4.3, ηε = 1.2; (c) α1 = 0.34, α2 = 0.13, ε = 0.32, k = 1, ηk = 7.5, ηε = 2.75;
(d) α1 = 0.56, α2 = 0.13, ε = 0.32, k = 1, ηk = 7.5, ηε = 2.75; (e) α1 = 0.86, α2 = 0.14, ε = 0.17, k = 0.29, ηk = 7.5, ηε = 2.75.

It has already been seen in Equation (13) that h(x1) (red nullcline) intersects with axis
x1 as long as ε < (kηk + α2)

2/(4ηkηεk). If ε is greater than or equal to this value then, as
long as α1 > ε, there will only be two equilibrium points: the origin and ((α1− ε)/α1, 0), as
shown in Figure 4a. In this case, the origin is a saddle since its eigenvalues are α1 − ε > 0
in the x1 direction, and α2 − ηεε < 0 in the x2 direction. The other equilibrium corresponds
to an attractive node since its eigenvalues are λ1 = ε− α1 < 0 in the x1 direction and

λ2 = − ε(εηkk + ηεα
2
1 − ηkkα1 − α1α2)

α2
1

< 0, (19)

given the restriction on ε from Equation (13), in another direction, we can leave unspecified.
If ε is lower than the value given in (13), there is a possibility that more critical points

appear. As seen below, for the scenario in Figure 4b to take place, potential critical points
(Γ±, Ω±) must be undefined, i.e., ε > εc, which is equivalent to

α1 <
− kηk − α2 + 2

√
εηkk(ηε + ηε)

ηk
=: αc

1. (20)

In order to characterise cases in Figure 4c–e, we need to find the value of α1 for which the
nullclines intersect right on top of the x1 axis. After solving the corresponding equation,
the intersection at (Λ−, 0) happens if

α1 =
2εηkk

kηk + α2 +
√

η2
k k2 − (4ηεε− 2α2)kηk + α2

2

=: α−1 . (21)



Mathematics 2021, 9, 1809 10 of 22

and at (Λ+, 0) if

α1 =
2εηkk

kηk + α2 −
√

η2
k k2 − (4ηεε− 2α2)kηk + α2

2

=: α+1 . (22)

Note α±1 are well defined since ε < (kηk + α2)
2/(4ηkηεk). Therefore, we will see a

nullcline distribution similar to the one presented in Figure 4c if ac
1 < a1 < a−1 , in Figure 4d

if a−1 < a1 < a+1 , and in Figure 4e if α+1 < α1.
As already stated, the origin is a saddle with positive eigenvalue in the x1 direction and

negative in the x2. As for the critical point on the x1 axis, ((α1 − ε)/α1, 0), its eigenvalues
are λ1 = ε− α1 < 0 in the x1 direction and λ2 from Equation (19) in another unspecified
direction. This last expression is positive for α1 ∈ (α−1 , α+1 ) and negative elsewhere. By
Hartman’s theorem, we can conclude that it is a saddle in the case Figure 4d and an
attractive node in the rest. Note the degenerate situation for α1 = α−1 , α+1 with a null
eigenvalue, while the other is still negative, thus being two stable equilibria. Representing
the vector field together with the nullclines allows us to see, as expected, that the critical
point (Γ−, Ω−) present when αc

1 < α1 < α−1 is a saddle and (Γ+, Ω+) a stable node.
Figure 4 shows the corresponding phase portraits for all five possible scenarios commented.
In Figure 5, we present the bifurcation diagram in which all cases are probed using α1 as
the control parameter. First of all, the only stable critical point is the one located at the
x1 axis, as both nullclines do not intersect at (Γ±, Ω±). After this region, there is a range,
(αc

1, α−1 ) = (0.3242, 0.3345), in which two equilibria are found. Indeed, one of them has
x∗2 = 0 corresponding to ((α1 − ε)/α1, 0), while the other is (Γ+, Ω+). Finally, the higher
equilibrium is lowered until it reaches the axis again and x∗2 becomes zero.

Figure 5. (Left) A bifurcation diagram when ε > (kηk + α2)
2/(4ηkηεk) using α1 ∈ (ε, 1) as control parameter for a set of

parameters such that the four cases in Figure 4b–e are present. Specifically, α2 = 0.14, ε = 0.26, k = 1, ηk = 2.75, ηε = 2.25.
Stable equilibria are represented in blue for x∗1 and in red for x∗2 coordinates. (Right) Close up of the diagram for α1 ∈ (αc

1, α−1 )

showing the coexistence of two stable equilibria; one of which implies the extinction of x2.

A study regarding α1 < ε and α2 > ηεε would bring us to a set of results analogous to
the ones exposed in the previous paragraphs because the symmetry of the problem allows
us to use the arguments already presented.

The last case we need to look into is when α1 < ε and α2 < ηεε. Apart from the origin,
the other critical points there can be are (Γ±, Ω±). These will be present as long as ε ≤ εc
where the higher is an attractive node and the lower a saddle. At ε = εc, the bifurcation
point, the critical point becomes a saddle-node, just as studied in Section 3.1.

3.3. Directed Degradation and Cooperation in Ribozymes

The next step towards the generalisation of the dynamical system to describe all
considered interactions is the addition of density-dependent degradation, describing the
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process by which some replicators (ribozymes) can degrade the other hypercycle member
due to trans-cleaving activity. In order to do so, a new parameter must be introduced, β,
which may be regarded as the fraction of species S2 that receives catalysis from species
S1, while (1− β) does exactly the opposite with S2 degrading S1 at a rate ε12. In this case,
the cross-catalytic replication for species S2 is affected by the presence of this parameter as
only a fraction β of this species will receive catalysis.

For the sake of length and simplicity, this section is studied under the assumption that
α1 = α2 = ηε = k = c0 = 1, while ε, ε12, ηk and β are allowed to move freely. This lets us
focus strictly on the effect of the degradation behaviour led by S2 without over-complicating
the whole model. Furthermore, such restrictions have not been chosen arbitrarily but, in
fact, hold specific biological meaning and build the cases we are most interested in when
considering ribozyme interactions. Hence, the system we will focus on along this section is:

{
ẋ1 = (x1 + x1x2)(1− (x1 + x2))− εx1 − (1− β)ε12x1x2,
ẋ2 = (x2 + βηkx1x2)(1− (x1 + x2))− εx2.

(23)

An analytical study, as has been carried out in the previous sections, shows that up to
three critical points in the first quadrant apart from the origin exist. As previously stated,
given α1 = α2 = 1 > ε = ηεε, global extinction is impossible since the origin is a repulsive
node. As for the other equilibria, one is located on each axis representing the potential
survival of a single species without the need of the other. The third equilibrium is only
present for a set of values such that ηk > 0 and

β > βbif = 1− ε

ε12
> 0, (24)

stating that a certain amount of S2 higher than this specific threshold must collaborate with
S1 in order to achieve coexistence. Interestingly, for ε > ε12, both species evolve towards
their coexistence regardless of the initial conditions, as long as they are non-zero.

To prove the attractive behaviour of the critical point located outside the axes, we can
once again focus on the nullcline distribution. It is quite straightforward to see that bounded
to the x-axis, g(x) > max{h(0)}, where g(x1) and h(x2) have been defined analogously
to the previous sections. This describes the same scenario presented in Figure 3a, which
allows us to conclude this equilibrium is stable. The fact that g(x) > max{h(0)} on the
abscissa tells us that shifting β to lower values results in the middle equilibrium to move
towards the critical point on the y-axis as long as ε ≤ ε12, i.e., βbif ≥ 0, until the critical
point leaves the phase space and a transcritical bifurcation takes place (β ≤ βbif). See
Figure 6a,b. On the other hand, if ε > ε12, lowering β results in the approach of the critical
point present on the x-axis until β = 0, where they collide and a transcritical bifurcation
takes place as well. See Figure 6c,d.

Finally, a different behaviour is seen for ηk = 0, i.e., when S2 is unable to catalytically
replicate with the help of S1. In this case, there are only three critical points in the region
of interest: the origin, which remains a repulsive node, and each individual survival.
If β > βbif, then the previous critical point approaches the equilibrium on the x−axis
as ηk is reduced until it reaches zero and is absorbed by it. However, for β < βbif, it
is the other equilibrium that becomes the ω−limit of the system. See Figure 6e and
Figure 6f, respectively.
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Figure 6. Phase portraits of the system in the qualitatively different identified situations. Specifically, we have used: (a)
ε = 0.13, ε12 = 0.72, β = 0.9, ηk = 1.7; (b) ε = 0.13, ε12 = 0.72, β = 0.25, ηk = 1.7; (c) ε = 0.52, ε12 = 0.22, β = 0.55, ηk = 0.8;
(d) ε = 0.52, ε12 = 0.22, β = 0, ηk = 0.8; (e) ε = 0.25, ε12 = 0.49, β = 0.8, ηk = 0; (f) ε = 0.25, ε12 = 0.49, β = 0.14, ηk = 0.
Again, a red dot indicates the ω−limit of each orbit and a blue dot its initial condition.

The behaviour described above can be very well visualised by plotting three-dimensional
and heatmap bifurcation diagrams where the x∗1 or x∗2 equilibrium component is computed
for given parameters. This is possible given the fact that all orbits outside the axes will
evolve to the same equilibrium point and because the origin acts as a repulsive node at
all times. Thus, if we choose to plot x∗1 , i.e., the abscissa component of the equilibrium,
and it falls on 0, we can read that S1 has been extinguished, while S2 has survived. The
annihilation of S2 when ηk > 0 is only possible for ε > ε12 and β = 0; therefore, it is more
adequate to represent x∗1 instead of x∗2 as the coexistence will be present as long as x∗1 > 0
and β 6= 0.

Keeping this argument in mind, Figure 7 collects all information presented in Figure 6a–c.
Indeed, we can see how the coexistence is present for β > βbif, while S1 ceases to exist
if β ≤ βbif. For ηk = 0, Figure 8 shows how x∗1 becomes zero if β < βbif, indicating that
S1 vanishes while S2 remains, and vice versa for β > βbif. In order to demonstrate that
coexistence is not possible in these scenarios, both x∗1 and x∗2 have been represented in
separate plots (Figure 8a,c and Figure 8b,d, respectively). Note that the coexistence that
can be observed on the curve β = βbif is not a mere casualty and is thoroughly explained
below.

As presented in Figure 8, the case β = βbif under ηk = 0 is quite interesting as well.
Here, both equilibria located on the axes are present; hence, the nullclines become the exact
same curves in the phase space. This translates to a continuum of fixed points filling the
attractive linear manifold x2 = 1− ε− x1. The dynamical system under these conditions
and the adequate simplification becomes:

{
ẋ1 = −x1(x2 + 1)(x1 + x2 + ε− 1),
ẋ2 = −x2(x1 + x2 + ε− 1).

(25)
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(a) (b)
Figure 7. Two-parameter bifurcation diagram representing x∗1 as a function of ε12 and β plotted as a surface (a) and as a
heat map (b) for a more intuitive understanding. Parameters used: ε = 0.2, ηk = 2.

Assuming (x1 + x2 + ε− 1) 6= 0, we can compute the quotient ẋ1/ẋ2, allowing us to
find a first integral of the problem:

ẋ1

ẋ2
=

x1(x2 + 1)
x2

⇒ ẋ1

x1
=

(
1 +

1
x2

)
ẋ2, (26)

integrating on both sides, we obtain

ln(x1) = x2 + ln(x2) + C, (27)

such that if initial conditions x1(0), x2(0) are the species initial conditions, Equation (27)
can be rewritten as

x1 =
x1(0)
x2(0)

x2ex2−x2(0). (28)

Taking H = ln(x1)− x2 − ln(x2) = 0 and X the system’s field, we have

H′ = 〈∇H, X〉 = ẋ1

x1
−
(

1 +
1
x2

)
ẋ2 = 0 (29)

which confirms that the expression is a first integral. This result tells us that all orbits
outside the axes follow Equation (27) until they reach the stable line x2 = 1− ε− x1. This
is of course attractive since ẋ1, ẋ2 > 0 for x1 + x2 < 1− ε and ẋ1, ẋ2 < 0 for x1 + x2 > 1− ε.
The corresponding phase portrait for this setting is shown in Figure 9, where the solutions
can be seen to follow exactly the level curves of the first integral.

Interestingly enough, we are in front of a case of extreme equilibrium in which the
degrading species, S2, is unable to cross-catalytically replicate with S1, while S1 benefits
from this interaction with a fraction β of S2 but is degraded by a fraction 1− β.



Mathematics 2021, 9, 1809 14 of 22

(a) x∗1 (b) x∗2

(c) x∗1 (d) x∗2
Figure 8. Two-parameter bifurcation diagram representing x∗1 (a,c) and x∗2 (b,d) as a function of ε12

and β plotted as a surface (a,b) and a heat map (c,d) for a more intuitive understanding. Parameters
used: ε = 0.13, ηk = 0.
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linear manifold x2 = 1 � # � x1. The dynamical system under these conditions and the adequate
simplification becomes: (

ẋ1 = �x1(x2 + 1)(x1 + x2 + # � 1)

ẋ2 = �x2(x1 + x2 + # � 1).
(23)

Assuming (x1 + x2 + # � 1) 6= 0 we can compute the quotient ẋ1/ẋ2, allowing us to find a first integral
of the problem:

ẋ1

ẋ2
=

x1(x2 + 1)

x2
) ẋ1

x1
=

 
1 +

1
x2

!
ẋ2, (24)

integrating on both sides we obtain

ln(x1) = x2 + ln(x2) + C, (25)

such that if initial conditions x1(0) = A, x2(0) = B, A, B 2 (0, 1] are considered, equation (25) can be
rewritten as

x1 =
A
B

x2ex2�B. (26)

Of course, taking H = ln(x1) � x2 � ln(x2) = 0 and X the system’s field, we have

H0 = hrH, Xi =
ẋ1

x1
�
✓

1 +
1
x2

◆
ẋ2 = 0 (27)

proving again that the expression is a first integral. This result tells us that all orbits outside the axes306

follow equation (25) until they reach the stable line x2 = 1 � # � x1. This is of course attractive since307

ẋ1, ẋ2 > 0 for x1 + x2 < 1 � # and ẋ1, ẋ2 < 0 for x1 + x2 > 1 � #. This scenario’s phase portrait is308

shown in Figure 12, where the solutions can be seen to follow exactly the first integral.309

Interestingly enough, we are in front of a case of extreme equilibrium in which the degrading species,310

S2, is unable to cross-catalytically replicate with S1, while S1 benefits from this interaction with a311

fraction b of S2 but is degraded by a fraction 1 � b.

Figure 12. Phase portrait showing a continuum of equilibrium points following x1 + x2 = 1 � #. Initial
conditions are represented with a blue dot and their w�limit with a red dot. Specific parameters used:
# = 0.25, #12 = 0.49, hk = 0, and b = bbif = 0.8194.

312

(a) (b)
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Another case worth considering is that in which # = 0 and #12 ⌧ 1, meaning that natural
degradation is no longer present. This leaves us with a system in which both species will only decrease
as a consequence of the coupling term as long as x1 + x2 > 1. For #12 = 0 the ODE system (1) becomes:

(
ẋ1 = (x1 + x1x2)(1 � (x1 + x2))

ẋ2 = (x2 + bhkx1x2)(1 � (x1 + x2)).
(28)

These equations can be solved assuming 1 � (x1 + x2) 6= 0, dividing ẋ1 over ẋ2 and organising both
sides of the expression to find:

 
bhk +

1
x2

!
ẋ1 =

 
1 +

1
x2

!
ẋ2, (29)

which can be integrated resulting in

bhkx1 + ln(x1) = x2 + ln(x2) + C, (30)

where C = x1(0) + ln(x1(0))� x2(0)� ln(x2(0)). This curve describes the orbits followed by an initial313

condition (x1(0), x2(0)) in the phase space such that 1 � (x1 + x2) 6= 0. Note that 1 � (x1 + x2) = 0 is314

a continuum of attractive equilibria and that the origin acts as a repulsive node. Figure 13 explicitly315

shows this behaviour. Finally, as long as b > 0, a small variation in #12 brings us straight to the316

case studied in Figure ?? implying the extinction of S1, and a minor variation in # recovers Figure ??317

showing coexistence.

Figure 13. Phase portrait showing a continuum of equilibrium points following x1 + x2 = 1. Initial
conditions are represented with a blue dot and their w�limit with a red dot. Specific parameters used:
# = 0, #12 = 0, hk = 0.8, and b = 0.5.

318

3.3. Interplay between predation and cooperation in ecology319

All systems studied above have been analysed in order to build up a very general hypercycle
model that allows us to consider all interactions presented in subsection 3.2 while S2 behaves as a
predator. To summarise, our species are now under the influence of self-replication (ai > 0 for i = 1, 2)
and cross-catalytic replication (k, hk > 0), they are also degraded by natural causes (#, h# > 0), a fraction
b of S2 cooperates with S1, the rest of S2 (1 � b) consumes S1 at a rate #12, and for the first time S2

benefits from this consumption, acting as a predator (with an efficiency g 2 (0, 1)). Indeed, we have

Figure 9. Phase portraits showing a continuum of equilibrium points following x1 + x2 = 1− ε (line of quasi-neutral
equilibria). Initial conditions are represented with a blue dot and their ω−limit with a red dot. Specific parameters used are:
(a) ε = 0.25, ε12 = 0.49, ηk = 0, and β = βbif = 0.8194; and (b) ε = 0, ε12 = 0, ηk = 0.8, and β = 0.5.

Another case worth considering is that in which ε = 0 and ε12 � 1, meaning that
natural degradation is no longer present. This leaves us with a system in which both
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species will only decrease as a consequence of the coupling term as long as x1 + x2 > 1.
For ε12 = 0, the ODE system (1) becomes:

{
ẋ1 = (x1 + x1x2)(1− (x1 + x2)),
ẋ2 = (x2 + βηkx1x2)(1− (x1 + x2)).

(30)

These equations can be solved assuming 1− (x1 + x2) 6= 0, dividing ẋ1 over ẋ2, and
organising both sides of the expression to find:

(
βηk +

1
x1

)
ẋ1 =

(
1 +

1
x2

)
ẋ2, (31)

which can be integrated resulting in

βηkx1 + ln(x1) = x2 + ln(x2) + C, (32)

where C = βηkx1(0) + ln(x1(0)) − x2(0) − ln(x2(0)). This curve describes the orbits
followed by an initial condition (x1(0), x2(0)) in the phase space such that 1− (x1(0) +
x2(0)) 6= 0. Note that 1− (x1 + x2) = 0 is a continuum of attractive equilibria and that the
origin acts as a repulsive node. Figure 9b explicitly shows this behaviour. Finally, as long as
β > 0, a small variation in ε12 brings us straight to the case studied in Figure 6b, implying
the extinction of S1, and a minor variation in ε recovers Figure 6c, showing coexistence.

3.4. Interplay between Predation and Cooperation in Ecology

All systems studied above have been analysed in order to build up a general hyper-
cycle model that allows us to consider all interactions presented in Section 3.3 while S2
also behaves as a predator. Both species are now under the influence of self-replication
(αi > 0 for i = 1, 2) and cross-catalytic replication (k, ηk > 0), they are also degraded by
natural causes (ε, ηε > 0), a fraction β of S2 receives cooperation from S1, the rest of S2
(1− β) consumes S1 at a rate ε12, and for the first time, S2 benefits from this consumption
with an efficiency of γ ∈ (0, 1), acting as a predator. We now reached the system presented
in Equation (1), Section 2, with all parameters playing their corresponding biological roles:

{
ẋ1 = (α1x1 + kx1x2)(1− (x1 + x2))− εx1 − (1− β)ε12x1x2,
ẋ2 = (α2x2 + βηkkx1x2)(1− (x1 + x2))− ηεεx2 + γ(1− β)ε12x1x2.

(33)

As we did above, we shall consider a simple scenario setting α1 = α2 = k = ηε = c0 = 1
to be able to analyse it mathematically and to obtain clearer results arising from predation.
Even though a new process is being considered in this case, surprisingly, the dynamics of
the predatory scenario behave exactly as those described in Section 3.3. Curiously enough,
although species S2 now grows at the expense of S1, studying the relative positions of the
nullclines shows that for β > βbif = 1− ε/ε12, there is coexistence while S1 vanishes for
β ≤ βbif (see Figures 10 and 11). As previously explained, the existence of the coexistence
equilibrium is given by the position of all four positive axis crossings of the nullclines.
We shall refer to the intersection of the xj nullcline with the xi−axis as x∗i,j and claim that
x∗1,1 < x∗1,2 and x∗2,1 > x∗2,2 for β > βbif, which implies the desired coexistence. Let us
compute these values explicitly. On the x1 axis, the intersections of interest happen at

x∗1,1 = 1− ε,

x∗1,2 =
1

2βηk

(
− βγε12 + βηk + ε12γ− 1 +

√
(−βγε12 + βηk + ε12γ− 1)2 + 4βηk(1− ε)

)
,

(34)
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for ẋ1 = 0 and ẋ2, respectively. These values will coincide if

β =
ε12γ

ε12γ− εηk
, (35)

which is greater than 1, positive for ε12γ > εηk, and negative for ε12γ < εηk. Notice that
the change of sign implies a change in the inequality such that for the considered range of
β, it can only be that x∗1,1 < x∗1,2. This is precisely the reason behind the non-alteration of
the dynamics under predatory behaviour. On the vertical axis, the crossings are given by

x∗2,1 =
1
2

(
−ε12(1− β) +

√
ε2

12(1− β)2 + 4(1− ε)

)
,

x∗2,2 = 1− ε.
(36)

In this case, x∗2,1 = x∗2,2 occurs at the critical value

β = 1− ε

ε12
= βbif, (37)

and x∗2,1 > x∗2,2 for β > βbif, a value that can very well be assumed by β. Thus, the claim
follows, and we conclude that a dual behaviour within S2 concerning its interaction with
S1 does not modify the overall dynamics of the system. As expected, all equilibria are
found at values of S2 just above those studied in the preceding section since S2 is now
replicating from the extinction of S1. Moreover, the results found for β = βbif are now
independent of ηk as the influence of γ on the system makes coexistence impossible under
such assumptions (see Figure 11a). Of course, since γ multiplies ε12 in ẋ2, considering
ε = ε12 = 0 brings us to the same results shown in Equation (32) and small perturbation of
ε12 will also result in the S1 to extinction given γε12 > 0 (see Figure 11b).

(a) (b)
Figure 10. Two-parameter bifurcation diagram representing x∗1 as a function of ε12 and β plotted as a surface (a) and a heat
map (b) for a more intuitive understanding. Parameters used: ε = 0.13, ηk = 1.4, γ = 0.5.
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(a) (b)
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Figure 12. Bifurcation diagram representing x⇤1 as a function of #12 and b plotted as a surface (a) and a
heat map (b) for a more intuitive understanding. Parameters used: # = 0.13, hk = 1.4, g = 0.5.

hk = 0, b = bbif e = 0, e12 > 0

Figure 13. Phase portraits for special cases: (a) hk = 0, b = bbif = 0.375, # = 0.3, #12 = 0.48, g = 0.7;
and (b) hk = 3, b = 0.6, # = 0, #12 = 0.48, g = 0.2. As done in all previous plots, the red dot denotes the
w�limit while the blue one marks the initial condition for each orbit.
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Figure 11. Phase portraits for different cases: (a) ηk = 0, β = βbif = 0.375, ε = 0.3, ε12 = 0.48, γ = 0.7; and (b) ηk = 3, β =

0.6, ε = 0, ε12 = 0.48, γ = 0.2. As done in all previous plots, the red solid circles denote the ω−limits while the small blue
dots mark the initial condition for each orbit.

4. Conclusions

Research on hypercycles has focused on the dynamics arising from the processes
of cooperation (e.g., catalysis) between replicators [3,53–56]. The cyclic architecture of
cooperative interactions is known to provide stability and survival of all the species.
However, other different architectures able to impair such stability have been thoroughly
investigated. These include the so-called catalytic parasites [15,57–60] and the catalytic
short-circuits [61,62]. Recent research has combined cooperative interactions with other
antagonistic processes between species [63]. This is based on the rationale that molecu-
lar replicators are subject to mutational processes and ecological species to behavioural
shifts due to environmental or ecological changes. These changes could make species
switch from cooperative to antagonistic interactions, in, what we have called here, a
functional shift. These functional shifts could arise in ribozymes due to mutational pro-
cesses and could involve a shift from cooperation (hetero-catalysis) to directed degradation
(trans-cleavage) [63]. In the context of complex ecosystems, several species undergoing
inter-specific cooperation are known to switch to predation (see for example Refs. [65–68]).
Even though the drivers of such functional shifts may not be trivial and respond to com-
plex behavioural patterns among species or both biotic and abiotic changes, the dynamics
arising due to such functional shifts are still an unexplored subject. As mentioned, some
authors have used the hypercycle theory to investigate the impact of these functional shifts
in ecosystems dynamics [63]. Specifically, the impact of a shift from catalytic cooperation
to directed degradation was studied in small (one to four species) discrete-time hypercy-
cles [63]. As far as we know, no works have investigated how these shifts may affect the
stability of small hypercycles in time-continuous systems.

In this article, we have analysed two-species hypercycles considering, together with
cooperation, directed degradation or predation (see Figure 1). The changes due to func-
tional shifts have been studied using a general hypercycle model that allows for different
architectures by changing different parameter conditions. To understand the changes due
to these functional shifts, we have summarised and extended previous results on obligate
two-member hypercycles [53] while also analysing a facultative case.

The model considering directed degradation shows no full extinction when both
autocatalytic replication rates are higher than their natural decays. We have found a critical
value for β, βbif, below which only the dominant species S2 survives, while coexistence
is present for β > βbif. We have also identified parametric scenarios (i.e., considering no
catalytic support of the degrader species by the other one (ηk = 0) or no decay rate of any
of the two species (ε = 0)), giving place to a continuum of fixed critical points following
a straight line at β = βbif. For these two scenarios, the complete analytical expressions
describing all orbits have been found. Finally, we considered a cooperative system with
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predation. Interestingly, bifurcation parameters found for the directed degradation system
re-appeared in the same form, stating that no natural benefit towards S2 is enough to
change the dynamics of the system as long as ηkε > 0. However, these extreme cases with
ηk = 0 or ε = 0 stopped presenting a continuum of critical points and turned into the
extinction of S1 as a consequence of the predatory term.

Future research directions may consider functional shifts in non-autonomous systems,
considering that changes among cooperative and antagonistic interactions may vary in
time due to seasonality or external perturbations.
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Appendix A. Obligate Two-Member Hypercycle: Coexistence Equilibrium

Here, we extend previous research for the obligate two-member hypercycle reported
in Ref. [53], where numerical results suggested species coexistence via an internal stable
node. Here, we show that such a coexistence is also possible through a weak stable focus.
Specifically, we compute the stability of the coexistence equilibrium for the asymmetric
case of system (2), given by ((ηε/ηk)Γ+, Γ+). We pay attention to the system’s Jacobian
Matrix eigenvalues evaluated at such equilibria. Assuming that these two equilibria exist,
i.e., ε ≤ εc = k/(4(1 + ηε/ηk)) (see Section 3.1), the eigenvalues are given by:

λ+,± =
1

4(ηε + ηk)2 (A± B) (A1)

for ((ηε/ηk)Γ+, Γ+) and

λ−,± =
1

4(ηε + ηk)2 (C± D), (A2)

for ((ηε/ηk)Γ−, Γ−), where
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A =− ηε

(
(k− 2ε)ηk − 2ηεε +

√
((k− 4ε)ηk − 4ηεε)ηkk

)
(ηk + 1),

B =
√

2
(

ηε

((
−4
(
(ηε/2 + 1)η2

k + 3ηεηk + η2
ε + ηε/2

)
(ηε + ηk)ε + ηkkηε(ηk + 1)2

)

×
√
((k− 4ε)ηk − 4ηεε)ηkk + 16

(
(ηε/8 + 1)η2

k + 9ηεηk/4 + η2
ε + ηε/8

)
(ηε + ηk)

2ε2

− 4ηk(ηε + ηk)((ηε + 1)η2
k + 4ηεηk + η2

ε + ηε)kε + ηεη
2
k k2(ηk + 1)2

))1/2

,

C =−
(
(k− 2ε)ηk − 2ηεε−

√
((k− 4ε)ηk − 4ηεε)ηkk

)
ηε(ηk + 1),

D =
√

2
(

ηε

((
4
(
(ηε/2 + 1)η2

k + 3ηεηk + η2
ε + ηε/2

)
(ηε + ηk)ε− ηkkηε(ηk + 1)2

)

×
√
((k− 4ε)ηk − 4ηεε)ηkk + 16

(
(ηε/8 + 1)η2

k + 9ηεηk/4 + η2
ε + ηε/8

)
(ηε + ηk)

2ε2

− 4ηk(ηε + ηk)((ηε + 1)η2
k + 4ηεηk + η2

ε + ηε)kε + ηεη
2
k k2(ηk + 1)2

))1/2

.

(A3)

Note that, although A and B may look very similar to C and D, respectively, these are
not the same expression. To establish in which cases these eigenvalues become imaginary,
we shall use the fact that the Jacobian Matrix is 2× 2 and real, implying that, for example,
if λ−,+ = a + ib, then λ−,− = a− ib. Therefore, we can consider the potential real, a, and
imaginary times, i, ib, of these eigenvalues such that:

a± =
λ±,− + λ±,+

2
(A4)

ib± =
λ±,− − λ±,+

2
. (A5)

where λ±,± = a± ± ib±. We are most interested in the values that the imaginary part
of λ±,± can take. To simplify the problem, note that the term 4(ηε + ηk)

2/
√

2ηε can be
factored out, leaving a potential imaginary part squared of the form:

(
4(ηε + ηk)

2
√

2ηε
ib+

)2

=16((ηε/8 + 1)η2
k + (9ηεηk)/4 + η2

ε + ηε/8)(ηε + ηk)
2ε2

− 2(ηε + ηk)(2k(ηε + 1)η3
k

+ (8kηε +
√
((k− 4ε)ηk − 4ηεε)ηkk)(ηε + 2))η2

k

+ 2ηε(k(ηε + 1) + 3
√
((k− 4ε)ηk − 4ηεε)ηkk)ηk

+
√
((k− 4ε)ηk − 4ηεε)ηkkηε(2ηε + 1))ε

+ kηεηk(ηk + 1)2(ηkk +
√
((k− 4ε)ηk − 4ηεε)ηkk),

(A6)
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and
(

4(ηε + ηk)
2

√
2ηε

ib−

)2

=16((ηε/8 + 1)η2
k + (9ηεηk)/4 + η2

ε + ηε/8)(ηε + ηk)
2ε2

+ 2(ηε + ηk)(−2k(ηε + 1)η3
k

+ (−8kηε +
√
((k− 4ε)ηk − 4ηεε)ηkk)(ηε + 2))η2

k

+ 2ηε(−k(ηε + 1) + 3
√
((k− 4ε)ηk − 4ηεε)ηkk)ηk

+
√
((k− 4ε)ηk − 4ηεε)ηkkηε(2ηε + 1))ε

− kηεηk(ηk + 1)2(−ηkk +
√
((k− 4ε)ηk − 4ηεε)ηkk).

(A7)

Equalling these two expressions to zero shows that there exist two solutions for ib+ = 0
and none for ib− = 0, stating that for ib+, there is a change in its sign, while ib− stays
always with the same one. Notice that omputations to show such zeros are non-double are
not included for the sake of length. After plugging any set of acceptable parameters in the
second expression, we can see that ib− is, in fact, not an imaginary value. Therefore, it is
only necessary to study the eigenvalue sign, which easily shows that the critical point under
inspection is a saddle. As for the other equilibrium, we have found two solutions for ε such
that the imaginary part changes sign. These are ξ± = (R± S)/T, where

R = 8ηkk(ηε + ηk)

(
η2

ε +

(
5
4

η2
k +

9
2

ηk +
5
4

)
ηε + η2

k

)
, (A8)

S = 8ηkk
√
(ηε − 1)(−η2

k + ηε)(4η2
ε + (−η2

k + 6ηk − 1)ηε + 4η2
k ), (A9)

T = (η2
k ηε + 8η2

ε + 18ηεηk + 8η2
k + ηε)

2. (A10)

For ε ∈ (ξ−, ξ+), (ib+)2 is a negative expression, indicating that the eigenvalue is
indeed imaginary and that, in this region, the analysed equilibrium behaves as a focus.
Note that ξ+ ≤ εc, thus always defining a region below the critical value of ε in which the
stable point is a focus. This result holds for all values of ηε and ηk as long as S is real, i.e.,
(ηε − 1)(−η2

k + ηε) ≥ 0.
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