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Abstract: Soft robotics is becoming an emerging solution to many of the problems in robotics, such as
weight, cost and human interaction. In order to overcome such problems, bio-inspired designs have
introduced new actuators, links and architectures. However, the complexity of the required models
for control has increased dramatically and geometrical model approaches, widely used to model
rigid dynamics, are not enough to model these new hardware types. In this paper, different linear
and non-linear models will be used to model a soft neck consisting of a central soft link actuated
by three motor-driven tendons. By combining the force on the different tendons, the neck is able to
perform a motion similar to that of a human neck. In order to simplify the modeling, first a system
input–output redefinition is proposed, considering the neck pitch and roll angles as outputs and
the tendon lengths as inputs. Later, two identification strategies are selected and adapted to our
case: set membership, a data-driven, nonlinear and non-parametric identification strategy which
needs no input redefinition; and Recursive least-squares (RLS), a widely recognized identification
technique. The first method offers the possibility of modeling complex dynamics without specific
knowledge of its mathematical representation. The selection of this method was done considering its
possible extension to more complex dynamics and the fact that its impact in soft robotics is yet to be
studied according to the current literature. On the other hand, RLS shows the implication of using
a parametric and linear identification in a nonlinear plant, and also helps to evaluate the degree of
nonlinearity of the system by comparing the different performances. In addition to these methods, a
neural network identification is used for comparison purposes. The obtained results validate the
modeling approaches proposed.

Keywords: mathematical modeling of complex systems; non-linear models; soft robotics; soft robotic
neck; tendon-driven actuators

1. Introduction

Soft robotics has been gaining importance in the robotics research field. The intrinsic
compliance and adaptable properties of this hardware are pushing them into many areas.
The purpose of these technologies is to overcome some of the problems found in the
current robotic platforms. These include weight, cost, versatility and more importantly,
safe human-to-robot interaction.

Different soft robotics technologies have emerged. These include pneumatic muscles
with rigid links [1], pneumatic materials that deform according to their strain field [2],
robots with fully inflatable links [3], fully inflatable robots [4], plant-based structures [5]
and many other technologies [6,7]. In particular, we are interested in tendon-driven soft
robots, a bio-inspired model scheme, as those in [8–10]. However, the kinematic models,
unlike rigid ones, are not yet well-understood. Given the high non-linearity and physical
characteristics, several assumptions and numeric simplifications are considered to actuate.
Therefore, they are not as reliable and have lower versatility in comparison with their
counterpart, thus limiting their impact on robotics [11]. These drawbacks are stopping
soft robotics to enter fields such as industrial robotics or manufacturing. However, where
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precision is not mandatory or humans might apply proper correction to achieve the desired
goal, they have found a niche [12,13], such as rehabilitation and prosthetics.

In [8], the authors developed a mathematical model for the tendon-driven robotic
arm. In particular, the authors approximated the elasticity of the tendons as a mass-less
spring, given that their mass is many times smaller than the other parts (motors, gears,
and loads). This enables them, on one side, to neglect coupling effects over different links,
and also to assume rigid motions of the particular link to be modeled. Notice that even
though the motion of the tendons is aligned with the arm motion, obtaining such a model
is troublesome and requires further developments to increase the accuracy of the final
result. To overcome the modeling problem for control purposes, the authors in [10] used
reinforcement-learning to control the tendon-driven ACT hand synergies. This robotic
hand has 24 motor-driven tendons that mimic the human hand biomechanics. Therefore,
dynamic interaction with the hand skeleton results in redundant motions and other non-
linear characteristics of the hardware that should be considered if a mathematical model
is required. By using reinforcement learning, the authors are able to capture the desired
dynamics over a set of motions that derive into a control strategy over the 24 tendons in
a reduced state-space. However, as pointed out by [9], data-driven control algorithms
on tendon-based robots or soft robotics have not yet been explored, and model-based
control strategies are still preferred. Considering the previous statement, the authors in [9]
analyzed an autonomous learning algorithm to obtain the model of a tendon-driven leg
when different stiffness is used.

From the modeling perspective, [14] proposed a finite element model (FEM) for a
glove with pneumatic bending actuators. The authors worked in a two-dimensional
space, neglecting the dynamic energy from the model. In further research, a black-box
model identification was given by [15] for a fluidic actuator. This allows the authors to
introduce the shear deformation into the model, which in their previous work was not
considered. The maximum parametric variations reached 36%, which was compensated by
a back-stepping controller. In the present paper, black-box data-driven modeling will be
used. Therefore, the overall dynamics of the given neck will be considered and modeling
results will be compared with standard linear and non-linear modeling techniques, that is,
Recursive Least Square and Neural Networks. This provides an overview of alternative
modeling possibilities and their implications over a non-linear system as the tendon-
driven neck.

In [16], a geometrical model and a two-dimensional FEM model for a soft fluidic
actuator were studied. The geometrical model considered a uniform bending curvature
of the link, while the FEM model showed a linear trend on the link behaviour. A new
approach was proposed in [17] in order to obtain a pneumatic soft-arm 3D model, based
on a constant link’s bending curvature and neglecting the gravity or payload effects.
Another geometrical approach for modeling a soft link is presented in [18]. In this case,
the approached model neglects the effects of gravity or internal elastic forces. Regarding
tendon-based robots, in the hand exoskeleton given in [19,20], each finger is considered as
a three-link kinematic chain and all the joints are considered to be pure revolute. Friction
and cable guide deformation were neglected. As shown in the cases above, geometric
modeling requires several constraints and assumptions to reduce the model complexity,
which allow the designers to cope with the complex system mechanics. Nonetheless, the
black-box modeling approach will include the whole system dynamics, which led to the
proposed methods in this work.

Modeling of soft robotic links is of particular interest, given the coupled dynamics
that arise when actuating the robots. In this sense, different approaches are presented as
well. Geometrical approaches expose their limitations when the modeling space increases.
Therefore, sensor-based approaches are being used, although their results are limited to the
sensor’s range and capabilities. In [21], textile strain sensors are embedded into the robot
structure to calculate the link deflection state and position. A similar approach is presented
in [22,23]. In this last one, the authors describe the implementation of a soft hand where
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each finger uses an elastic joint with an embedded piezo-electric transducer to sense the
deflection of the joint. In this case, the curvature is given by the sensor but is assumed
to be continuous through the link. A different sensor technique for embedded deflection
modeling is presented in [24], where photo-sensing is used to determine the deflection angle
of the link. A 3D modeling approach is given in [25], where embedded cameras for self-
observing of the robot configuration are synchronized to obtain the final soft body (robot)
shape through learning algorithms. The named references imply additional hardware but
allow for rigid modeling based on sensor information. However, their effectiveness is
limited to the sensor’s accuracy and the validity of the hypothesis over the soft link, such
as continuous link curvature. Furthermore, to obtain the mathematical model, it is still
required to neglect certain dynamics, and in some cases, only the 2D motion of the soft link
is considered. In this work, the soft link is aimed to move in 3D and it is not desired to add
additional hardware to the system.

This work aims to characterize the 3D motion of a tendon-driven soft neck described
in [26]. An improved version of the initial version was later proposed in [27]. This new
design features a soft bendable spine that replaces the central spring. The replaced structure
decreases the overall weight and increases the system robustness. An inclination sensor
was also introduced on the top platform for extracting the current pitch and roll angles,
and enables feedback control.

Although the central structure introduced an already non-linear behaviour, as seen
in [27], the new material adds other non-linearity mechanics. Some previous works already
tackle system identification. Firstly, in [26] for control design, the study was limited
to actuators and ignored the dynamics of the link. The resulting theoretical model is
outside the standard modeling methods. As a consequence, additional methodology is
required to extract a simulation and control model for the platform. An initial identification
exploration on 2D was presented in [28]. In that work, which this paper is a continuation of,
we identified the soft link dynamics considering the actuators and the soft link. However,
only the front inclination was considered, neglecting at that time the interactions that occur
when all the soft neck degrees of freedom are used.

In this work, the proposed models are improved and extended to the entire robot
motion range. Set membership and Recursive least-squares identification methods are used
for modeling as in [28]. As the recursive least-squares method is only valid for linear plants,
the non-linear behavior will not be captured. The selected methods do not need hardware
modifications nor neglected dynamics. Therefore, physical effects, such as gravity, elasticity,
and plasticity will be considered by the obtained 3D models when possible. These models
are compared with a neural network model identification as ground comparison. As an
important contribution, no modeling technique selected relies on local deformation sensors,
and they do not require additional external hardware for possible neck control considered
in the future.

The remaining parts of this paper are organized as follows. In Section 2, the platform
to be identified is described. Sections 3 and 4 present the different methods used for
identification. In Section 5 the experimental procedures are described and Section 6 shows
the resulting models. Then, in Section 7, different tests are performed for validation and
comparison purposes. Finally, in Section 8, the main conclusions are discussed.

2. Soft Neck Description

The mechanism that enables soft neck operation is the central soft link, which acts as a
spine. It is made with bendable material and actuated with a parallel mechanism driven by
cables, which produce a tilt in the upper platform. Figure 1 shows the soft neck prototype
and its parts.

The neck is composed of a base, a mobile platform, a central soft link, tendons (cables),
and motors, as shown in Figure 1. All parts were built using a 3D printer, including the
soft link, which weighs 100 gr (excluding motors and hardware).
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Combining the actions of the three actuators, any position or orientation can be
reached inside the bounded space. As the robot workspace is three-dimensional, the final
rotation can be defined using three Euler angles. The Z-axis rotation (yaw) is neglected
since it cannot change due to the configuration of the link; therefore, two rotations around
the X- and Y-axes are enough to fully define the robot position and orientation. System
output will be defined through an X-axis rotation, roll(φ), and a Y-axis rotation, pitch (θ),
as shown in Figure 2.

Figure 1. Soft neck platform.

pitch(θ)roll(ϕ)

x'

y'

z'

Figure 2. Soft neck kinematics. Orientation and inclination variables [27].

According to [29,30], the soft neck is a hyper-redundant robot. Therefore, the term
degrees of freedom (DOF) is not applicable in the usual sense. Nevertheless, there is a
connection between the three tendon lengths and the neck’s final angular position.

The three tendon actuators are located at the base, each composed with a motor, gear,
encoder, and a driver, with the characteristics shown in Table 1.
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Table 1. Platform hardware specifications.

Driver Technosoft iPOS4808 MX-CAN; 400 W, 12–50 Volt, 8 Amp (intelli-
gent motor driver)

Motor Maxon RE 16-118739; graphite brushes, 48 Volt, 4 Watt

Gear Maxon 134777 (24 : 1)

Encoder Maxon mr201937

There exists low-level control managed by the motors’ drivers, which satisfies all the
platform’s needs. For this reason, all system data are captured as an open-loop plan, with
the actuator position and velocity as input and the inclinations roll and pitch as output.

2.1. Geometric Simplification

The described plant input and output variables are coupled, defining a Multiple Inputs
Multiple Outputs (MIMO) system, which makes the system identification more difficult.
Fortunately, there is a way to simplify the system, decoupling these variables, allowing to
analyze its behavior through simpler Single-Input Single-Output (SISO) models. Using this
scheme, the inverse kinematics described in [31] will not be necessary, making the model
identification easier.

The angle combination produced by each actuator effect is a final rotation that can be
defined or measured by two angles. A more detailed analysis of the robot’s geometry will
show the connection between the inputs and these final angle outputs. Since the inputs
and outputs of the system are coupled in a MIMO system of three inputs and three outputs,
it is desirable to rearrange the original input scheme using a linear combination of them.
In this way, three new inputs will be obtained, having a direct action with respect to the
outputs. Note that the aim is not to simplify the system, but to study the effects of the
different inputs in the neck output variables. To simplify this operation, we will consider
the system in the resting position. In this state, the single effect of the A1 actuator (reducing
l1) results in a rotation aligned with the X-axis of the base frame (see Figure 2). This results
in an output angle directly related to the length of its tendon, and therefore, the motor
position. Given that motor angles can be negative, we will consider the neck’s rest position
(pitch = 0, roll = 0) as the initial zero value for all tendons, resulting in positive values
when tendon lengths increase, and negative otherwise. Considering just the first actuator
with the index number 1, a possible equation describing pitch angle θ in X is the following:

θ1 = f (P1) (1)

where θ1 is the angle contribution from the first actuator to the final pitch angle (θ), P1 is the
actuator input position, and f is a nonlinear function describing the relation between both.
Although it is considered that just P1 can change the angle θ1 as shown in Equation (1),
given the neck’s nonlinear nature, the other inputs may have a tiny effect on that angle, too,
but they are considered too small and will be neglected in this case. The other actuators’
effects (θ2, θ3) on the final angle θ are the following:

θ2 = cos(γ2) f (P2) (2)

θ3 = cos(γ3) f (P3) (3)

Given the proposed vertical robot setup, and using the same actuators, we can assume
that the functions f are similar. Nevertheless, a projection factor needs to be consid-
ered, which depends on the actuator’s relative angle (γ). We can generalize the previous
functions in the following equation:

θi = cos(γi) f (Pi) (4)
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Keeping in mind that we are not modeling the system but proposing an alternative
input–output scheme, we can consider these input angles additive. Again, it is not a model
simplification, but an input redefinition.

θ = θ1 + θ2 + θ3 = cos(γ11) f (P1) + cos(γ12) f (P2) + cos(γ13) f (P3) (5)

According to Figure 2, the three actuators are symmetrically arranged, and the angles
are γ11 = 0 deg, γ12 = 120 deg and γ13 = 240 deg. Therefore, Equation (5) results in:

θ = f (P1)− 0.5 f (P2)− 0.5 f (P3) = f (P1)− 0.5[ f (P2) + f (P3)]. (6)

This result shows how both A2 and A3 actuator effects on the angle pitch are divided
by two, with an opposite direction to actuator A1. This leads to the first result of this
approach. The pitch angle is defined by the length difference, being positive when P1 is
larger than 0.5(P2 + P3), and negative otherwise. In the case of P1 = P2 = P3, angle θ = 0,
leading to different robot compression states depending on the tendon lengths, form zero
(P1 = P2 = P3 = 0) to full compression ( P1 = P2 = P3 = Pmax). This feature could be used
to change the neck stiffness, although this is not discussed in this paper, where the soft link
length is considered constant.

Now, roll angle (φ) is defined as the rotation around the Y-axis. Using the previous
reasoning but projecting in the Y-axis (using sin(γ)):

φ = φ1 + φ2 + φ3 = sin(γ1) f (P1) + sin(γ2) f (P2) + sin(γ3) f (P3) (7)

In the case of γ1 = 0 deg, γ2 = 120 deg and γ3 = 240 deg, Equation (7) results in:

φ = 0.866 f (P2)− 0.866 f (P3) = 0.866[ f (P2)− f (P3)] (8)

Note that in this case, the value of the φ angle just depends on the difference between
P2 and P3, and that the A1 actuator has no effect. Again, the angle just depends on their
difference, and the compression is an average function of the tendon lengths. For the
case P1 = P2 = P3, angle φ = 0, leading to the same previous result regarding soft
link compression. Additionally, note that θ and φ angles depend on the tendon length
difference, and the compression (δ) depends on the tendon lengths’ average. Based on this,
we can define the new input variables θi, φi and δi as a linear combination of the motor
position inputs.

Using the results from Equations (6) and (8), and considering the link compression
input as the motor positions’ average, the following input redefinition is proposed:

θi = P1 − 0.5(P2 + P3) (9)

φi = 0.866(P2 − P3) (10)

δi =
P1 + P2 + P3

3
(11)

Using this input redefinition, we can decouple and simplify the system considering
φi as an input, which provides a change exclusively in the φ output angle. Therefore, a
nonlinear single-input single-output (SISO) system can be defined, having φi inputs and φ
outputs. Likewise, θi and δi inputs will affect only the output values of θ and δ, respectively,
defining another two SISO systems.

Based on this, the soft neck can be modeled as three decoupled SISO systems. The
transfer functions Gθ , Gφ, and Gδ will model the actual outputs (θ,φ,δ) as a function of
the new inputs (θi,φi,δi), defined by Equations (9)–(11). Given the simplifications we have
considered, the real behavior will be different in several aspects, like showing interference
between actuators and a nonlinear plant response. These effects will be discussed in the
Experiments section.



Mathematics 2021, 9, 1652 7 of 22

Two different system identification methods are used. First, the set membership
method as described in [32] is used for nonlinear identification, and second, recursive
least-squares (RLS), as described in [33], is applied for different tilt configurations, which
will result in a linear system for each RLS identification performed. The evolution of these
systems, according to the inclination, will be studied.

In the case of RLS system identification, the new redefined inputs (θi, φi and li) were
considered instead of motor position inputs. Note that these are just the input redefinition,
and the output angles still depend on the system dynamics. Although f functions are
unknown, they are considered within the resulting models, although the nonlinear part
may be neglected depending on the identification method.

3. Set Membership Non-Linear Identification

This section briefly describes the Non-Linear Set Membership (NLSM) identification
method proposed in [32].

Consider a system that has a Nonlinear AutoRegressive with eXogenous input (NARX)
structure, as

y(k) = fo(ω(k)) + e(k) (12)

where ω(k) is the system’s regressor formed by past samples of the system inputs u1, u2
and the output y1, y2, as:

ω(k) = [yi(k− 1), . . . , yi(k− ny), ui(k− 1), . . . , ui(k− nu)]
′ (13)

ω(k) ∈W ⊆ Rn, n = ∑
i

nyi + nui (14)

where e(k) represents the measurement noise and W is the function domain.
The NARX regressor is widely used in system identification considering its capacity

of representing nonlinear dynamics and developing estimation algorithms which are
computationally cost-efficient.

If fo is unknown, but a set of measurements of yi(k) and ω(k) are available for
k = 1, ..., N and considering that the noise magnitude is bounded by ε:

|e(k)| ≤ ε (15)

and no statistical assumption on its behavior is made. The goal is to estimate f̂ of fo, where
f̂ is the estimation of f .

Even though f is unknown, the following information is available:

fo ∈ F
.
=
{

f ∈ C1(W) :
∥∥ f ′(ω)

∥∥ ≤ γ, ∀ω ∈W
}

(16)

where f ′(ω) denotes the gradient of f (ω) and ‖x‖ is the Euclidean norm. Therefore, we
assume that the identified system is continuous on its first derivative and has maximum
growth of γ for all the regressors applied to the function of interest.

On the other hand, if there is a Feasible System Set (FSS), which is the set of all systems
in the space F which satisfies the following conditions:

FSS .
=


f ∈ F : |y(k)− f (ω(k))| ≤ ε,

and
f ∈ F : y(k)−y(k+1)

δT
≤ γ

, k = 1, 2, . . . , N (17)

therefore, there always exists a non-empty FSS and fo ∈ FSS when both assumptions on
fo and e are true. Then, if we guarantee the validity of the conditions γ and ε over a set of
measurements generated by the system to be identified, we will find a FSS 6= ∅. In [32], the
procedure to guarantee conditions γ and ε over a data set is presented. For the following
sections, prior assumptions are considered to be true.
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Given that the aim of the model is to find the output generated by the system for a
new input, it is necessary to distinguish the identification data set, k, and the new inputs x.
Hence, for a given input x ∈W, the optimal NLSM estimate of fo(x) is:

fc(x) .
=

fu(x) + fl(x)
2

(18)

where:

fu(x) = min1<k<Ny(k) + ε + γ‖x−ω(k)‖ (19)

fl(x) = max1<k<Ny(k)− ε− γ‖x−ω(k)‖ (20)

As presented in [32],

• fu(x) and fl(x) are optimal upper and lower bounds for fo(x), respectively.
• fu(x) and fl(x) are Lipschitz-continuous on W; therefore, they belong to the FSS.
• fc(x) is an optimal approximation of fo(x) for any Lp(W) norm, with p ∈ [1, ∞], with

an optimality criterion as:

fopt = arg inf
f̂

sup
f∈FSS

∥∥∥ f − f̂
∥∥∥

p

The NLSM algorithm produces a non-linear, non-parametric model which is embed-
ded on the data set. That is, there is no explicit equation that represents the input–output
or physical variables relation.

For a new regressor value x ∈ Rn, the NLSM model output fc(x) is evaluated through
Algorithm 1.

Algorithm 1: Set membership algorithm.
FNLSM(x)
Set fu(x) = +∞
Set fl(x) = −∞
for k = 1 to N do

Calculate the distance between x and ω(k) as
Distance(k) = ‖x−ω(k)‖.
Obtain the upper bound on fo(x) guaranteed by ω(k) as the projection
Pu(k) = y(k) + ε + γ ∗ Distance(k).
Obtain the lower bound on fo(x) guaranteed by ω(k) as the projection
Pl(k) = y(k)− ε− γ ∗ Distance(k).
Choose the lowest upper bound
if Pu(k) ≤ fu(x) then

fu(x) = y(k) + ε + γ‖x−ω(k)‖ = Pu(k)
end
Choose the highest lower bound
if Pl(k) ≥ fl(x) then

fl(x) = y(k)− ε− γ‖x−ω(k)‖ = Pl(k)
end

end
Calculate the estimation
fc(x) = fu(x)+ fl(x)

2
return fc(x)

In order to obtain the FSS, as described in [32,34], it is possible to execute the Algorithm 1
over the identification data set, updating the variable γ whenever the positive or negative
projections fu(i), fl(i), over each data point ω(i) ∈ ω(k)∀k 6= i produces a greater, fu(i) <
y(i), or lower, fl(i) > y(i), value.
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3.1. Non-Linear Set Membership Data Set Generation

In our specific problem, as described in Section 2, we have three motors that drive
three tendons to actuate over the soft link and provide the desired pitch-roll motion. As
described in Algorithm 1, to provide an estimation using Set Membership, we need to
construct the FSS for a defined regressor that contains enough information so that all the
identified system behaviors are contained in the FSS.

For this purpose, we define our regressor empirically since there are no standard
methodologies to do so. Therefore, for simplicity, we run several system identifications
using a neural networks MATLAB toolbox providing non-linear data-driven models for
different regressor sizes. Once the NN is trained, we assume that the best neural network
model uses the most informative regressor and corresponds to the original regressor
selection. Later, to improve the computational time, the regressor is reduced by running
different estimations modifying the number of elements in the regressor. In this way, less
operations are required for each of the estimated data [35]. The chosen regressor is:

ω(k) = [y(k− 1), u1(k− 2), u1(k− 3),

u2(k− 2), u2(k− 3),

u3(k− 2), u3(k− 3), (21)

M1(k− 3),

M2(k− 3), M3(k− 3)]

where ui(k) is the desired motor position for motor i at sample k, Mi(K) is the measured
motor position at discrete time k, and y is the measured output at sample k when an
estimator and control model is generated. Therefore, if noise or disturbances are detected
in the measured output, the model aligns its dynamics using this information with the
true model dynamics. On the other hand, if the required model is generated for prediction
and simulation, the signal in (22) will be replaced by the previous model estimations at
time k− j y(k− j). In this case, errors and disturbances detected at the output will not be
perceived by the model unless a closed-loop control action modifies the input components
of the regressor. In this case, if the model diverges from the real dynamics, they will not
align with each other. The model architectures are given in Figure 3.
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Figure 3. Model architectures. (a) An estimation and control model. (b) A prediction and
simulation model.

With the regressor being defined as in (22), we generate our FSS by applying a sum of
sinusoidals to each of the three motors such that the signals are not correlated and they
give us a wide spectrum of the neck behavior. We capture the real motor positions, desired
motor positions and, as output, the neck pitch and roll angles. Then, two separate models
are generated.
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The signal used for each motor MP(i) to create the FSS is described in Equation (22).
The values used for the specific motor are listed in Table 2.

MP(i) = (0.6sin(2sin(ω1t + φ1) + cos(ω1t + φ2))) ∗ . . .

∗ abs

[
3 + sin(ω2t) + sin(ω3t + φ3) + sin(ω1t− φ4) + . . .

· · ·+ sin(ω4t) + sin(ω5t + φ5) + sin(ω6t + φ6)
sin(ω7t + φ7)

2

] (22)

As it can be seen, the different signals are non-linear and have different frequencies and
phases. This provides a pseudo-random interaction and covers a wide range of operational
modes of the neck. The frequency spectrum that was chosen is coherent with the system
bandwidth, which is 4 (rad/s), generating soft, continuous, and human-like motion in
the axes of interest. By modifying the phase and mixing the minimum 0.25 (rad/s) and
maximum rad/s frequencies, we aim to explore in a single experiment a wide range of
motions providing sufficient information for the FSS. However, it is necessary to point out
that some system dynamics did not occur during the proposed study scenario, such as
the three tendons pulling at the same time with the same force, which keeps a static neck
position with different stiffness, as well as continuous single tendon activation, to name
some. Even if the proposed FSS does not cover the full system dynamics, the chosen signal
should cover the normal operational range for the soft neck.

Table 2. Values used for the identification data set creation.

Variable PositionM1 PositionM2 PositionM3

ω1 rad/s 1 1 1
φ1 rad 0 2.09 4.18

ω2 rad/s 0.25 0.25 0.25
φ2 rad 0 2.09 4.18

ω3 rad/s 1.5 1.5 1.5
φ3 rad 0.32 0.32 0.32

ω4 rad/s 2.56 2.56 2.56
φ4 rad 0.095 0.095 0.95

ω5 rad/s 1.75 1.75 1.75
φ5 rad 0.09 0.09 0.09

ω6 rad/s 1.66 1.66 1.66
φ6 rad 0.29 0.29 0.29

ω7 rad/s 4 4 4
φ7 rad 0.67 0.67 0.67

The identification and validation data sets are given in Figure 4, where 10,000 samples
were taken, 7000 for the FSS (Identification Data Set) and 3000 for the validation set.

As seen in the Figure, the rotational position of the tendon is maximum 6 rad. Having
a pulley diameter of 15 mm, each tendon has linear displacement of the tendon 7.5 mm/rad,
and therefore, a maximum linear displacement of ≈45 mm. This generates inclinations of
±20 deg for the pitch and [−20, 40] deg for the roll. This provides a wide dynamic range of
motion. In addition, the motion frequency was set to replicate a human-like motion which
is the region of interest.
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Figure 4. Input and output signals.

4. Recursive Least-Squares Linear Identification

Despite the nonlinear nature of the plant, a simple recursive least-squares (RLS)
identification was performed. On the one hand, it will show a qualitative estimation of the
system’s nonlinearity degree, and on the other hand, a linear model could be used to solve
the nonlinearity issues by means of robust or adaptive control strategies.

The RLS identification algorithm can be described using an ARX structure:

ŷ(t) = −a1y(t− 1)− ..− anay(t− na) + b1u(t− 1) + .. + bnbu(t− nb), (23)

with y(t) and u(t) being the plant output and input variables, with a matrix representation
as follows:

ŷ(t) = θφ′(t− 1) (24)

θ = [a1, .., ana, b1, .., bnb] (25)

φ(t− 1) = [−y(t− 1), ..,−y(t− na), u(t− 1), .., u(t− nb)] (26)

Increasing one time-index (ŷ(t + 1) = θφ′(t)), Equations (24)–(26) provide the output
prediction, based on the model parameters (θ), and the set of past inputs and outputs
(φ(t− 1)). Comparing the next actual system output with this predicted value results in
the prediction error:

ε(t) = y(t)− ŷ(t)⇒ ε(t + 1) = y(t + 1)− ŷ(t + 1) (27)

In order to minimize this error, different algorithms can be used. In the least-squares
case, the squared sum of all errors is the variable to be minimized. Since the parameters
that minimize the error produced by the least-squares solution can also be obtained from
the preceding parameters (recursively), the algorithm can be expressed using recursion, as
shown below:

θ̂(t + 1) = θ̂(t) + F(t + 1)φ(t)ε(t + 1) (28)

F(t + 1) = F(t)− F(t)φ′(t)φ(t)F(t)
1 + φ(t)F(t)φ′(t)

(29)

ε(t + 1) = y(t + 1)− θ̂(t)φ′(t) (30)
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These equations define the operations needed to find θ̂(t + 1) based on the previous
parameters and captured inputs and outputs. An improved method is described in [33] as
RLS with a constant forgetting factor (CFF-RLS). It will not be necessary at this point, as
the soft neck system identification will be done offline, but it can be used in the future, if
an adaptive scheme is proposed as a solution to the nonlinearity issues. See [33] or [36] for
a more detailed discussion about RLS and other identification methods.

Using the described inputs and outputs definition of Section 2, the same data captured
in the identification experiments were used in order to obtain a plant model. As the data
capture is based on the motor positions, we can find the equivalent input values using
Equations (9) and (10), and consider these inputs. The outputs will be the same as in the
other cases, the neck pitch and roll angles.

For example, Figure 5 shows part of the inputs and outputs considered for the pitch
and roll RLS identification.
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Figure 5. Examples of decoupled identification datasets. Redefined input targets compared to
measured angles for pitch (left), and roll (right).

A small delay can be observed in the data set example shown in that Figure. This
delay must be considered during the system identification process. The resulting transfer
functions corresponding to the pitch dynamics, Gθ(s), and roll dynamics, Gφ(s), obtained
using the RLS algorithm through the entire data set, are:

Gθ(s) = e−0.08s 27.691
(s + 5.293)

Gφ(s) = e−0.08s 25.424
(s + 4.938)

. (31)

The model unit input time responses are shown in Figure 6 for the described system
model. Note how both systems’ (Gθ(s), Gφ(s)) static gains are close to 5, showing a
stationary response above the unit input level, as expected from Figure 5.

Figure 6. Unit input time response for Gθ(s) (left) and Gφ(s) (right).
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Once the linear models of the soft neck decoupled system are determined, a new input
response simulation was performed using those models, together with a new data set for
validation and accuracy check. A partial plot of these results is shown in Figure 7 for the
pitch and roll angles.
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Figure 7. Validation example of the identified models for Gθ(s) (left) and Gφ(s) (right).

Note how although the linear model captures the system behavior quite well, there
are mismatches due to plant non-linearity. In order to deal with these problems, a robust
controller could be used in the future, since it will provide a constant behavior despite
plant parameter changes or non-linearities.

5. Experimental Setup

The main objective of this work was to extract a 3D model for the soft neck platform.
The selected identifications were done in an offline configuration, with an open-loop data
capture scheme. In this sense, a set of experiments has been designed for data capture.

As stated before, as we expected a correlation between the motor position and the
inclination of the top platform, the motors’ states are therefore considered as inputs, while
the measured sensor angles are used as system outputs. The captured data involve the
following inputs and outputs:

• Motor input position (rad)
• Motor current position (rad)
• Motor current velocity ( rad

s )
• Platform roll or model output (º)
• Platform pitch or model output (º)

Neck actuator motion was programmed to follow a composition of sinusoidal func-
tions, as described in Section 3.1. The captured motion describes human-like movement.
Input and output sets can be seen in Figure 4.

All models used the same data for modeling the system, enabling direct comparisons
of the models. Additional tests were also captured for validation purposes.

6. Model Results

This section presents the different model behaviors for the validation data. Figure 8
represents 30% of the data set described in Equation (22). All the results will be compared
to those obtained by a NLARX NN with two hidden layers and 25 neurons each. To train
the neural network, the 70% of the FSS data set described in Equation (22) was used.

As a form of comparison, the fitting value for the Normalized Root Mean Squared
Error (NRMSE) will be taken into consideration. This tool finds the difference between
the measured data and the model response as the sum of the squared individual errors
throughout the entire signal. Using this method, the large errors will have a bigger
quantitative penalization than small errors.
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Finally, to validate the results, three independent different tests will be conducted that
compare the methodologies used for static movement, dynamic movement, and normal
operation mode.

6.1. Set Membership

The set membership model was able to follow the system output with high accuracy
(see Table 3). However, in some peaks, especially for the pitch output, it failed to reach the
maximum value (an error of around 2 degrees) (see Figures 9 and 10). SM scores a high
fit for both pitch, 93.9794%, and roll, 96.8854%. The values reached by the model show
possible over-fitting to the training data. This means that the identification data set almost
explicitly contains the validation set.

6.2. Neural Network

The neural network used is an NLARX with two hidden layers of 25 neurons each.
The output for the validation can be found in Figures 9 and 10. Like the SM case, the
resulting fit value obtained exceeds expectations and some concerns of over-fitting arise.
The fitted values for pith and roll are 99.0162% and 99.2027%, respectively (see Table 3).
Similarly to the behavior of the SM case, the training data for the neural network covers
the validation data with high precision. Therefore, additional tests are required to properly
evaluate the model performance.

6.3. Recursive Least-Squares

The RLS model proposed in Section 4 was fed with the validation data in order to be
compared with both previous models. The model output can be seen in Figures 9 and 10.
RLS captured the overall behaviour of the neck within acceptable tolerance. The mismatch
observed is attributed to the plant non-linearity. The fit values are 78.0448% for pitch and
82.7217% for roll. An overall comparison of the results can be found in Table 3.
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Figure 8. Control signal for the validation test.
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Figure 9. Validation of the pitch output.
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Figure 10. Validation of the roll output.

Table 3. Fitness of models on the validation data.

Pitch Roll

SM 93.9794% 96.8854%
NN 99.0162% 99.2027%
RLS 78.0448% 82.7217%

7. Methods Comparison

With the models already trained and properly adjusted, three different tests in the
estimation configuration were conducted to validate proper behaviour of the systems and
compare the outputs for the different models.

7.1. Test 1: Step Inputs

This test consists of three separated step-waves with a duration of 8 seconds, each
independently activating the neck tendons, as shown in Figure 11. The aim of this test was
to validate the models’ capability of responding to a static input. Since the dataset for the
training and NN which corresponds to the FSS lacks individual tendon actuation, some
error in the models is expected. Figures 12 and 13 show the outputs.
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Figure 11. Test 1 input signal.
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Figure 12. Test 1 results for pitch.
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Figure 13. Test 1 results for roll.

Set membership scored 87.6260% in the NRMSE test for pitch and 79.3195% for
roll. NN followed the output better and scored 97.9574% for pitch and 98.5654% for roll.
The SM response did not settle at the appropriated inclination, lagging out before the
maximum inclinations were reached. As can be seen, the model does not reach the negative
inclinations properly. However, in Figure 12, the dynamics for negative and positive
inclinations are followed as desired. It is seen that the existing bias in the time windows
[3, 5] s follows the output dynamics. In the roll axis case, the same bias appears with the
negative inclination angles, while in the positive case, it stabilizes at time 17 s in the final
value. However, it does not properly capture that dynamic, neither. The maximum errors
for the NN appear at 8 and 16 seconds, when the signal is changed from one tendon to the
next; this is probably due to a lack of information in the data set. Meanwhile, RLS scored
79.9230% in pitch and 76.0284% in roll. This can be due to the fact that the initial conditions
do not match the real model ones.

7.2. Test 2: Sine Inputs

The next test feeds a more complex signal composed of a sine wave with increasing
frequency instead of a step signal, as shown in Figure 14. The test is conducted in order to
validate the models for simple dynamic movements. As mentioned before, these cases are
not explicitly captured by the FSS or training data. Figures 15 and 16 show the outputs.

The Set Membership followed the output of the system closer than in the previous test.
It scored 93.0012% for pitch and 93.8389% for roll, much closer to the validation results.
It is important to mention that the SM follows the dynamics and does not have the bias
error observed in Test 1. Therefore, the FSS properly captures the continuous dynamic
behavior, but it requires additional information to capture static behaviors, as required in
Test 1. This is true also for the NN model, which also improved. It scored 98.1058% in pitch
and 98.3087% in roll. The RLS roll output shows the disadvantages of this model. Due
to the decoupling of the signal, while the initial movement causes little movement on the
roll axis, RLS cannot process them and scores a worse fit than in the rest of the test. The fit
scores are 78.4813% in pitch and 48.5090% in roll.
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Figure 14. Test 2 input signal.
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Figure 15. Test 2 results for pitch.
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Figure 16. Test 2 results for roll.

7.3. Test 3: Neck Rotation

The final test combines multiple sine and cosine waves in order to create a rotatory
motion on the neck, Figure 17. This test simulates normal operation for the neck, where a
circular motion is described. Figures 18 and 19 show the outputs.
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Figure 17. Test 3 input signal.
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Figure 18. Test 3 results for pitch.
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Figure 19. Test 3 results for roll.

Table 4. Fitness on validation data.

Test 1 Test 2 Test 3

Pitch Roll Pitch Roll Pitch Roll

SM 87.6260% 79.3195% 93.0012% 93.8389% 90.2614% 96.7512%
NN 97.9574% 98.5654% 98.1058% 98.3087% 98.5191% 99.1767%
RLS 79.9230% 76.0284% 78.4813% 48.5090% 63.1412% 83.2230%

SM scored 90.2614% on pitch and 96.7512% on roll, while NN scored 98.5191% for
pitch and 99.1767% for roll. NN captures the dynamics of the neck both in pitch and roll.
SM also closely resembles the output for roll, but on pitch, lags behind the real value. RLS
also resembles the real output, but with an offset in pitch. The final scores for RLS are
63.1412% in pitch and 83.2230% in roll.

Table 4 shows a summary of all model scores for all previous tests.

7.4. Prediction and Simulation Configuration

In the previous Sections 7.1–7.3, we evaluated the performance for the NN and SM
models using the measured output in the model regressor. This configuration can be
used for control or estimation applications, to control the plant using the future predicted
behaviour. Alternatively, prediction control techniques are desirable. These models are
limited to short prediction horizons. On the contrary, if the model is aimed for simulation
or pure prediction over long horizons, parallel architecture has to be used as the one in
Figure 3. In that case, the model is fed with the previous estimations, and therefore, it
can model the whole system’s behavior. If the output is disturbed during simulation, the
model will not be aligned and will not provide information in this regard.

In order to evaluate the performance of the obtained NN and SM models as predictors,
we used Experiments 2 and 3 from Sections 7.2 and 7.3, respectively.

7.4.1. Neck Rotation

When these experiments are applied using the parallel architecture, we can see in
Figure 20 corresponding to the pitch that both models decrease in performance. However,
the dynamics are still well-captured by both models. In the SM case, the limit values are
not reached properly with an error of≈5 deg for the negative picks and≈3 deg for positive
ones. However, the overall dynamics are captured with a fit that marks 77%. For the
NN model, the fit marks 58%. As can be seen, there are important dynamic errors in the
negative sinusoidal cycle. Regarding the roll, as shown in Figure 21, both models properly
capture the dynamics with fits that mark 86.5% for the SM model and 87.5% for the NN
model. RLS results are unchanged, since no feedback is used in the regressor.
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Figure 20. Prediction configuration results for pitch in Test 3.
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Figure 21. Prediction configuration results for roll in Test 3.

7.4.2. Sine Wave

Unlike the last results, in Section 7.4.1, as expected, they are not as clean as desired,
considering that the FSS lacks these behaviors and therefore, the predictor does not emulate
the given dynamics. As can be seen in Figures 22 and 23, the SM stays closer to the
measured values. However, there are important gain errors and the model dynamics do
not resemble the expected one, even if the results are better than those obtained by the
NN model. The final fit values in these cases were: for pitch, NN = 13.5% and SM = 60%;
for roll, NN = 60% and SM = 37%. These results confirm that in order to model static and
non-coupled behaviours, additional dynamic signals should be considered in the FSS so
that the identification data provide reliable information to increase the performance to the
one shown in the experiment of Section 7.4.1.
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Figure 22. Prediction configuration results for pitch in Test 2.
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Figure 23. Prediction configuration results for roll in Test 2.

8. Conclusions

In this work, an improved mathematical model for a robotic soft neck has been
presented. The whole soft-neck actuation range was modeled, resulting in a multi-input
multi-output (MIMO) system showing a total of three inputs and two outputs. In particular,
a nonlinear data-driven identification model using Set Membership, a linear model using
Recursive least-squares, and a Neural Network model have been developed and discussed
in this paper.

The outstanding results show that the proposed methods are suitable for estimation
and control purposes when measures from the output are available to align the models. As
shown, given the high level of correlation that the identification data set has over the NN
training and the FSS for the set membership, additional identification data are required to
use the methods as predictors over long prediction horizons, although results show that the
proposed models are viable in soft nonlinear dynamics with multiple inputs and outputs.

A shown advantage of the SM identification stands in the possibility of incorpo-
rating additional signal dependency, delays, and unknown dynamics through a richer
identification data set which derives from better and more complex modeling without
explicit knowledge of the system. Even though the computational time might be a future
consideration, there already exist approximation methods to overcome this drawback.

The accuracy difference found between the linear and nonlinear models suggests an
important plant non-linearity, as expected. This issue can lead to problems at the time of
defining a control strategy, although there are several options which will be explored in
upcoming studies.

From the control point of view, the self-aligning characteristic of the given methods
provide further knowledge on forecasting in short horizons, which is interesting for predic-
tive and robust control techniques. Besides, the linear model accuracy is good enough to
propose solutions like adaptive or robust control, which can provide excellent results. The
predictive models’ performance shown allows the use of the system for some applications.
However, it is limited to continuous mode operation, which yet limits its utility. To over-
come this issue, a more informative data set should be constructed that contains additional
system behaviors to the continuous operation mode.
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