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Abstract: The aim of this paper is to extend the classical Banzhaf index of power to voting games in
which players have weights representing different cooperation or bargaining abilities. The obtained
value does not satisfy the classical total power property, which is justified by the imperfect coopera-
tion. Nevertheless, it is monotonous in the weights. We also obtain three different characterizations
of the value. Then we relate it to the Owen multilinear extension.
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1. Introduction

A cooperative n-person game with transferable utility or a TU game is a model for
the situations in which players can obtain benefits (measured by real numbers) when
cooperating. In a TU game, it is assumed that all players are totally cooperative and
that all coalitions are feasible. Formally, a TU game is a pair formed by a set of players
and the characteristic function that assigns to each coalition (subset of players) a real
number, which is the (transferable) utility that the members of that coalition can obtain
by cooperating. Shapley [1] a introduced his well-known allocation rule or point solution
for these situations. Another relevant point solution, introduced as a power index for
voting games (monotonous games in which coalitions are winning or losing and thus
their outcome is 1 or 0, respectively), was suggested by Penrose [2], Banzhaf [3], and
Coleman [4], and later generalized and characterized in the space of all TU games by
Owen [5,6]. Game-theorists have paid a lot of attention to the Banzhaf value since it
was introduced. Different characterizations of the Banzhaf value are given by Roth [7],
Dubey and Shapley [8], Lehrer [9], Feltkamp [10], Dragan [11], Nowak [12], Laruelle and
Valenciano [13], and Casajus [14], to name a few.

The Banzhaf value has also been defined for games with a priori unions obtaining the
so-called Banzhaf-Owen value. It was introduced by Owen [15], and studied by Alonso–
Meijide et al. [16] and Lorenzo–Freire [17]. Algaba et al. [18] extended and characterized
the Banzhaf value to cooperative games on antimatroids, van den Brink [19,20] to games
with a permission structure, Alonso–Meijide and Fiestras–Janeiro [21] to communication
situations, Gallego et al. [22] to games with fuzzy communication structure, Tan et al. [23] to
cooperative games with interval payoffs, and Fragnelli and Pusillo [24] applied the Banzhaf
value to a multicriteria game to a microarray game.

The models in game theory are classically divided into cooperative and non-cooperative.
Shapley [25] related cooperative and non-cooperative games by assuming that a TU game
may have imperfect cooperation, that is, players can have different cooperation levels. He
modeled this situation by associating a positive weight to each player. Then, he introduced
the weighted Shapley value extending his rule to TU games [1]. The weighted Shapley
value was generalized by Kalai and Samet [26].

The first attempt to obtain and characterize a weighted Banzhaf value was done by
Radzik et al. [27] who analyzed cooperative games in which some a priori importance
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measures were assigned to the players. These measures are called weights. Mathematically,
these are modeled as an exogenous vector of positive real numbers. The obtained solution
is strongly inspired by the ideas used to define the weighted Shapley value and admits,
as criticism, the lack of monotonicity in the weights (which is anti-intuitive). Precisely
avoiding this weakness is at the origin of the present work: obtaining a weighted Banzhaf
value that satisfies monotonicity in the weights.

Manuel and Martín [28] analyzed ’cooperative games in which players have different
cooperation levels, different bargaining abilities or they are willing to make a different
effort in cooperation’. In this case, the cooperation abilities are modeled by means of
an n-vector of weights in [0, 1]. The weights are assumed exogenous, and modulate the
level, interest, or skill of the players in the cooperation or the bargaining. For example,
unit weight players are fully cooperative as a typical player in a TU game, while a zero
weight corresponds to players who are not interested at all in cooperating. Values of the
weights between the two extremes rank the desire for cooperation. We assume the obvious
difficulty of estimating these weights in practical situations. In our disclaimer, we will say
that this difficulty is also associated with other weighted values.

Aubin [29] called a vector of weights in [0, 1] a fuzzy coalition, in which components
are regarded as the rate of participation of players in the fuzzy coalition. The parallelism
between fuzzy cooperative games and our approach ends here, since the modification of
the original characteristic function that we will introduce and the characteristic function of
a fuzzy game are not related at all. A (zero-normalized) game with players having different
cooperation abilities can also be described by a fuzzy communication structure complete
by links [30,31]. Manuel and Martín [28] defined a weighted Shapley value which, unlike
that obtained in [25], is not efficient (a consequence of the imperfect cooperation) but is
monotonous in the weights, a weakness of the weighted Shapley value pointed out in
Owen [32].

In this paper, we generalize the Banzhaf value to the setting of voting games with
players having different cooperation abilities. These skills are very important in voting
games, since the mere arithmetic of the distribution of sites is generally not sufficient to
guarantee neither the formation nor the stability of coalitions. As an example, in Spain,
after the election in 20 December 2015, among other causes, the lack of cooperation ability
of parties motivated a new election in 26 June 2016, and after the election, in 28 April 2019,
the lack of agreement to form a majority led to a new call for elections in 10 November
2019. The habitual institutional blockade of the Italian society is proverbial, which has
undergone 66 governments since the proclamation of the republic in 1946, of which only
six have lasted for more than two years.

As in [28], we will assume that, in these situations, the original voting game has to
be modified by assuming that coalitions can only retain a fraction of their dividend (the
minimum of their cooperation abilities, as it is not possible to obtain more cooperation
than that one corresponding to the most compromising of the members) as a consequence
of the imperfect cooperation. In our proposal, which is the Banzhaf value of the modified
game, the imperfect cooperation reduces the total power of the grand coalition, but the
obtained value is monotonous in the weights. As mentioned, this property is not satisfied
by the weighted Banzhaf value of Radzik et al. [27]. Nevertheless, the total power holds
for it. Moreover, we obtain several characterizations of the introduced value, some of them
extending the more prominent ones existing in the literature for the (classical) Banzhaf
value. The axioms used in the different characterizations refer to an assumed weight system
and are, to some extent, parallel to the standard axioms used in other characterizations
of the Banzhaf value. A different approach may be possible, in the spirit of Kalai and
Samet [26], to provide axioms that allow to characterize a solution (such as the one proposed
in this article) if, and only if a system of weights exists. We also obtain the relation between
the multilinear extension of Owen [5,33] and the defined value.

The remainder of the paper is organized as follows. After this introduction, there is a
section of preliminaries. Section 3 is devoted to the definition of voting games with players
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having different cooperative abilities, as well as the definition of the modified game. We
also analyze its properties. Then, in Section 4 the new value is introduced. Three different
characterizations of it are included in Section 5. Section 6 is devoted to the relationship
between multilinear extensions and the defined value. The article ends with a short section
of final remarks and an extensive bibliography.

2. Preliminaries

A cooperative game with transferable utility (a TU game) is a pair (N, v) in which
N = {1, . . . , n} is the set of players and v is the characteristic function defined on 2N . For
each S ⊆ N, v(S) ∈ R is the outcome that the s members of S can obtain if they decide to
cooperate. It is supposed that v(∅) = 0.

The family of the unanimity games {(N, uS)}∅ 6=S⊆N with uS given by:

uS(T) =
{

1, if S ⊆ T
0, otherwise,

is a basis of GN , the vector space of all TU games with players set N. Then, for each
(N, v) ∈ GN ,

v = ∑
∅ 6=S⊆N

∆v(S)uS.

The coefficients ∆v(S), for S ⊆ N, are known as Harsanyi dividends [34]. They can be
written in terms of the value of the coalitions in the following way:

∆v(S) = ∑
T⊆S

(−1)s−tv(T), for each ∅ 6= S ⊆ N.

The worth of each coalition can also be calculated from Harsanyi dividends as:

v(S) = ∑
∅ 6=T⊆S

∆v(T), for each ∅ 6= S ⊆ N.

A game (N, v) ∈ GN is (i) superadditive if, for all S, T ⊆ N with S∩ T = ∅, v(S∪ T) ≥
v(S) + v(T); (ii) convex, if for all S, T ⊆ N, v(S ∪ T) + v(S ∩ T) ≥ v(S) + v(T); (iii) zero-
normalized, if v({i}) = 0 for all i ∈ N. (iv) symmetric, if v(S) = v(T) for S, T ⊆ N with
s = t; (v) monotonic, if S ⊆ T ⊆ N implies v(S) ≤ v(T) ≤ v(N) and (vi) simple, if for all
S ⊆ N, v(S) ∈ {0, 1}.

Given (N, v) ∈ GN and S ⊆ N, the restriction of (N, v) to S is the n-person game
(N, v|S) with characteristic function v|S(T) = v(T ∩ S) for all T ⊆ N.

A map ψ : GN → Rn, with ψi(N, v) representing the outcome for player i in game
(N, v), is an allocation rule (point solution) for TU games.

Banzhaf [3] introduced a point solution in the domain of simple games with players
set N, SGN , which was mathematically developed later by Dubey and Shapley [8]. They
defined a swing or swing for player i as a pair of sets of the form (S, S \ {i}) such that
v(S ∪ {i})− v(S) = 1. They noted ηi(v) for the number of swings of player i and η̄(v)
for the total number of swings in the game v ∈ SGN . They named ηi as the ’raw’ Banzhaf
index for player i, and characterized it using the following four axioms:

(i) For all (N, v) ∈ SGN , ∑
i∈N

ψi(N, v) = η̄(v).

(ii) Null player property: for all (N, v) ∈ SGN and i ∈ N such that ηi = 0, ψi(N, v) = 0.
(iii) Anonymity: for any permutation π of N, ψπ(i)(N, πv) = ψi(N, v). For (N, v) ∈ SGN

the characteristic function πv is defined as (πv)(S) = v(π−1(S)), for all S ⊆ N.
(iv) Transfer property: for any (N, v), (N, w) ∈ SGN , ψ(N, v∨w)+ψ(N, v∧w) = ψ(N, v)+

ψ(N, w). For (N, v), (N, w) ∈ SGN, the characteristic functions v ∨ w and v ∧ w are
defined as: (v ∨ w)(S) = max{v(S), w(S)} and (v ∧ w)(S) = min{v(S), w(S)}, for all
S ⊆ N.
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The normalization of the previous index to obtain the proportion of power has been a
common practice. The most frequent normalizations are ηi(v)

η̄(v) and ηi(v)
2n−1 , for i = 1, . . . , n.

Owen [5] extended the (normalized, dividing by 2n−1) Banzhaf index to GN . Thus, for
(N, v) ∈ GN ,

Bi(N, v) = ∑
S⊆N\{i}

1
2n−1 [v(S ∪ {i})− v(S)].

He used the multilinear extension of a game [33] to calculate it [5], applied this value
to the presidential election game [6], and characterized it [5,6].

The Banzhaf value can also be expressed in terms of the dividends, as:

Bi(N, v) = ∑
i∈S⊆N

∆v(S)
2s−1 , i ∈ N.

3. Voting Games with Players Having Different Cooperation Abilities
3.1. Voting Games

The idea of decision-making by voting is formalized in the following definition.

Definition 1. The game (N, v) ∈ GN is a voting game if

(i) v(S) ∈ {0, 1} for all S ⊆ N.
(ii) v(N) = 1.
(iii) If S, T ∈ 2N with S ⊆ T, then v(S) ≤ v(T).

S is a winner coalition in the voting game (N, v) if v(S) = 1, and it is a losing coalition
otherwise. Then, a voting game the grand coalition is necessarily a winning one, and
supercoalitions of a winning coalition are also winning coalitions.

A voting game is superadditive (or proper) if, for every S, T ⊆ N, with S ∩ T = ∅,
then v(S ∪ T) ≥ v(S) + v(T) holds. As a consequence, in a superadditive voting game
two winning coalitions cannot be disjoint; that is, if S, T ∈ 2N , with v(S) = v(T) = 1, then
S ∩ T 6= ∅.

A player i ∈ N is a dictator in the proper voting game (N, v), if v({i}) = 1. We can
have only one dictator in a proper voting game. In the following, we will only consider
proper voting games with no dictator. Nevertheless, by misuse of the language, sometimes
we will use voting game for a proper voting game with no dictator. GN

p will denote the family
of these voting games.

A voting game (N, v) ∈ GN
p is convex if, for all S, T ∈ 2N , v(S ∪ T) + v(S ∩ T) ≥

v(S) + v(T) holds. In a convex voting game, the winning coalitions cannot be disjoint (as
in proper voting games) and moreover, their intersection has to also be a winning coalition.

S is a minimal winning coalition in (N, v) ∈ GN
p if v(S) = 1, and for all T ( S,

v(T) = 0.

Proposition 1. Ref. [35] If (N, v) is a voting game andMWC(N, v) = {S1, S2, . . . , Sr} is the

family of its minimal winning coalitions, we have v = uS1 ∨ · · · ∨ uSr =
r∨

i=1

uSi .

Proposition 2. A convex voting game is necessarily a unanimity game.

Proof. It is clear that in a voting game there is at least one minimal winning coalition.
Suppose (N, v) is a convex voting game and S1, S2, S1 6= S2 are both minimal winning
coalitions in it. Then, as (N, v) is convex, and S1 ∩ S2 must be a winning coalition. Nev-
ertheless, S1 ∩ S2 ( S1 and S1 ∩ S2 ( S2, which contradicts that S1 and S2 are minimal.
Then, the game (N, v) can have only one minimal winning coalition S, and thus, using the
previous proposition, v = uS.
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In the following proposition, we obtain an alternative expression for a proper voting
game, which allows us to know (in the next corollary) its dividends.

Proposition 3. If (N, v) ∈ GN
p andMWC(N, v) = {S1, S2, . . . , Sr}, then:

v = 1−
r

∏
i=1

(1− uSi ).

We denote by (N, 1) the game in which v(S) = 1 for all S ⊆ N, S 6= ∅. That is, the
voting game in which all non-empty coalitions are winning. Of course, (N, 1) is not a
proper voting game, and thus the previous formula must be understood as an expression
of (N, v) in GN .

Proof. Suppose ∅ 6= S ⊆ N is a winning coalition in (N, v), that is, v(S) = 1. Then,
there is l ∈ {1, 2, . . . , r} such that Sl ⊆ S, and thus uSl (S) = 1. As a consequence,[
1−

r

∏
i=1

(1− uSi )
]
(S) = 1(S) = 1.

On the other hand, if S is a losing coalition, uSi (S) = 0 for i = 1, . . . , r, as S does not
contain any minimal winning coalition (in such a case, S is also a winning coalition). Then,

0 = v(S) =
[
1−

r

∏
i=1

(1− uSi )
]
(S), and thus the result is proved.

Corollary 1. If (N, v) ∈ GN
p is a voting game andMWC(N, v) = {S1, S2 . . . Sr}, then

v =
r

∑
i=1

uSi −
r−1

∑
i=1

r

∑
j=i+1

uSi∪Sj +
r−2

∑
i=1

r−1

∑
j=i+1

r

∑
k=j+1

uSi∪Sj∪Sk + · · ·+ (−1)r−1uS1∪S2∪···∪Sr .

Proof. It is a direct consequence of the previous proposition that for i, j ∈ {1, . . . , r},
uSi · uSj = uSi∪Sj .

Remark 1. If a proper voting game (N, v) has a dictator (Player 1, for example), then v = u{1}.
The simplicity of these situations motivated us to ignore them.

3.2. The Modified Game

As mentioned previously, Shapley [25] extended the classical definition of a TU game
to include the possibility that players can have different cooperation or bargaining abilities.
He also defined a solution, known as the weighted Shapley value, for these situations.
With the aim of introducing a weighted Banzhaf value, Radzik et al. [27] also assumed
that the players had some measures of importance or weights. In both contributions, an
exogenous weight in R+ is assigned to each player. Manuel and Martín [28] assigned a
vector of parameters λ = (λ1, . . . , λn) ∈ [0, 1]n to the players in a TU game (N, v). These
parameters measure the level of cooperation of the players as in [25], and they can also be
seen as a fuzzy coalition [29]. Then, they modified the original game to a new one (N, vλ)
with a characteristic function:

vλ(S) = ∑
T⊆S,t≥2

∆v(T)min
i∈T
{λi}+ ∑

i∈S
∆v({i}),

for all S ⊆ N, S 6= ∅. They propose the Shapley value [1] of this modified game as a
monotonous weighted Shapley value.

Next, we restrict the definition of [28] to voting games.

Definition 2. A voting game with players having different cooperation abilities is a triple (N, v, λ),
in which (N, v) ∈ GN

p and λ = (λ1, . . . , λn) is a fixed vector in [0, 1]n. λi represents the
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cooperation ability of i ∈ N. GN
p,Λ represents the set of all proper voting games with players having

different bargaining abilities.

Remark 2. We will identify GN
p with the family of (N, v, λ) ∈ GN

p,Λ in which λ = (1, . . . , 1).

Remark 3. As for (N, v, λ) ∈ GN
p,Λ, the underlying game is zero-normalized, and (N, v, λ) can

be described by a fuzzy communication structure complete by links [30,31].

Regarding [28], we can associate to each voting game with players having different
bargaining abilities the modified game in which players in a unanimity game can only
retain a fraction of the total unit payoff. In the definition of [28], it is supposed that each
singleton coalition can retain its dividend as each player is fully cooperative with himself.
In our framework, as dictators are out of the question, we do not need to consider dividends
of singletons. In any case, if a dictator is taken into account, of course his dividend must
be unchanged.

The underlying idea is that the maximum level of cooperation in a unanimity game
must coincide with the corresponding to the less cooperative player. Then we have the
following definition:

Definition 3. Given (N, v, λ) ∈ GN
p,Λ, the modified game (N, vλ) ∈ GN has a characteristic

function given by

vλ =
r

∑
i=1

min
k∈Si
{λk}uSi −

r−1

∑
i=1

r

∑
j=i+1

min
k∈Si∪Sj

{λk}uSi∪Sj

+ · · ·+ (−1)r−1 min
k∈S1∪S2∪···∪Sr

{λk}uS1∪S2∪···∪Sr

, whereMWC(N, v) = {S1, S2, . . . , Sr}.

Remark 4. It is clear that the modified game will not be, in general, a voting game as vλ(N) can
be smaller than one.

Let us consider the Example 3.1 in [28].

Example 1. In a given parliament, the distribution of seats is 16%, 35%, 9%, and 40%, respectively,
for parties 1, 2, 3, 4 which are aligned in a left–right spectrum. To pass a bill, more than 50% of votes
are needed. Then, the minimal winning coalitions of this voting game (N, v) are {1, 2}, {1, 4} and
{2, 4}. Therefore,

v = u{1,2} + u{1,4} + u{2,4} − u{1,2,4} − u{1,2,4} − u{1,2,4} + u{1,2,4}

= u{1,2} + u{1,4} + u{2,4} − 2u{1,2,4}.

If λ = (0.2, 1, 0.8, 0.1), the characteristic function of (N, vλ) is given by

vλ = 0.2u{1,2} + 0.1u{1,4} + 0.1u{2,4} − 0.2u{1,2,4}.

In the following proposition, we obtain an alternative expression for vλ(S) when
(N, v) is a voting game.

Proposition 4. Consider (N, v, λ) ∈ GN
p,Λ, and S ⊆ N. Then,

vλ(S) = max
j=1,...,l

min
k∈Sij

{λk},
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ifMWC(S, v) = {Si1 , . . . , Sil} 6= ∅ is the family of the minimal winning coalitions of (N, v)
contained in S, and

vλ(S) = 0, ifMWC(S, v) = ∅.

Proof. Suppose that MWC(N, v) = {S1, S2, . . . , Sr}. For S ⊆ N, let us denote λS =
min
k∈S
{λk}. Then,

vλ =
r

∑
i=1

λSi uSi −
r−1

∑
i=1

r

∑
j=i+1

λSi∪Sj uSi∪Sj + · · ·+ (−1)r−1λS1∪...∪Sr uS1∪···∪Sr ,

and thus, it is straightforward that vλ(S) = 0 if Si * S for i = 1, . . . , r.
Consider S ⊆ N, and suppose thatMWC(S, v) = {Si1 , . . . , Sil} ⊆ MWC(N, v) is the

set of the minimal winning coalitions of (N, v) that are contained in S. Without loss of
generality, let us assume that λSi1

≤ λSi2
≤ · · · ≤ λSil

. Then,

vλ(S) =
[ r

∑
i=1

λSi uSi −
r−1

∑
i=1

r

∑
k=i+1

min{λSi , λSk}uSi∪Sk

+ · · ·+ (−1)r−1 min{λS1 , . . . , λSr}uS1∪···∪Sr

]
(S)

=
[ l

∑
j=1

λSij
uSij
−

l−1

∑
j=1

l

∑
k=j+1

min{λSij
, λSik

}uSij
∪Sik

+ · · ·+ (−1)l−1 min{λSi1
, . . . , λSil

}uSi1
∪···∪Sil

]
(S)

=
[ l

∑
j=1

λSij
uSij
−

l−1

∑
j=1

l

∑
k=j+1

λSij
uSij
∪Sik

+ · · ·+ (−1)l−1λSi1
uSi1

∪···∪Sil

]
(S),

with the second equality holding as, for i 6= i1, . . . , il , Si * S, and the last one because
λSi1
≤ λSi2

≤ · · · ≤ λSil
.

Then,

vλ(S) = λSi1

[
1−

(
l − 1

1

)
+

(
l − 1

2

)
+ · · ·+ (−1)l−1

(
l − 1
l − 1

)]
+λSi2

[
1−

(
l − 2

1

)
+ · · ·+ (−1)l−2

(
l − 2
l − 2

)]
+ · · ·+ λSil−1

[
1−

(
1
1

)]
+ λSil

= λSil
,

where we have needed the binomial identities

1−
(

t
1

)
+

(
t
2

)
+ · · ·+ (−1)t

(
t
t

)
= (1− 1)t = 0, for t ∈ N, t ≥ 1.

Thus,
vλ(S) = λSil

= max{λSi1
, λSi2

, . . . , λSil
} = max

j=1,...,l
min
k∈Sij

{λk},

which proves the result.

Example 2. Consider again the voting game in which N = {1, 2, 3, 4},

v = u{1,2} + u{1,4} + u{2,4} − 2u{1,2,4},

and the bargaining abilities are given by λ = (0.2, 1, 0.8, 0.1).
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Then, for S = {1, 3}, vλ(S) = 0, as none of the minimal winning coalitions {1, 2}, {1, 4},
{2, 4} is contained in S.

For S = {1, 2, 4},MWC(S, v) =
{
{1, 2}, {1, 4}, {2, 4}

}
, and thus,

vλ(S) = [0.2u{1,2} + 0.1u{1,4} + 0.1u{2,4} − 0.2u{1,2,4}](S) = 0.2.

On the other hand, from Proposition 4,

vλ(S) = max{λ{1,2}, λ{1,4}, λ{2,4}} = max{min{λ1, λ2}, min{λ1, λ4}, min{λ2, λ4}}

= max{0.2, 0.2, 0.1} = 0.2.

In the following proposition we prove that the modified voting game can be written
as a positive lineal combination of voting games. In particular, the obtained expression can
be seen as the Choquet extension of the original voting game [36–39].

Proposition 5. Given (N, v, λ) ∈ GN
p,Λ, supposeMWC(N, v) = {S1, . . . , Sr} is the family of

the minimal winning coalitions of (N, v). If λSi = min
j∈Si
{λj} for j = 1, 2, . . . , r, with λS1 ≤ λS2 ≤

· · · ≤ λSr , and we define λS0 = 0, then,

vλ =
r−1

∑
h=0

(λSh+1 − λSh) · v|Sh+1∪···∪Sr
. (1)

Proof. From the previous proposition, we have that, for S ⊆ N,

vλ(S) = max
j=1,...,l

min
k∈Sij

{λk},

with ∅ 6= {Si1 , . . . , Sil} ⊆ MWC(N, v) the set of minimal winning coalitions of (N, v) are
subsets of S, and vλ(S) = 0 if each element ofMWC(N, v) is not contained in S.

For h = 0, 1, 2, . . . , r, v|Sh+1∪···∪Sr
is a linear combination of unanimity games of

Sh+1, . . . , Sr and of their unions. Then, both members in (1) clearly give zero when applied
to S with vλ(S) = 0.

On the other hand, for S ⊆ N such that

vλ(S) = max
j=1,...,l

min
k∈Sij

{λk} = λSil
,

using again the expression of v|Sh+1∪···∪Sr
for h = 0, 1, . . . , r− 1, in terms of the unanimity

games, and the fact that Sil+1, . . . , Sr are the elements inMWC(N, v) not contained in S,
we have

vλ(S) =
r−1

∑
h=0

(λSh+1 − λSh) · v|Sh+1∪···∪Sr
(S) =

il−1

∑
h=0

(λSh+1 − λSh) = λSil
,

which completes the proof.

Example 3. Consider again the voting game in which N = {1, 2, 3, 4},

v = u{1,2} + u{1,4} + u{2,4} − 2u{1,2,4}

and the players have cooperation abilities given by λ = (0.2, 1, 0.8, 0.1). In the Example 2, we
obtained that

vλ = 0.2u{1,2} + 0.1u{1,4} + 0.1u{2,4} − 0.2u{1,2,4}.
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We have thatMWC(N, v) = {S1 = {1, 4}, S2 = {2, 4}, S3 = {1, 2}} and λS1 = 0.1, λS2 = 0.1
and λS3 = 0.2 and thus, using the previous proposition,

λS1 v|S1∪S2∪S3
+ (λS2 − λS1)v|S2∪S3

+ (λS3 − λS2)v|S3

= 0.1v|S1∪S2∪S3
+ 0.1v|S3

= 0.1(u{1,2} + u{1,4} + u{2,4} − 2u{1,2,4}) + 0.1u{1,2} (2)

= 0.2u{1,2} + 0.1u{1,4} + 0.1u{2,4} − 0.2u{1,2,4} = vλ.

Remark 5. Essentially, this expression (1) coincides with the Choquet one for games with players
having different bargaining abilities that is obtained in [28]. In that paper, for each (N, v, λ) the
authors define yh, for h = 0, 1, . . . , r, where r ≤ n is the number of different values among the
weights of players in (N, v, λ), in the following way: y0 = 0, and for h = 1, 2, . . . , r, yh =
min
i∈N
{λi|λi > yh−1}. Then, they prove that

vλ =
r−1

∑
h=0

(yh+1 − yh)v|Nh+1
,

with Nh+1 = {i ∈ N|λi ≥ yh+1}, for h = 0, . . . , r− 1. Applying this expression in the previous
example, we have that y1 = 0.1, y2 = 0.2, y3 = 0.8, y4 = 1, N1 = N, N2 = N \ {4},
N3 = N \ {1, 4} and N4 = N \ {1, 3, 4}. Then,

vλ = y1v + (y2 − y1)v|N\{4} + (y3 − y2)v|N\{1,4}
+ (y4 − y3)v|N\{1,3,4}

= 0.1v + (0.2− 0.1)v|N\{4} + (0.8− 0.2)v|N\{1,4}
+ (1− 0.8)v|N\{1,3,4}

.

As v|N\{1,4}
= 0 and v|N\{1,3,4}

= 0, we obtain the expression in (2).

3.3. Properties of the Modified Game

In the following proposition, we summarize some properties of the modified game.
First of all, from Remark 3 in [28], we have that if λ = 1, that is, if all players fully cooperate,
the modified game vλ coincides with the original game v; if all players have an equal level
of cooperation, the modified game is strategically equivalent to the original one, and
finally, if λ = 0, then vλ = 0, that is, if players do not cooperate at all, the modified game
becomes inessential.

Proposition 6. Given (N, v, λ) ∈ GN
p,Λ we have:

(i) If λ is such that λi > 0 for some i ∈ N, and λj = 0 for j 6= i, then vλ is the null game. Thus,
cooperation cannot emerge if only one player wants to cooperate.

(ii) If λi = 0 for some i ∈ N, then vλ = (v|N\{i})
λ = (vλ)|N\{i} . In particular, if λi = 0 for some

i ∈ N and λj = 1 for j 6= i, then vλ = v|N\{i} . Thus, the lack of cooperation of a player is
equivalent to the player leaving the game.

(iii) If λi = 0 for some i ∈ N, then vλ = (v|Si1
∪...∪Sit

)λ = (vλ)|Si1
∪···∪Sit

, where Si1 , . . . , Sit are

the minimal winning coalitions of (N, v) such that i /∈ Sil , l = 1, ..., t. Thus, if a player
is not willing to cooperate, all the minimal winning coalitions to which he belongs become
loser coalitions.

(iv) If λ, λ′ satisfy λ′i > λi and λ′j = λj for j 6= i then,

vλ′
(S ∪ {i})− vλ′

(S) ≥ vλ(S ∪ {i})− vλ(S),

for S ⊆ N \ {i}. Hence, when increasing the cooperation level of a player, his marginal
contributions do not decrease.
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Proof. (i) From Proposition 4, given S ⊆ N, ifMWC(S, v) = {Si1 , . . . , Sil} 6= ∅ is the
family of the minimal winning coalitions of (N, v) contained in S (recall that each
minimal winning coalition has at least two players as the game has no dictator),
we have

vλ(S) = max
j=1,...,l

min
k∈Sij

{λk} = 0

and
vλ(S) = 0, ifMWC(S, v) = ∅.

(ii) SupposeMWC(N, v) = {S1, . . . , Sr} is the family of the minimal winning coalitions of
(N, v). If λi = 0 for some i ∈ N, then min

k∈T
{λk} = 0 for all T ⊆ N such that i ∈ T. Thus,

if Si1 , . . . , Sit are the minimal winning coalitions of (N, v) such that i /∈ Sil , l = 1, . . . , t,

vλ =
t

∑
j=1

min
k∈Sij

{λk}uSij
−

t−1

∑
j=1

t

∑
l=j+1

min
k∈Sij

∪Sil

{λk}uSij
∪Sil

+ · · ·+ (−1)t−1 min
k∈Si1

∪Si2∪···∪Sit

{λk}uSi1
∪Si2∪···∪Sit

= (v|N\{i})
λ = (vλ)|N\{i} .

In particular, if λj = 1 for j 6= i, then vλ
|N\{i}

= v|N\{i} .

(iii) It is straightforward fromii).
(iv) Consider i ∈ N and S ⊆ N \ {i}. IfMWC(S, v) = {Si1 , . . . , Sil}, then

vλ′
(S) = max

j=1,...,l
min
k∈Sij

{λ′k} = max
j=1,...,l

min
k∈Sij

{λk} = vλ(S),

where the second equality holds as for j = 1, . . . , l, i /∈ Sij , given that Sij ⊆ S. Then, for
each player in Sij , j = 1, . . . , l, his weight is the same in λ′ and λ.
Suppose that {Si1 , . . . , Sil , Sil+1

, . . . , Sih} is the family of minimal winning coalitions of
(N, v) included in S ∪ {i}. Then,

vλ(S ∪ {i}) = max
j=1,...,h

min
k∈Sij

{λk} ≤ max
j=1,...,h

min
k∈Sij

{λ′k} = vλ′(S ∪ {i}),

the inequality holding as λ′i ≥ λi and as i can eventually be the player with the smaller
weight in a minimal winning coalition. This completes the proof.

The following lemma precedes a proposition in which we prove that the modified
game of a maximum of voting games is the maximum of its modified games.

Lemma 1. Let (N, uS1 , λ), (N, uS2 , λ),. . . , (N, uSr , λ) ∈ GN
p,Λ. Then,

(uS1 ∨ uS2 ∨ · · · ∨ uSr )
λ = uλ

S1
∨ uλ

S2
∨ · · · ∨ uλ

Sr
.

Proof. Suppose λSi = min
k∈Si
{λk} for i = 1, . . . , r, and, without loss of generality, let us

assume that λS1 ≤ λS2 ≤ · · · ≤ λSr . Then,

(uS1 ∨ uS2 ∨ · · · ∨ uSr )
λ =

[ r

∑
i=1

uSi −
r−1

∑
i=1

r

∑
j=i+1

uSi∪Sj +
r−2

∑
i=1

r−1

∑
j=i+1

r

∑
l=j+1

uSi∪Sj∪Sl

+... + (−1)r−1uS1∪S2∪...∪Sr

]λ
=

r

∑
i=1

λSi uSi −
r−1

∑
i=1

r

∑
j=i+1

min
k∈Si∪Sj

{λk}uSi∪Sj
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+
r−2

∑
i=1

r−1

∑
j=i+1

r

∑
l=j+1

min
k∈Si∪Sj∪Sl

{λk}uSi∪Sj∪Sl

+ · · ·+ (−1)r−1 min
k∈Si∪Sj∪···∪Sr

{λk}uSi∪Sj∪···∪Sr =
r

∑
i=1

λSi uSi −
r−1

∑
i=1

r

∑
j=1

λSi uSi∪Sj

+
r−2

∑
i=1

r−1

∑
j=i+1

r

∑
l=j+1

λSi uSi∪Sj∪Sl + · · ·+ (−1)r−1λSi uSi∪Sj∪···∪Sr , (3)

the second equality holding by the definition of the modified game, and the third
equality holding as λS1 ≤ λS2 ≤ ... ≤ λSr . On the other hand,

uλ
S1
∨ uλ

S2
∨ · · · ∨ uλ

Sr
= λS1 uS1 ∨ λS2 uS2 ∨ · · · ∨ λSr uSr . (4)

Let us prove that both expression (3) and (4) coincide. For S ⊆ N with S1 6⊆ S,
S2 6⊆ S,. . . , Sr 6⊆ S, using (3), (uS1 ∨ uS2 ∨ · · · ∨ uSr )

λ(S) = 0 and using (4), uλ
S1
∨ uλ

S2
∨ · · · ∨

uλ
Sr

= max{λS1 uS1(S), . . . , λSr uSr (S)} = 0. Thus, both expressions (3) and (4) coincide for
these coalitions.

Then, suppose that S ⊆ N is such that {Si1 , . . . , Sit} is the subset of those elements in
{S1, . . . , Sr} such that Sij ⊆ S, j = 1, . . . , t. Let us assume again, without loss of generality,
that λSi1

≤ · · · ≤ λSit
. Then, using (3),

(uS1 ∨ uS2 ∨ · · · ∨ uSr )
λ(S) =

t

∑
j=1

λSij
uSij

(S)−
t−1

∑
j=1

t

∑
l=j+1

λSij
uSij
∪Sil

(S)

+ · · ·+ (−1)t−1λSi1
uSi1

∪···∪Sit
(S) =

t

∑
j=1

λSij
−

t−1

∑
j=1

t

∑
l=j+1

λSij
+ · · ·+ (−1)t−1λSi1

= λSi1

[
1−

(
t− 1

1

)
+

(
t− 1

2

)
+ · · ·+ (−1)t−1

(
t− 1
t− 1

)]
+λSt2

[
1−

(
t− 2

1

)
+ · · ·+ (−1)t−2

(
t− 2
t− 2

)]
+... + λSit

= λSit
,

and using (4)

(λS1 us1 ∨ λS2 us2 ∨ · · · ∨ λSr usr )(S) = max{λS1 uS1(S), . . . , λSt uSt(S)}

= max{λSi1
, . . . , λSit

} = λSit
,

which completes the proof.

Proposition 7. Given (N, v, λ), (N, w, λ) ∈ GN
p,Λ we have that

(v ∨ w)λ = vλ ∨ wλ.

Proof. SupposeMWC(N, v) = {S1, . . . , Sr} andMWC(N, w) = {T1, . . . , Tm}. Then v =
uS1 ∨ · · · ∨ uSr and w = uT1 ∨ · · · ∨ uTm . Consequently,

(v ∨ w)λ =
[
(uS1 ∨ · · · ∨ uSr ) ∨ (uT1 ∨ · · · ∨ uTm)

]λ

= (uS1 ∨ · · · ∨ uSr ∨ uT1 · · · ∨ uTm)
λ

= uλ
S1
∨ · · · ∨ uλ

Sr
∨ uλ

T1
∨ · · · ∨ uλ

Tm
= (uλ

S1
∨ · · · ∨ uλ

Sr
) ∨ (uλ

T1
∨ · · · ∨ uλ

Tm
)
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= (uS1 ∨ · · · ∨ uSr )
λ ∨ (uT1 ∨ · · · ∨ uTm)

λ = vλ ∨ wλ,

the second and the fourth equality hold because ∨ is clearly associative, and the third
equality holds because of Lemma 1.

In the following proposition, which needs two previous lemmas, we prove that the
modified game of the minimum of the voting games is the minimum of its modified games.

Lemma 2. If (N, uS1 , λ), (N, uS2 , λ),..., (N, uSr , λ) ∈ GN
p,Λ, then,

(uS1 ∧ uS2 ∧ ...∧ uSr )
λ = uλ

S1
∧ uλ

S2
∧ ...∧ uλ

Sr
.

Proof. We have

(uS1 ∧ uS2 ∧ · · · ∧ uSr )
λ = (uS1∪S2∪···∪Sr )

λ = λS1∪···∪Sr uS1∪···∪Sr .

If, as usual, we assume, without loss of generality, that λS1 ≤ · · · ≤ λSr , then λS1∪···∪Sr =
min

k∈S1∪···∪Sr
{λk} = λS1 , and thus

(uS1∪···∪Sr )
λ = λS1 uS1∪···∪Sr . (5)

On the other hand,

uλ
S1
∧ uλ

S2
∧ · · · ∧ uλ

Sr
= λS1 uS1 ∧ λS2 uS2 ∧ λSr uSr . (6)

Let us prove that both expressions (5) and (6) coincide.
It is trivial that for S ⊆ N, such that there exists k ∈ {1, ..., r} with Sk 6⊆ S

λS1 uS1∪···∪Sr (S) = 0

and

(λS1 uS1 ∧ λS2 uS2 ∧ · · · ∧ λSr uSr )(S) = min{λS1 uS1(S), . . . , λSr uSr (S)} = 0.

Suppose then, S ⊆ N is such that S1 ⊆ S, . . . , Sr ⊆ S. Then

(uS1 ∧ uS2 ∧ · · · ∧ uSr )
λ = λS1 uS1∪···∪Sr (S) = λS1

and
(λS1 uS1 ∧ λS2 uS2 ∧ λSr uSr )(S) = min{λS1 , . . . , λSr} = λS1 ,

which completes the proof.

Lemma 3. Given (N, v), (N, w) ∈ GN
p , withMWC(N, v) = {S1, . . . , Sr} andMWC(N, w) =

{T1, . . . , Tm}, it holds that

v ∧ w = (uS1 ∧ uT1) ∨ (uS1 ∧ uT2) ∨ · · · ∨ (uSr ∧ uTm) = ∨r
i=1 ∨m

j=1 (uSi ∧ uTj).

Proof. Under the hypothesis v = uS1 ∨ uS2 ∨ · · · ∨ uSr and w = uT1 ∨ uT2 ∨ · · · ∨ uTm , and
thus v ∧ w = (uS1 ∨ uS2 ∨ · · · ∨ uSr ) ∧ (uT1 ∨ uT2 ∨ · · · ∨ uTm). If S ⊆ N,

(v ∧ w)(S) = [(uS1 ∨ uS2 ∨ · · · ∨ uSr ) ∧ (uT1 ∨ uT2 ∨ · · · ∨ uTm)](S)

= min{(uS1 ∨ uS2 ∨ · · · ∨ uSr )(S), (uT1 ∨ uT2 ∨ · · · ∨ uTm)(S)}

= min
{

max{uS1(S), uS2(S), . . . , uSr (S)}, max{uT1(S), uT2(S), . . . , uTm(S)}
}

=

{
1 if there is i ∈ {1, . . . , r} and j ∈ {1, . . . , m} such that Si ⊆ S and Tj ⊆ S
0 otherwise.
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Then v ∧ w = 1−
r

∏
i=1

m

∏
j=1

(1− uSi∪Tj).

On the other hand, for i ∈ {1, . . . , r}, j ∈ {1, . . . , m}}, uSi ∧ uTj = uSi∪Tj , and thus, if
S ⊆ N, [

(uS1 ∧ uT1) ∨ (uS1 ∧ uT2) ∨ · · · ∨ (uSr ∧ uTm)
]
(S)

=
(
uS1∪T1 ∨ uS1∪T2 ∨ · · · ∨ uSr∪Tm

)
(S)

=

{
1 if there is i ∈ {1, . . . , r} and j ∈ {1, . . . , m} such that Si ∪ Tj ⊆ S
0 otherwise,

which is equal to

= 1−
r

∏
i=1

m

∏
j=1

(1− uSi∪Tj),

and then the proof is completed.

Proposition 8. Given (N, v, λ), (N, w, λ) ∈ GN
p,Λ we have that

(v ∧ w)λ = vλ ∧ wλ.

Proof. SupposeMWC(N, v) = {S1, . . . , Sr} andMWC(N, w) = {T1, . . . , Tm}. Then v =
uS1 ∨ · · · ∨ uSr and w = uT1 ∨ · · · ∨ uTm . Consequently,

(v ∧ w)λ =
[
(uS1 ∨ · · · ∨ uSr ) ∧ (uT1 ∨ · · · ∨ uTm)

]λ

=
[
∨r

i=1 ∨m
j=1(uSi ∧ uTj)

]λ
=
[
∨r

i=1 ∨m
j=1uSi∪Tj

]λ

= ∨r
i=1 ∨m

j=1 uλ
Si∪Tj

= ∨r
i=1 ∨m

j=1 (uSi ∧ uTj)
λ

= ∨r
i=1 ∨m

j=1 (u
λ
Si
∧ uλ

Tj
) = (uλ

S1
∨ · · · ∨ uλ

Sr
) ∧ (uλ

T1
∨ · · · ∨ uλ

Tm
)

= (uS1 ∨ · · · ∨ uSr )
λ ∧ (uT1 ∨ · · · ∨ uTm)

λ = vλ ∧ wλ,

the second and the seventh equality hold because of Lemma 3, the fourth and the
eighth equality using Lemma 1, and the sixth equality because of Lemma 2.

4. The Banzhaf Value for Voting Games with Players Having Different
Cooperation Abilities

First, we define allocation rules in this setting.

Definition 4. An allocation rule on GN
p,Λ is a function ψ : GN

p,Λ → Rn that assigns to each
(N, v, λ) ∈ GN

p,Λ, ψ(N, v, λ) ∈ Rn, satisfying ψ(N, v, 0) = 0. For i = 1, .., n, ψi(N, v, λ)

represents the outcome or payoff for Player i in (N, v, λ).

Manuel and Martín [28] introduced (and characterized) the allocation rule for games
with players having different bargaining abilities that assigns to every (N, v, λ) the Shapley
value of the modified game (N, vλ). In the following, we will define and study the
allocation rule on GN

p,Λ that assigns to each (N, v, λ) the Banzhaf value of (N, vλ).

Definition 5. The allocation rule β on GN
p,Λ is defined for all (N, v, λ) ∈ GN

p,Λ as β(N, v, λ) =

B(N, vλ).

Remark 6. The restriction of β to the family {(N, v, 1)}(N,v)∈GN
p

( GN
p,Λ coincides with the

Banzhaf value on GN
p . Moreover, for all (N, v, λ) with λi = λ for all i ∈ N, β(N, v, λ) =

λ.B(N, v).
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For voting games with players having different bargaining abilities, the defined value
can be calculated as the linear combination of Banzhaf values of appropriate (classical)
voting games. The proof of this result is straightforward from Proposition 5, and then it
is omitted.

Proposition 9. Given (N, v, λ) ∈ GN
p,Λ, supposeMWC(N, v) = {S1, . . . , Sr} is the family of

the minimal winning coalitions of (N, v). If λSi = min
j∈Si
{λj} for j = 1, 2, . . . , r, with λS1 ≤ λS2 ≤

· · · ≤ λSr , and λS0 = 0, then,

β(N, v, λ) =
r−1

∑
h=0

(λSh+1 − λSh) · B(N, v|Sh+1∪···∪Sr
).

In the next proposition we prove that for convex voting games with players having
different bargaining abilities, its Banzhaf value is upper-bounded by the Banzhaf value
in the original voting game. Hence, by reducing the cooperation ability, the power is
also reduced.

Proposition 10. Let (N, v, λ) ∈ GN
p,Λ, with (N, v) a convex game. Then

βi(N, v, λ) ≤ Bi(N, v), for all i ∈ N

.

Proof. If (N, v) is null, the result is straightforward. Otherwise, v = uS for some S ⊆ N.

Then, βi(N, v, λ) =
min
k∈S
{λk}

2s−1 for i ∈ S and zero in another case. As Bi(N, v) = 1
2s−1 for

i ∈ S and zero otherwise, the result is proved.

Nevertheless, in superadditive voting games with players having different cooperation
abilities, a particular player can increase his Banzhaf value with respect to the one obtained
in the original game, as it is shown in the next example.

Example 4. Consider (N, v, λ) with N = {1, 2, 3}, v = u{1,2} + u{1,3} − u{1,2,3}, λ =

(1, 0.9, 1). Then, B(N, v) = ( 3
4 , 1

4 , 1
4 ), and β(N, v, λ) = ( 29

40 , 9
40 , 11

40 ).

The following proposition, whose proof is straightforward from (iv) of Proposition 6,
states that the defined Banzhaf value for games with players having different bargaining
abilities is monotonous in the weights.

Proposition 11. Let (N, v, λ), (N, v, λ′) ∈ GN
p,Λ with (N, v) a superadditive game. If λ′i ≥ λi,

and λ′j = λj for j 6= i, then
βi(N, v, λ′) ≥ βi(N, v, λ).

As mentioned, Radzik et al. [27] introduced a weighted Banzhaf value, βR,w, that (un-
like our proposal) respects the total power but is not monotonous in the weights. According
to this linear value βR,w, in a game (N, uS) with players’ weights w = (w1, ..., wn) ∈ (R+)n,
each player i ∈ N receives

βR,w(N, uS) =


wi

∑
i∈S

wi
· 1

2s−1 , if i ∈ S

0, if i /∈ S.
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Example 5. Consider the voting game (N, v) ∈ GN
p with N = {1, 2, 3} and

v(S) =
{

1, if S = {1, 2}, S = {1, 3} or S = {1, 2, 3}
0, otherwise.

In terms of the unanimity basis, v can be written as:

v = u{1,2} + u{1,3} − u{1,2,3}.

Suppose that the vector of weights is w = (0.01, 0.3, 0.4). Then,

βR,w(N, v) = (0.0248, 0.378, 0.346).

The counterintuitive behavior of βR,w can be seen in this case, since Player 2 who is symmetri-
cal with 3 in the game, and has less weight, gets a higher payoff.

On the other hand, if Player 2’s weight decreases from 0.3 to 0.2, keeping the rest of the weights
equal, the value in this case is βR,w(N, v) = (0.0319, 0.394, 0.323). It is observed that Player 2,
with a smaller weight than before, has greater power.

5. Characterizations of the Defined Value

First we introduce some properties that allow us to characterize the defined value.

Definition 6. An allocation rule ψ : GN
p,Λ → Rn satisfies the λ-total power if

∑
i∈N

ψi(N, v, λ) = ∑
i∈N

∑
S⊆N\{i}

1
2n−1 [v

λ(S ∪ {i})− vλ(S)].

In the following, we will denote

∑
i∈N

∑
S⊆N\{i}

1
2n−1 [v

λ(S ∪ {i})− vλ(S)] = TP(N, v, λ).

Proposition 12. The allocation rule on GN
p,Λ, β, satisfies the λ-total power.

Proof. By the definition of β, we have

∑
i∈N

βi(N, vλ) = Bi(N, vλ) = ∑
i∈N

∑
S⊆N\{i}

1
2n−1 [v

λ(S ∪ {i})− vλ(S)]

= TP(N, v, λ).

In the following proposition, we obtain an alternative expression for TP(N, v, λ) when
(N, v, λ) ∈ GN

p,Λ.

Proposition 13. Let (N, v, λ) ∈ GN
p,Λ. SupposeMWC(N, v) = {S1, . . . , Sr}, λSi = min

k∈Si
{λk}

and λS1 ≤ λS2 ≤ · · · ≤ λSr . Then we have

TP(N, v, λ) =
r

∑
j=1

λSj |Sj|

2|Sj |−1
−

r−1

∑
j=1

r

∑
k=j+1

λSj |Sj ∪ Sk|

2|Sj∪Sk |−1

+
r−2

∑
j=1

r−1

∑
k=j+1

r

∑
l=k+1

λSj |Sj ∪ Sk ∪ Sl |

2|Sj∪Sk∪Sl |−1
+ · · ·+ (−1)r−1 λS1 |S1 ∪ S2 ∪ · · · ∪ Sr|

2|S1∪S2∪···∪Sr |−1
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Proof. As for (N, v, λ) ∈ GN
p,Λ,

vλ =
r

∑
i=1

λSi uSi −
r−1

∑
i=1

r

∑
j=i+1

λSi uSi∪Sj +
r−2

∑
i=1

r−1

∑
j=i+1

r

∑
k=j+1

λSi uSi∪Sj∪Sk

+ · · ·+ (−1)r−1λS1 uS1∪···∪Sr ,

we have
TP(N, v, λ) = ∑

i∈N
βi(N, v, λ) = ∑

i∈N
Bi(N, vλ)

=
r

∑
j=1

∑
i∈Sj

λSj

2|Sj |−1
−

r−1

∑
j=1

r

∑
k=j+1

∑
i∈Sj∪Sk

λSj

2|Sj∪Sk |−1

+
r−2

∑
j=1

r−1

∑
k=j+1

r

∑
l=k+1

∑
i∈Sj∪Sk∪Sl

λSj

2|Sj∪Sk∪Sl |−1

+ · · ·+ (−1)r−1 ∑
i∈S1∪S2∪···∪Sr

λS1

2|S1∪S2∪···∪Sr |−1

=
r

∑
j=1

λSj |Sj|

2|Sj |−1
−

r−1

∑
j=1

r

∑
k=j+1

λSj |Sj ∪ Sk|

2|Sj∪Sk |−1
+

r−2

∑
j=1

r−1

∑
k=j+1

r

∑
l=k+1

λSj |Sj ∪ Sk ∪ Sl |

2|Sj∪Sk∪Sl |−1

+ · · ·+ (−1)r−1 λS1 |S1 ∪ S2 ∪ · · · ∪ Sr|
2|S1∪S2∪···∪Sr |−1

,

which completes the proof.

Van den Brink and Gilles [40] defined necessary player in a TU game (N, v) as a player
i ∈ N such that v(S) = 0 if i 6∈ S.

Definition 7. An allocation rule ψ : GN
p,Λ → Rn satisfies equal treatment of necessary players if

ψi(N, v, λ) = ψj(N, v, λ) for i, j necessary players in (N, v).

Definition 8. An allocation rule ψ defined on GN
p,Λ satisfies the null player property if, given

(N, v, λ) ∈ GN
p,Λ and i a null player in (N, v), then ψi(N, v, λ) = 0.

Definition 9. Ref. [8] An allocation rule ψ defined on GN
p,Λ satisfies the transfer property if, for

(N, v, λ), (N, w, λ) ∈ GN
p,Λ,

ψ(N, v ∨ w, λ) + ψ(N, v ∧ w, λ) = ψ(N, v, λ) + ψ(N, w, λ).

Definition 10. Ref. [28] An allocation rule ψ defined on GN
p,Λ satisfies the balanced contributions

property if, for all (N, v, λ) ∈ GN
p,Λ and all i, j ∈ N,

ψi(N, v, λ)− ψi(N, v, λ−j) = ψj(N, v, λ)− ψj(N, v, λ−i),

λ−k being the vector {λ−k
l }l∈N ∈ [0, 1]n with λ−k

l =

{
λl , if l 6= k
0, if l = k.

Definition 11. Ref. [41] An allocation rule ψ defined on GN
p,Λ satisfies strong monotonicity if,

given (N, v, λ), (N, w, λ) ∈ GN
p,Λ and i ∈ N such that v(S ∪ {i})− v(S) ≥ w(S ∪ {i})−w(S)

for all S ⊆ N \ {i}, then ψi(N, v, λ) ≥ ψi(N, w, λ). Strong monotonicity implies marginality
[42], the property obtained when in the previous definition both inequalities are replaced by equalities.
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In the following proposition we prove that the defined rule, β, satisfies the properties
defined above.

Proposition 14. The allocation rule β : GN
p,Λ → Rn satisfies the transfer and the null player

properties, equal treatment of necessary players, balanced contributions, strong monotonicity
and marginality.

Proof. (i) To prove that β satisfies the transfer property, consider (N, v, λ), (N, w, λ) ∈
GN

p,Λ. Then, we have

β(N, v ∨ w, λ) = B(N, (v ∨ w)λ) = B(N, vλ ∨ wλ) = B(N, vλ) + B(N, wλ)

−B(N, vλ ∧ wλ) = β(N, v, λ) + β(N, w, λ)− β(N, v ∧ w, λ),

the first and the last equality hold because of the definition of β, the second equality by
the Proposition 7, and the third equality as the Banzhaf value defined on GN satisfies
the transfer property.

(ii) Suppose that (N, v, λ) ∈ GN
p,Λ and i ∈ N is a null player in (N, v). Then, he is also a

null player in (N, vλ). As the Banzhaf value on GN satisfies the null player property,
the result is proved.

(iii) Suppose that (N, v, λ) ∈ GN
p,Λ and i, j ∈ N are necessary players in (N, v). Then, they

are also necessary players in (N, vλ). As the Banzhaf value on GN satisfies equal
treatment of necessary players (see [20]), the result is proved.

(iv) To prove that β satisfies balanced contributions, let (N, v, λ) ∈ GN
p,Λ. Suppose

MWC(N, v) = {S1, ..., Sr}. For i, j ∈ N, we define

δij(T) =
{

1, if i, j ∈ T
0, otherwise.

Then,
βi(N, v, λ)− βi(N, v, λ−j) = Bi(N, vλ)− Bi(N, vλ−j

)

= Bi
( r

∑
k=1

min
t∈Sk
{λt}uSk −

r−1

∑
k=1

r

∑
l=k+1

min
t∈Sk∪Sl

{λt}uSk∪Sl

+... + (−1)r−1 min
t∈S1∪...∪Sr

{λt}uS1∪...∪Sr

)
−Bi

( r

∑
k=1

min
t∈Sk
{λ−j

t }uSk −
r−1

∑
k=1

r

∑
l=k+1

min
t∈Sk∪Sl

{λ−j
t }uSk∪Sl

+... + (−1)r−1 min
t∈S1∪...∪Sr

{λ−j
t }uS1∪...∪Sr

)
=

r

∑
k=1

min
t∈Sk
{λt}

δij(Sk)

2|Sk |−1
−

r−1

∑
k=1

r

∑
l=k+1

min
t∈Sk∪Sl

{λt}
δij(Sk ∪ Sl)

2|Sk∪Sl |−1

+... + (−1)r−1 min
t∈S1∪...∪Sr

{λt}
δij(S1 ∪ ...∪ Sr)

2|S1∪...∪Sr |−1
,

an expression which is symmetric in i and j and thus, βi(N, v, λ)− βi(N, v, λ−j) =
β j(N, v, λ)− β j(N, v, λ−i).

(v) In [28] (p. 18) it is proved that if the marginal contributions of Player i in (N, v) are
greater or equal than in (N, w), then they are also greater or equal in (N, vλ) than in
(N, wλ). Thus, the marginality of the Banzhaf value is inherited by β.
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Remark 7. We can observe that β satisfies a generalized version of the balanced contributions
property: given (N, v, λ) ∈ GN

p,Λ withMWC(N, v) = {S1, ..., Sr}, and i, j ∈ N

βi(N, v, λ)− βi(N, v, λ−j,c) = β j(N, v, λ)− β j(N, v, λ−i,c),

with λ−k,c = {λ−k,c
l }l∈N =

{
λl , if l 6= k

c < λk, if l = k
k = i, j.

This is so as βi(N, v, λ)− βi(N, v, λ−j,c) =
r

∑
k=1

δij(Sk)

2|Sk |−1

[
min
t∈Sk
{λt}−min{min

t∈Sk
{λt}}, c}

]
−

r−1

∑
k=1

r

∑
l=k+1

δij(Sk ∪ Sl)

2|Sk∪Sl |−1

[
min

t∈Sk∪Sl
{λt} −min{ min

t∈Sk∪Sl
{λt}, c}

]
+...+(−1)r−1 δij(S1∪...∪Sr)

2|S1∪...∪Sr |−1

[
min

t∈S1∪...∪Sr
{λt}−min{ min

t∈S1∪...∪Sr
{λt}, c}

]
, an expression which

is symmetric in i, and j.

Then we provide three characterizations of β. The first one is parallel to the one of
Dubey and Shapley [8].

Proposition 15. β is the unique allocation rule on GN
p,Λ satisfying λ−total power, the null player

property, equal treatment of necessary players, and the transfer property.

Proof. It is already proved that β defined on GN
p,Λ satisfies these four properties. Recip-

rocally, let ψ : GN
p,Λ → Rn be an allocation rule satisfying λ-total power, the null player

property, equal treatment of necessary players and the transfer property. We will prove that
ψ(N, v, λ) = β(N, v, λ) for all (N, v, λ) ∈ GN

p,Λ by induction on r, the number of minimal
winning coalitions of (N, v). If r = 1, andMWC(N, v) = {S1}, v = uS1 and thus all i ∈ S1
is a necessary player in (N, v) and all i /∈ S1 is a null player. Then, for all i /∈ S1, using
the null player property, ψi(N, uS1 , λ) = 0 and also βi(N, uS1 , λ) = 0. Using the equal
treatment of necessary players, ψi(N, v, λ) = ψj(N, v, λ) for all i, j ∈ S1. By the λ-total

power property ∑
i∈S1

ψi(N, uS1 , λ) =
λS1 |S1|
2|S1|−1

and thus, for i ∈ S1, ψi(N, uS1 , λ) =
λS1

2|S1 |−1

which coincides with βi(N, uS1 , λ).
By the induction hypothesis, let us suppose that ψ coincides with β for (N, v, λ)

if the number of minimal winning coalitions of (N, v) is k ≤ r, and consider (N, v, λ)
withMWC(N, v) = {S1, . . . , Sr+1}. Then v = uS1 ∨ uS2 ∨ · · · ∨ uSr+1 . As ψ satisfies the
transfer property,

ψ(N, v, λ) = ψ(N, uS1 ∨ uS2 ∨ · · · ∨ uSr+1 , λ) = ψ(N, (uS1 ∨ uS2 ∨ · · · ∨ uSr ) ∨ uSr+1 , λ)

= ψ(N, (uS1 ∨ uS2 ∨ · · · ∨ uSr ), λ) + ψ(N, uSr+1 , λ)

−ψ(N, (uS1 ∨ uS2 ∨ · · · ∨ uSr ) ∧ uSr+1 , λ).

Since ∧ is distributive with respect to ∨ (see Lemma 3), we have

(uS1 ∨ uS2 ∨ · · · ∨ uSr ) ∧ uSr+1 = (us1 ∧ uSr+1) ∨ (us2 ∧ uSr+1) ∨ · · · ∨ (usr ∧ uSr+1)

= uS1∪Sr+1 ∨ uS2∪Sr+1 ∨ · · · ∨ uSr∪Sr+1 ,

the last equality holds, as for all (N, uS), (N, uT) ∈ GN , uS ∧ uT = uS∪T . Then,

ψ(N, v, λ) = ψ(N, (uS1 ∨ uS2 ∨ · · · ∨ uSr ), λ)

+ψ(N, uSr+1 , λ)− ψ(N, uS1∪Sr+1 ∨ uS2∪Sr+1 ∨ · · · ∨ uSr∪Sr+1 , λ),
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which, using the induction hypothesis, coincides with

β(N, (uS1 ∨ uS2 ∨ · · · ∨ uSr ), λ)

+β(N, uSr+1 , λ)− β(N, uS1∪Sr+1 ∨ uS2∪Sr+1 ∨ · · · ∨ uSr∪Sr+1 , λ).

Using again the distributive property of ∧ with respect to ∨ and that β satisfies the
transfer property, this last expression is equal to

β(N, uS1 ∨ uS2 ∨ · · · ∨ uSr+1 , λ) = β(N, v, λ),

which completes the proof.

Proposition 16. β is the unique allocation rule on GN
p,Λ satisfying the λ-total power and

balanced contributions.

Proof. It has been previously proved that β satisfies λ-total power and balanced contribu-
tions. Reciprocally, suppose ψ is an allocation rule on GN

p,Λ satisfying these two properties.

We will prove that ψ(N, v, λ) = β(N, v, λ) for all (N, v, λ) ∈ GN
p,Λ by induction on δ(λ),

the cardinality of d(λ) = {λi, i ∈ N | λi > 0}.
If δ(λ) = 0, then λ = 0, and by the definition of the allocation rule, ψi(N, v, 0) = 0 =

βi(N, v, 0) for all i ∈ N.
Suppose δ(λ) = 1, and let i ∈ N be such that λi > 0. Then, as ψ satisfies balanced

contributions, for each j 6= i, j ∈ N,

ψi(N, v, λ)− ψi(N, v, λ−j) = ψj(N, v, λ)− ψj(N, v, λ−i).

As λ−j = λ, ψi(N, v, λ) − ψi(N, v, λ−j) = 0, and then ψj(N, v, λ) = ψj(N, v, λ−i) =
ψj(N, v, 0) = 0. Since for (N, v, λ) with only one cooperative player the λ-total power
is zero, we have ψi(N, v, λ) = TP(N, v, λ) = 0. Taking into account that β also satisfies
λ-total power and balanced contributions, we have the similarly βi(N, v, λ) = 0 for all
i ∈ N, and thus both rules coincide.

Because of the induction hypothesis, let us assume that ψ(N, v, λ) = β(N, v, λ) for all
(N, v) ∈ GN

p,Λ and all λ such that δ(λ) ≤ r− 1, and consider (N, v, λ) with δ(λ) = r.
We can assume, without loss of generality, that λ1 > 0, λ2 > 0, . . . , λr > 0, and

λr+1 = λr+2 = λn = 0. Then, as ψ satisfies balanced contributions, for i ∈ {1, . . . , r} and
j ∈ {r + 1, . . . , n}, similarly as in the case of δ(λ) = 1, 0 = ψi(N, v, λ)− ψi(N, v, λ−j) =
ψj(N, v, λ)− ψj(N, v, λ−i) (the first equality holding as λ = λ−j and the second as ψ satis-
fies balanced contributions), which implies ψj(N, v, λ) = ψj(N, v, λ−i) = β j(N, v, λ−i), the
last equality holding by the induction hypothesis. As β also satisfies balanced contributions,
0 = βi(N, v, λ) − βi(N, v, λ−j) = β j(N, v, λ) − β j(N, v, λ−i), and finally ψj(N, v, λ) =
β j(N, v, λ) for all j ∈ {r + 1, . . . , n}.

On the other hand, if i, j ∈ {1, . . . , r}, by the balanced contributions property,

ψi(N, v, λ)− ψi(N, v, λ−j) = ψj(N, v, λ)− ψj(N, v, λ−i),

which implies

ψi(N, v, λ)− ψj(N, v, λ) = ψi(N, v, λ−j)− ψj(N, v, λ−i)

= βi(N, v, λ−j)− β j(N, v, λ−i) = βi(N, v, λ)− β j(N, v, λ),

the second equality holding again by the induction hypothesis and the last one holding as
β also satisfies balanced contributions. Then, ψi(N, v, λ) − βi(N, v, λ) = ψj(N, v, λ) −
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β j(N, v, λ) for all i, j ∈ {1, . . . , r}, and thus, ψi(N, v, λ) − βi(N, v, λ) = c for all i ∈
{1, . . . , r}. Using the λ-total power of both rules,

rc =
r

∑
i=1

[ψi(N, v, λ)− βi(N, v, λ)] =
r

∑
i=1

ψi(N, v, λ)−
r

∑
i=1

βi(N, v, λ)

= TP(N, v, λ)−
n

∑
i=r+1

ψi(N, v, λ)− [TP(N, v, λ)−
n

∑
i=r+1

βi(N, v, λ)] = 0,

and thus c = 0, which completes the proof.

The following characterization can be considered parallel to that provided by
Nowak [12].

Proposition 17. β is the unique allocation rule in GN
p,Λ satisfying λ-total power, the equal treat-

ment of necessary players, and marginality. As marginality is a weaker property than strong
monotonicity, and β satisfies strong monotonicity, the result also holds when replacing marginality
by strong monotonicity.

Proof. It has been previously proved that β satisfies λ-total power, the equal treatment
of necessary players’ property, and marginality. Reciprocally, suppose ψ is an allocation
rule on GN

p,Λ satisfying these three axioms. We will prove that ψ = β by induction on r, the
number of minimal winning coalitions of (N, v).

If r = 1, then, there exists S ⊆ N such that v = uS. All i ∈ S are necessary players
in (N, v), and thus ψi(N, v, λ) = c for all i ∈ S. On the other hand, for i /∈ S, if w = 0,
v(T∪{i})− v(T) = 0 = w(T∪{i})−w(T) for all T ⊆ N \ {i}. Then, using the marginality
property ψi(N, v, λ) = ψi(N, 0, λ) for i /∈ S. By the λ-total power ψi(N, 0, λ) = 0 for all
i ∈ N, and thus, ψi(N, v, λ) = 0 = βi(N, v, λ) for i /∈ S. Then, using again the λ-total
power, for i ∈ S

ψi(N, v, λ) = c =
TP(N, v, λ)

|S| =

|S|min
j∈S
{λj}

2s−1|S| =

min
j∈S
{λj}

2s−1 = βi(N, v, λ),

and thus ψ(N, v, λ) = β(N, v, λ) for all i ∈ N.
Suppose, then, by the induction hypothesis that the result is true for all (N, v, λ)

with r ≤ k− 1 and consider (N, v, λ) with r = k andMWC(N, v) = {S1, . . . , Sk}. Then,

v = uS1 ∨ · · · ∨ uSk = 1−
r

∏
i=1

(1− uSi ). If i ∈ N is such that i 6∈
k⋂

t=1

St, let consider the game

(N, vi) with vi =
∨

St :i∈St

uSt . We have, for all S ⊆ N \ {i},

vi(S ∪ {i})− vi(S) = vi(S ∪ {i}) = v(S ∪ {i})− v(S),

and thus, ψi(N, vi, λ) = ψi(N, v, λ) because of the marginality property.
By induction hypothesis, ψi(N, vi, λ) = βi(N, vi, λ) as the cardinality ofMWC(N, vi)

is ≤ k − 1. Moreover, βi(N, v, λ) = Bi(N, vλ) = Bi(N, vλ
i ) = βi(N, vi, λ); the second

equality holding as Bi(N, vλ)− Bi(N, vλ
i ) = Bi(N, (v− vi)

λ) = 0, because i is a null player
in v− vi, and thus, in (v− vi)

λ, and the Banzhaf value satisfies the null player property.
Then, ψi(N, v, λ) = ψi(N, vi, λ) = βi(N, vi, λ) = βi(N, v, λ).

On the other hand, if i ∈
k⋂

t=1

St, then i is a necessary player in (N, v). All necessary

players have equal rewards, and thus using λ-total power, the payoff for all of them is
uniquely determined.
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6. Multilinear Extension of a TU Game with Players Having Different Bargaining
Abilities and the Defined Value, β

The multilinear extension of a TU game (N, v) ∈ GN was introduced by Owen [33] as
a function f : [0, 1]n → R given by

f (x1, . . . , xn) = ∑
∅ 6=S⊆N

{∏
i∈S

xi ∏
i 6∈S

(1− xi)}v(S).

The multilinear extension can also be calculated in terms of the dividends of the
game as

f (x1, . . . , xn) = ∑
∅ 6=S⊆N

∆v(S)∏
j∈S

xj.

It is a useful tool when calculating the Shapley value and the Banzhaf value. In
particular, Owen [5,33] proved that for i ∈ N

Shi(N, v) =
∫ 1

0
(

∂

∂xi
f )(t, . . . , t)dt,

and
Bi(N, v) =

∂

∂xi
f (

1
2

, . . . ,
1
2
)

.
Manuel and Martín [28] generalized the multilinear extensions to the setting of games

with players having different bargaining abilities. For (N, v, λ) ∈ GN
Λ , the multilinear

extension is given by

fλ(x1, . . . , xn) = ∑
S⊆N,s≥2

[
∆v(S)min

i∈S
{λi}∏

i∈S
xi
]
+

n

∑
i=1

∆v({i})xi

.
Particularizing this expression to a voting game with players having different bar-

gaining abilities or different levels of cooperation (N, v, λ), in which MWC(N, v) =
{Si, . . . , Sr}, λSi = minj∈Si{λj} with λS1 ≤ · · · ≤ λSr , we have

fλ(x1, . . . , xn) =
r

∑
i=1

λSi ∏
l∈Si

xl −
r−1

∑
i=1

r

∑
j=i+1

λSi ∏
l∈Si∪Sj

xl

+
r−2

∑
i=1

r−1

∑
j=i+1

r

∑
k=j+1

λSi ∏
l∈Si∪Sj∪Sk

xl + · · ·+ (−1)r−1λS1 ∏
l∈S1∪···∪Sr

xl .

The following proposition gives an expression to calculate the Banzhaf value in GN
p,Λ,

β, in terms of the multilinear extensions.

Proposition 18. Given (N, v, λ) ∈ GN
p,Λ it holds that

βi(N, v, λ) =
∂

∂xi
fλ(

1
2

, . . . ,
1
2
).

Proof. Given(N, v, λ) ∈ GN
p,Λ, supposeMWC(N, v) = {Si, . . . , Sr}, λSi = mink∈Si

{λk}
for i = 1, . . . , r and, without loss of generality, λS1 ≤ λS2 ≤ ... ≤ λSr . Let us note, for S ⊆ N,

δS(i) =
{

1, if i ∈ S
0, otherwise.

Then, for i = 1, . . . , n

∂

∂xi
fλ(x1, . . . , xn) =

r

∑
j=1

λSj δSj(i) ∏
l∈Sj ,l 6=i

xl −
r−1

∑
j=1

r

∑
k=j+1

λSj δSj∪Sk (i) ∏
l∈Sj∪Sk :l 6=i

xl
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+ · · ·+ (−1)r−1λS1 δS1∪···∪Sr
(i) ∏

l∈S1∪···∪Sr :l 6=i
xl .

Evaluating this partial derivative in ( 1
2 , . . . , 1

2 ) we obtain, for i = 1, . . . , n

∂

∂xi
fλ(

1
2

, . . . ,
1
2
) =

r

∑
j=1

λSj δSj(i)
1

2|Sj |−1
−

r−1

∑
j=1

r

∑
k=j+1

λSj δSj∪Sk (i)
1

2|Sj∪Sk |−1

+ · · ·+ (−1)r−1λS1 δS1∪···∪Sr
(i)

1
2|S1∪···∪Sr |−1

= βi(N, v, λ)

which completes the proof.

7. Conclusions and Final Remarks

In this paper, we have introduced an extension of the classical Banzhaf index of power
for voting games to the setting in which players have different cooperation abilities. To
do this, the original game is modified to a new one in which the imperfect cooperation
reduces the dividend of each coalition, multiplying them by the minimum of members’
weights. The Banzhaf value of this modified game can be used to measure the power of
players in these situations, generalizes the classical Banzhaf index of power, and admits
several characterizations parallel to that existing in the literature and a new one.

The obtained results can be generalized in different ways. For example, by considering
the same ideas, we can extend the introduced value to the space of all TU games, but also to
the setting of TU games with players having different bargaining abilities and cooperation
restricted by a graph [43] or by a priori coalitions. The framework can also be generalized
assuming that the weights of players, instead of being fixed, can depend on the coalitions
they are involved with, or on the other players. As mentioned, instead of assuming a given
weight system, it is possible that a different approach may exist, in the spirit of [26]: to
provide axioms that allow to characterize the proposed solution if, and only if a system of
weights exists. This problem remains open and deserves attention.
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