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Abstract: The knapsack problem is one of the most widely researched NP-complete combinatorial
optimization problems and has numerous practical applications. This paper proposes a quantum-
inspired differential evolution algorithm with grey wolf optimizer (QDGWO) to enhance the di-
versity and convergence performance and improve the performance in high-dimensional cases for
0-1 knapsack problems. The proposed algorithm adopts quantum computing principles such as
quantum superposition states and quantum gates. It also uses adaptive mutation operations of
differential evolution, crossover operations of differential evolution, and quantum observation to
generate new solutions as trial individuals. Selection operations are used to determine the better
solutions between the stored individuals and the trial individuals created by mutation and crossover
operations. In the event that the trial individuals are worse than the current individuals, the adaptive
grey wolf optimizer and quantum rotation gate are used to preserve the diversity of the population as
well as speed up the search for the global optimal solution. The experimental results for 0-1 knapsack
problems confirm the advantages of QDGWO with the effectiveness and global search capability for
knapsack problems, especially for high-dimensional situations.

Keywords: quantum computing; differential evolution; grey wolf optimizer; evolutionary algorithm;
0-1 knapsack problem

1. Introduction

The 0-1 knapsack problem (KP01) is a classical combinatorial optimization problem.
It has many practical applications, such as project selection, investment decisions, and
complexity theory [1,2]. Two classes of approaches were previously proposed to solve the
KP01 [3]. The first class of approaches includes exact methods based on mathematical
programming and operational research. It is possible to obtain the exact solutions of small-
scale KP01 problems by exact methods such as branching and bound algorithm [4] and
dynamic programming [5]. However, KP01 problems in various complex situations are
NP-hard problems, and it is impractical to obtain optimal solutions using deterministic
optimization methods for large-scale problems. The second class contains approximate
methods based on metaheuristic algorithms [6]. Metaheuristic algorithms are shown to be
effective approaches to solving complex engineering problems in a reasonable time when
compared with exact methods [7]. Therefore, the application of metaheuristic algorithms
has drawn a great deal of attention in the field of optimization.

In recent years, most of the metaheuristic algorithms, such as the genetic algorithm
(GA) [8], ant colony optimization (ACO) [9], particle swarm algorithm (PSO) [10], artificial
bee colony (ABC) [11], cuckoo search (CS) [12], firefly algorithm (FA) [13], and improved ap-
proaches based on these algorithms [14–19], were applied to KP01 problems and achieved
outstanding results. However, these metaheuristic algorithms require not only a large
amount of memory for storing the population of solutions, but also a long computational
time for finding the optimal solutions. In the last few years, novel metaheuristic algorithms
were proposed. Wang et al. [20,21] improved the swarm intelligence optimization approach
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inspired by the herding behavior of krill and came up with the krill herd (KH) algorithm to
solve combinatorial optimization problems. Faramarzi et al. [22] presented a metaheuristic
called the Marine Predators Algorithm (MPA) with an application in engineering design
problems. MPA follows the rules that naturally govern in optimal foraging strategy and
encounters a rate policy between predator and prey in marine ecosystems. Inspired by the
phototaxis and Lévy flights of moths, Wang et al. [23] developed a new metaheuristic algo-
rithm called the moth search (MS) algorithm. MS was applied to solve discounted 0-1 knap-
sack problems [24] and set-union knapsack problems [25]. Gao et al. [26] presented a novel
selection mechanism augmenting the generic DE algorithm (NSODE) to achieve better
optimization results for solving fuzzy job-shop scheduling problems. Abualigah et al. [27]
proposed the arithmetic optimization algorithm (AOA) based on the distribution behavior
of the main arithmetic operators in mathematics: multiplication, division, subtraction, and
addition. Wang et al. [28] proposed a new nature-inspired metaheuristic algorithm called
monarch butterfly optimization (MBO) by simulating the migration of monarch butter-
flies. MBO was applied to solve classic KP01 [29], discounted KP01 [30], and large-scale
KP01 [31,32] problems with superior searching accuracy, convergent capability, and stabil-
ity. In most metaheuristic algorithms, it is difficult to use the information from individuals
in previous iterations in the updating process. Wang et al. [33] presented a method for
reusing the information available from previous individuals and feeding previous useful
information back into the updating process in order to guide later searches.

The emergence of quantum computing [34,35] was derived from the principles of
quantum theory such as quantum superposition, quantum entanglement, quantum inter-
ference, and quantum collapse. Quantum computing brings new ideas to optimization
due to its underlying concepts, along with the ability to process huge numbers of quan-
tum states simultaneously in parallel. The merging of metaheuristic optimization and
quantum computing recently became a growing theoretical and practical interest aiming at
deriving benefits from quantum computing capabilities to enhance the convergence and
speed of metaheuristic algorithms. Several scholars investigated the effect of introducing
quantum computing in metaheuristic algorithms to maintain a balance between explo-
ration and exploitation. Han and Kim proposed a genetic quantum algorithm (GQA) [36]
and a quantum inspired evolutionary algorithm (QEA) [37] by merging classical evolu-
tionary algorithms with quantum computing concepts such as the quantum bit and the
quantum rotation gate. Talbi et al. [38] proposed a new algorithm inspired by genetic
algorithms and quantum computing for solving the traveling salesman problem (TSP).
Chang et al. [39] proposed a quantum-inspired electromagnetism-like mechanism (QEM)
to solve the KP01. Xiong et al. [40] presented an analysis of quantum rotation gates in
quantum-inspired evolutionary algorithms. To avoid the problem of premature conver-
gence, mutation operation [41], crossover operation [42], new termination criterion, and
new rotation gate [43] were applied to the QEA and subsequently improved.

The differential evolution (DE) algorithm [44], proposed by Storn and Price, was
derived from differential vectors of solutions for global optimization. Several simple op-
erations including mutation, crossover, and selection were used in the DE algorithm to
explore the search space. Subsequently, several algorithms combining the DE algorithm
with quantum computing were designed to increase global search ability. Hota and Pat [45]
extended the concept of differential operators with adaptive parameter control to the quan-
tum paradigm and proposed the adaptive quantum-inspired differential evolution (AQDE)
algorithm. In addition, quantum interference operation [46] and mutation operation [47]
were brought into a quantum-inspired DE algorithm.

Several metaheuristic algorithms combining the QEA and DE were proven to be
effective and efficient for solving the KP01. Wang et al. [48] proposed a quantum swarm
evolutionary (QSE) algorithm that updated quantum angles automatically with improved
PSO. Layeb [49] presented a quantum inspired harmony search algorithm (QIHSA) based
on a harmony search algorithm (HSA) and quantum computing. Zouache et al. [50]
proposed a merged algorithm called quantum-inspired differential evolution with particle
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swarm optimization (QDEPSO) to solve the KP01. Gao et al. [51] proposed a quantum-
inspired wolf pack algorithm (QWPA) with quantum rotation and quantum collapse to
improve the performance of the wolf pack algorithm for the KP01.

The grey wolf optimizer (GWO) proposed by Mirjalili et al. [52] mimics the specific
behavior of grey wolves based on leadership hierarchy in nature. Srikanth et al. [53]
presented a quantum-inspired binary grey wolf optimizer (QIBGWO) to solve the problem
of unit commitment scheduling.

Population diversity is crucial in evolutionary algorithms to enable global exploration
and to avoid poor performance due to premature convergence [54]. However, it is hard
for classical algorithms to enhance diversity and convergence performance because their
population quickly converges to a specific region of the solution space. In addition, these
algorithms require a large amount of memory as well as long computational time to find the
optimal solution for high-dimensional situations. To avoid these difficulties, we propose a
new algorithm, called quantum-inspired differential evolution algorithm with grey wolf
optimizer (QDGWO). The proposed algorithm combines the features of the QEA, DE, and
GWO to solve the 0-1 knapsack problem. To preserve diversity throughout the evolution,
the new algorithm adopts the concepts of quantum representation and the integration of
the quantum operators such as quantum measurement and quantum rotation. The adaptive
operations of the DE (mutation, crossover, selection) and GWO can increase the adaptation
and diversification in updating individuals. The experimental results demonstrate the
competitive performance of the proposed algorithm.

The rest of the paper is organized as follows: Section 2 defines the 0-1 knapsack
problem. The proposed QDGWO algorithm is presented in Section 3. The experimental
results and discussion are summarized in Section 4. Conclusions and directions for future
work are discussed in Section 5.

2. Related Work
2.1. Knapsack Problem

The 0-1 knapsack problem is a well-known combinatorial optimal problem that has
been studied in areas such as project selection, resource distribution, and the network
interdiction problem. The KP01 was demonstrated to be NP-complete [55,56]. It can be
described as follows:

Given a set W of m items, W = (x1, x2, x3, . . . , xm). wi is the weight item xi, and pi is
the profit of xi. C is the weight capacity of the knapsack. The objective is to find the subset
Xoptimal from set of m items that maximizes the total profit, while keeping the total weight
of the selected items from exceeding C.

The 0-1 knapsack problem can be defined as:

Maximize f (x) =
m
∑

i=1
pixi

s.t.
m
∑

i=1
wixi ≤ C, xi ∈ {0, 1}, ∀i ∈ {1, 2, . . . , m}

(1)

where xi can take either the value 1 (as selected) or the value 0 (as not selected, also
called rejected).

2.2. Grey Wolf Optimizer (GWO)

The GWO algorithm [52] is inspired by the leadership hierarchy and hunting mech-
anism of grey wolves. To model the social order of grey wolves in the GWO, the best
solution is considered the alpha (α) wolf, and the second and third best solutions are beta
(β) and delta (δ) wolves, respectively. The rest of the feasible solutions are considered as
omega (ω) wolves. In the GWO, α, β, and δ wolves lead the hunting, and the ω wolves go
after these leading wolves when searching for the global optimal solution (target) as the
prey, as shown in Figure 1.
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Figure 1. Position updating mechanism of GWO.

Grey wolves have the ability to recognize the location of prey and encircle them during
the hunt. In order to simulate the hunting behavior of grey wolves mathematically, it is
supposed that the α, β, and δ wolves have better knowledge about the potential location of
prey. Therefore, the GWO saves the first three best solutions arrived at so far and forces the
other ω wolves to update their positions according to the position of the best search agents.

During optimization, the GWO algorithm allows its search agents to update their
position based on the location of the alpha, beta, and delta wolves with the distance vector
between itself and the three best wolves when attacking the prey. Finally, the position and
fitness of the alpha wolf are regarded as the global optimal solution in searching for the
optimization when a termination criterion is satisfied.

3. Quantum-Inspired Differential Evolution with Adaptive Grey Wolf Optimizer

The proposed QDGWO algorithm is presented for the knapsack problems. First,
the proposed algorithm adopts the quantum computing principles such as quantum
representation and quantum measurement operation. Quantum representation allows
the representation of the superposition of all potential states in one quantum individual.
Second, adaptive mutation operations (used in the DE), crossover operations (used in the
DE), and quantum observation are combined to generate new solutions as trial individuals
in the solution space. Finally, the selection operator chooses the better solutions between
the stored individuals and the trial individuals generated by the mutation and crossover
operations of the DE. In the event that the trial individuals are worse than the current
individuals, the QDGWO integrates the adaptive GWO and quantum rotation gate to
preserve the diversity of the population of solutions as well as accelerate the search for the
global optimum. The framework of the QDGWO algorithm is shown in Figure 2.
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3.1. Binary Representation

The choice of the representation for individuals, also known as individual coding, is
a crucial issue in evolutionary algorithms. The proposed QDGWO algorithm adopts the
binary coding, which is the most appropriate way to indicate the selection or rejection of
items. Each individual X is represented as a binary vector with length m (m is the item
size): X = (x1, x2, . . . , xm), where m is the number of items.{

xi = 1, if item xi is selected
xi = 0, if item xi is rejected

(2)

The following example shows the binary representation for item selection: x1 and x3
from the item set W are selected: W = {x1, x2, x3, x4}→ X = (1 0 1 0).

The binary population P(t) =
(
Xt

1, Xt
2, . . . , Xt

n
)

is made up of the binary individuals
at the tth generation, where n is the size of population.
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3.2. Quantum Representation

The representation of the AQDE [45] is used in the proposed algorithm, where each
quantum individual q corresponds to a phase vector qθ , which is a string of phase angles θi
(1 ≤ i ≤ m), which can be given by

qθ = [θ1, θ2, . . . , θm], θi ∈ [0, 2π] (3)

where m is the length of the quantum bit (qubit) individual.
Each quantum individual q is a string of qubits:

q =

[
cos(θ1)
sin(θ1)

∣∣∣∣ cos(θ2)
sin(θ2)

∣∣∣∣ · · · ∣∣∣∣ cos(θm)
sin(θm)

]
(4)

The probability amplitudes of a quantum bit are expressed as a pair of numbers
(cos(θi), sin(θi)). |sin(θi)|2 represents the probability of selecting item xi, and |cos(θi)|2

represents the probability of rejecting item xi.
The quantum population Q(t) =

(
qt

1, qt
2, . . . , qt

n
)

is made up of the quantum individu-
als at the tth generation, where n is the size of the population.

3.3. Initialization

The general principle of superposition of quantum mechanics assumes that the original
state must be considered as the result of a superposition of two or more other states in an
infinite number of ways [57]. Therefore, the initial quantum individual is regarded as a
superposition of all possible states. For 0-1 knapsack problems, each state represents a
combination of selecting or rejecting items, and the initial quantum individual is required
to generate every possible combination. For this, each vector qθi is initialized by:

qt=0
θi =

((π

4

)
· ri1, . . . ,

(π

4

)
· rim

)
(5)

where rij = random{1,3,5,7}, which means rij is an odd integer generated randomly in the
set rij ∈ {1, 3, 5, 7} while θij ∈

{
π
4 , 3π

4 , 5π
4 , 7π

4
}

. This means that for initial individuals,
|cos(θij)|2 = |sin(θij)|2 = 1/2, so that the probabilities of selecting item xi and rejecting
item xi are equal.

The initial quantum individual qt=0
i which corresponds to qt=0

θi can be given by:

qt=0
i =

[
cos θ0

i1
sin θ0

i1

∣∣∣∣ cos θ0
i2

sin θ0
i2

∣∣∣∣ . . .
∣∣∣∣ cos θ0

im
sin θ0

im

]
(6)

where m is the length of the qubit quantum individual.
Q(0) =

(
q0

1, q0
2, . . . , q0

n
)

is the initial quantum population, where n is the size of
the population.

3.4. Quantum Observation and Fitness Evaluation

Based on the quantum superposition principle, a quantum state is a superposition
of all possibly stationary states. The quantum superposition state will collapse to a sta-
tionary state by quantum observation. In the proposed QDGWO algorithm, the quantum
superposition states are represented by quantum individuals, and the stationary states
are represented through binary individuals. Before evaluating the fitness of individuals,
quantum observation and reparation for quantum individuals q are required to receive
binary individuals X, as shown in Algorithm 1.

After quantum observation, the fitness of binary individual X is evaluated as:

f
(
Xt

i
)
=

m

∑
i=1

pixt
i (7)
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Algorithm 1 Quantum Observation and Reparation

Input: quantum individuals q
Output: binary individuals X
xi ← 0 //Initialize the bits of individual X to 0.
wtotal ← 0 // Initialize the total weights of the individuals to 0.
while (totalw ≤ C) do

i← rand_i[1, m] //Generate the random integer i ∈ {1, 2, . . . , m}.
if (xi = 0) then r ← rand(0, 1)

if(r > |cos(θi)|2) then
xi ← 1
wtotal ← wtotal + wi //Select item xi and include the weight wi of item xi in the total

weight wtotal.
end if

end if
end while
xi ← 0
wtotal ← wtotal − wi //The total weight wtotal has exceeded the capacity C when the loop is
ended, so item xi needs to be extracted from the selected items for reparation.

3.5. Adaptive Mutation Operation with Dynamic Iteration Factor

The mutation operation is one of the main operations in differential evolution. In the
QDGWO, DE/best/2, proposed by Price and Storn [44], is used to select parent vectors. In
this strategy, the mutation vector qMt

θi is generated by the vector qθα corresponding to the
current best binary individual Xα and the difference between two different target vectors
qθr1 and qθr2 which are randomly selected. This difference is weighted by the differentiation
control factor F.

The quantum mutation vector qMt
θi at the tth generation can be generated by:

qMt
θi = qθα + Ft(qθr1 − qθr2) (8)

where r1 ∈ {1, 2, . . . , m} and r1 6= i; r2 ∈ {1, 2, . . . , m} and r2 6= i; r1 6= r2.
To improve the performance of differential operations in different phases, we propose

an adaptive strategy to determine the differentiation control factor F with the iteration
of evolution:

Ft = F0 + F1 · 2ω · rand(0, 1) (9)

ω = e1− tmax
tmax−t (10)

where F0 is the initial differentiation control factor, and F1 is the adaptive f differentiation
control factor. tmax is the maximum iteration number of the algorithm.

With this adaptive strategy, in the early stage of the iteration, the smaller t will be
proposed with a larger Ft, which is beneficial for attaining good diversity of individuals for
global searching. Ft will be smaller and smaller during the iteration. In the late stages, Ft is
close to F0, which aids in local searching for the global optimal solution.

The quantum mutation individual qMt
i corresponding to the quantum mutant vector

qMt
θi can be obtained by:

qMt
i =

[
cos θMt

i1
sin θMt

i1

∣∣∣∣ cos θMt
i2

sin θMt
i2

∣∣∣∣ . . .
∣∣∣∣ cos θMt

im
sin θMt

im

]
(11)

where m is the length of the qubit quantum individual.
The quantum mutation population QM(t) = (qMt

1 , qMt
2 , . . . , qMt

n ) is made up of the
quantum mutation individuals at the tth generation, where n is the size of the population.
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3.6. Crossover Operation

The crossover operation is another main operation in differential evolution. The trial
vector qCt

θi is generated by crossover between the mutant vector qMt
θi and the target vector

qt
θi with a binomial crossover strategy [44].

The quantum trial vector qCt
θi at the tth generation can be generated by:

qCt
θij =

{
qMt

θij , if
(
randj(0, 1) ≤ CRt) or (j = rnbr_i)

qt
θij, if (randj(0, 1) > CRt) and (j 6= rnbr_i)

(12)

where CR ∈ [0, 1] is the probability of the crossover operation which is randomly generated
at tth iteration. In addition, rnbr_i ∈ {1, m} is an integer to ensure that qCt

θi obtains at least
one vector from qMt

θi .
The quantum trial individual qCt

i corresponding to the quantum trial vector qCt
θi can be

obtained by:

qCt
i =

[
cos θCt

i1
sin θCt

i1

∣∣∣∣ cos θCt
i2

sin θCt
i2

∣∣∣∣ . . .
∣∣∣∣ cos θCt

im
sin θCt

im

]
(13)

where m is the length of the qubit quantum individual.
The quantum trial population QC(t) =

(
qCt

1 , qCt
2 , . . . , qCt

n
)

is made up of the quantum
trial individuals at the tth generation, where n is the size of the population.

3.7. Selection Operation

After the crossover operation, the trial quantum individuals will be transformed
into binary individuals by observation and reparation, as discussed in Section 3.4. The
population of trial quantum individuals QC(t) is transformed into a population of trial
binary individuals PC(t) =

{
XCt

1 , XCt
2 , . . . , XCt

n
}

.
The selection operation generates the individuals of next iteration Xt+1

i between the
current individuals Xt

i and the trial binary individuals XCt
i , as follows:

Xt+1
i =

{
XCt

i , if ( f (XCt
i ) > f (Xt

i ))
Xt

i , if ( f (XCt
i ) ≤ f (Xt

i ))
(14)

The quantum individuals of the next iteration are generated by:

qt+1
θi =

{
qCt

θi , if ( f
(
XCt

i
)
> f

(
Xt

i
)
)

update qt
θi by RGWO, if

(
f
(
XCt

i
)
≤ f

(
Xt

i
)) (15)

where RGWO is a quantum rotation gate (QRG) with an adaptive GWO. RGWO is presented
in Section 3.8.

3.8. Quantum Rotation Gate with Adaptive GWO

The quantum rotation gate U(θi) is used to update the values of the qubits in a
quantum individual as follows [36]:

U(θi) =

[
cos(θi) − sin(θi)
sin(θi) cos(θi)

]
(16)

The quantum individuals of the next iteration after quantum rotation are presented as:[
α′ i
β′ i

]
=

[
cos(θi) − sin(θi)
sin(θi) cos(θi)

][
αi
βi

]
(17)

where θi = s(αiβi)∆θi is the rotation angle of the QRG, and s(αi βi) is the direction signal of
the rotation angle.

The polar plot of the QRG for qubits is illustrated in Figure 3, and the quantum
rotation angle parameters used in [36] are shown in Table 1.



Mathematics 2021, 9, 1233 9 of 21

Mathematics 2021, 9, x FOR PEER REVIEW 9 of 21 
 

 

The quantum individuals of the next iteration after quantum rotation are presented 
as: 

cos( ) sin( )
sin( ) cos( )

i i i i

i i i i

α θ θ α
β θ θ β

′ −     
=     ′     

 (17) 

where ( )i i i isθ α β θ= Δ  is the rotation angle of the QRG, and s(αi βi) is the direction signal 
of the rotation angle. 

The polar plot of the QRG for qubits is illustrated in Figure 3, and the quantum rota-
tion angle parameters used in [36] are shown in Table 1. 

-1

-1

1

10

 
Figure 3. Polar plot of quantum rotation gate for qubit. 

Table 1. Lookup table of rotation angle 

xi bi ( ) ( )f x f b≥  iθΔ  
s(αi βi) 

αi βi > 0 αi βi < 0 αi = 0 βi = 0 
0 0 false 0 0 0 0 0 
0 0 true 0 0 0 0 0 
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1 1 false 0.005π  +1 −1 0 ±1 

1 1 true 0.025π  +1 −1 0 ±1 
where f(.) is the profit; s(αi βi) is the direction sign of rotation angle; and xi and bi are the ith bits of 
the binary solution x and the best solution b, respectively. 
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Table 1. Lookup table of rotation angle.

xi bi f(x)≥f(b) ∆θi
s(αi βi)

αi βi > 0 αi βi < 0 αi = 0 βi = 0

0 0 false 0 0 0 0 0
0 0 true 0 0 0 0 0
0 1 false 0 0 0 0 0
0 1 true 0.05π −1 +1 ±1 0
1 0 false 0.01π −1 +1 ±1 0
1 0 true 0.025π +1 −1 0 ±1
1 1 false 0.005π +1 −1 0 ±1
1 1 true 0.025π +1 −1 0 ±1

Where f (.) is the profit; s(αi βi) is the direction sign of rotation angle; and xi and bi are the ith bits of the binary
solution x and the best solution b, respectively.

Generally speaking, the core concept of the quantum rotation gate is to motivate the
probability amplitudes of each qubit in quantum individuals to converge to the correspond-
ing bits of the current best solution in the population. Realistically, the lookup table is a
convergence strategy. In this strategy, the fitness f(x) of the binary solution x after quantum
observation is compared with the fitness f(b) of the current best solution b. The quantum
rotation gate will update the probability amplitude (αi, βi) toward the direction that favors
the emergence of the better solution between x and b. For example, if xi = 0 and bi = 1, and
f (xi) > f (bi), then xi is the current best solution. This means that the state |0〉 is the optimal
state for the ith qubit of a quantum individual, and that the QRG will update (αi, βi) to
increase the probability of the state |0〉 to make the probability amplitude evolve toward
the direction benefiting the appearance of xi = 0. If (αi, βi) is located in the first quadrant as
shown in Figure 2, the quantum rotation is in a clockwise direction, which favors xi = 0.

Normally, quantum rotation can bring the quantum chromosomes closer to the current
optimal chromosomes and generate the exploitation near the current optimal solution to
find better solutions. As with other metaheuristic algorithms, individuals of the population
converge more closely to the best solution after quantum rotation. The QRG makes the
population evolve continuously and speeds up the convergence of the algorithm.

The magnitude of ∆θi determines the granularity of the search and should be chosen
appropriately. A too-small value of the rotation angle will affect the convergence speed
and may even lead to a stagnant state. However, if the value is too large, the solutions may
diverge or converge prematurely to a local optimal solution [37].

The traditional QRG requires predefined rotation angles, and the value and direction
of θi should be designed for specific application problems. Because the values of quantum
rotation angles are dependent on the problems, the verification of angle selection becomes
important, although tedious, work when traditional QRGs are used for optimization
problems. If the quantum rotation angles can be obtained adaptively without relying on
predefined data, the efficiency of the QRG will be greatly improved, while the types of
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applications with the QRG can be easily increased. This is exactly what metaheuristic
algorithms are good at. Of the large number of metaheuristics, the GWO is a novel swarm
optimization algorithm motivated by the social behavior of grey wolves. Because the GWO
has the advantages of simple principles, fast searching speed, high seeking accuracy, and
easy implementation, it can be easily combined with practical engineering problems [58].
Therefore, the GWO has high theoretical research value and application value, and becomes
suitable for generating quantum rotation angles.

In addition, the traditional QRG motivates the probability amplitudes of each qubit in
quantum individuals to converge to the corresponding bits of the current best solution in
the population. If the current best solution is not the global optimal solution, the direction
of quantum rotation may be far from the global optimal solution, and the algorithm may
be trapped in local optimal stagnation. Since the GWO records multiple best individuals, it
is useful for the QRG to jump out of local optimum with the GWO.

In the proposed QDGWO algorithm, the rotation angle of the QRG is determined
with an adaptive GWO. This is described as follows: In the original GWO algorithm, the
positions of other ω wolves are updated by the distance vector between themselves and
the three best wolves, while for the α, β, and δ wolves, they can hunt the prey more freely.
The hunting zone for α, β, and δ wolves will become smaller during the iteration. In the
adaptive GWO, these features of the GWO will be inherited and developed.

For a quantum rotation gate with an adaptive GWO (RGWO),∆θt
ij is calculated using

the position of α, β, and δ wolves as follows:

∆θt
ij = θ ·

{
γα

i

(
Xt

αj − Xt
ij

)
+ γ

β
i

(
Xt

βj − Xt
ij

)
+ γδ

i

(
Xt

δj − Xt
ij

)}
(18)

where i ∈ {1, 2, 3, . . . , n}; j ∈ {1, 2, 3, . . . , m}; n is the size of the population; m is the number
of items; θ is the rotation angle magnitude; Xt

ij is the jth component in the binary individual

of the ith wolf during tth iteration; and γα
i , γ

β
i and γδ

i are determined by comparing the
fitness of the current binary individual with α, β, and δ wolves as follows:

γα
i =


f (Xt

α)
f (Xt

i )
, if f (Xt

i ) < f (Xt
α)

N(0,1)×tmax
k(tmax+t) , otherwise

(19)

γ
β
i =


f
(

Xt
β

)
f (Xt

i )
, if f

(
Xt

i
)
< f

(
Xt

β

)
N(0,1)×tmax

k(tmax+t) , otherwise
(20)

γδ
i =


f (Xt

δ)
f (Xt

i )
, if f

(
Xt

i
)
< f

(
Xt

δ

)
N(0,1)×tmax

k(tmax+t) , otherwise
(21)

where N(0,1) is the Gaussian distribution, µ = 0, σ = 1.
For the ω wolves, they hunt the prey based on their own positions vs. the posi-

tions of the three best wolves. It is obvious that for the ith wolf in the ω wolves group,
f
(
Xt

i
)

< f
(
Xt

δ

)
≤ f

(
Xt

β

)
≤ f

(
Xt

α

)
. Therefore, the rotation angle of the ith wolf can be

calculated with the binary individuals of α, β, δ, and the ith wolf.
For α, β, and δ wolves, they have the duty of searching for the optimal solution from

their old positions. With increasing t, γα
i , γ

β
i and γδ

i will be much smaller in the late stages
of the iteration than what they are in the early stages of the iteration, which helps the ω
wolves converge toward an estimated position of prey calculated by α, β, and δ wolves.
This strategy is helpful for jumping out of local optimal stagnation, especially in the final
stage of iterations.
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The speed of convergence and quality of the solution are greatly affected by the
magnitude of the rotation angle θ, which is given by:

θ = θmin +
(

1− t
tmax

)
· (θmax − θmin)

0 < θmin < θmax
(22)

where θ is linearly decreasing from θmax to θmin during the iteration.
In the end, qt+1

θi can be generated by:

θt+1
ij = θt

ij + st
ij∆θt

ij (23)

where st
ij is the direction signal of the rotation angle as follows:

st
ij =


1, if θt

ij ∈ (0, π
2 ) ∪ (π, 3π

2 )

−1, if θt
ij ∈ (π

2 , π) ∪ ( 3π
2 , 2π)

±1, otherwise
(24)

With the adaptive strategy of γ and θ, the searching granularity of the QDGWO
changes from coarse to fine. A different searching granularity in the iteration will facilitate
the process for search agents to reach the global optimal solution.

3.9. Procedure of QDGWO Algorithm

Based on the description above, the procedure of the QDGWO and its main steps can
be summarized as shown in Algorithm 2.

Algorithm 2 QDGWO

t← 0 // Initializes the iteration
Initialize Q(0) by Equations (5) and (6)
while (t < MaxIter) do

Observe to get X(t) from q(t)//Quantum observation
Evaluate fitness of X(t) by Equation (7)
Apply mutation on qM(t) by Equations (8) and (11)//Adaptive mutation
Obtain qC(t) by crossover by Equations (12) and (13)//Crossover
Observe to get XC(t) from qC(t)//Quantum observation
Evaluate fitness of XC(t)
if the trial binary individuals XC(t) is better than X(t) then

Update X(t+1) and q(t+1) by Equations (14) and (15)//Selection
else

Update q(t + 1) using QRG with adaptive GWO by Equations (16)–(24)
end if
t← t + 1

end while

3.10. Example of QDGWO Algorithm to Solve KP01

In the following, a KP01 problem is described as an example to be solved by the
QDGWO algorithm.

Given a set of ten items, W = (x1, x2, x3, . . . , x10), and wi is the weight of the ith item
xi; pi is the value of xi; and C is the weight capacity of the knapsack. Suppose that wi = i,

and pi = wi+5, and C = 1
2

m
∑

i=1
wi = 27.5.
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Then, this 0-1 knapsack problem can be defined as:

Maximize f (x) =
m
∑

i=1
pixi

s.t.
m
∑

i=1
wixi ≤ 27.5, xi ∈ {0, 1}, ∀i ∈ {1, 2, . . . , 10}

(25)

where wi = i, and pi = wi + 5 = i + 5.
In this example, the population size was set to 20, and the maximum number of

iterations was set to 200. The other parameters are presented in Table 2. The evolution
process of q1, an individual of the quantum population, is shown below.

Table 2. Parameters of algorithms in experiments.

QEA AQDE QSE QDGWO

Differential control
parameter (F) / rand(0,1) × rand(0,1) × 0.1 / F0 = 0.02

F1 = 0.03
Crossover control
parameter (CR) / Gaussian distribution

N(0.5, 0.0375) / Gaussian distribution
N(0.5, 0.0375)

Parameters of PSO / /
W = 0.7298

c1 = 1.42
c2 = 1.57

/

Quantum rotation
angle (∆θ) 0.01π / /

θmin = 0.01π
θmax = 0.03π

k = 10

The initial quantum population Q(0) =
(
q0

1, q0
2, . . . , q0

20
)

was initialized by Equations (5)
and (6). The vector qθ1 was initialized by q0

θ1 =
( 3π

4 , π
4 , 5π

4 , 7π
4 , 5π

4 , 7π
4 , 3π

4 , π
4 , 5π

4 , π
4
)
,

and the quantum individual q0
1 was initialized by

q0
1 =

[
−
√

2
2√
2

2

∣∣∣∣∣
√

2
2√
2

2

∣∣∣∣∣ −
√

2
2
−
√

2
2

∣∣∣∣∣
√

2
2
−
√

2
2

∣∣∣∣∣ −
√

2
2
−
√

2
2

∣∣∣∣∣
√

2
2
−
√

2
2

∣∣∣∣∣ −
√

2
2√
2

2

∣∣∣∣∣
√

2
2√
2

2

∣∣∣∣∣ −
√

2
2
−
√

2
2

∣∣∣∣∣
√

2
2√
2

2

]
.

After quantum observation, the binary individual X0
1 was generated as

(1, 0, 1, 1, 0, 0, 1, 0, 0, 1), and the fitness of X0
1 was evaluated as f

(
X0

1
)
=

10
∑

i=1
pix0

i = 50.

The mutation vector qM0
θ1 was generated by Equations (8)–(11), where t = 0;

ω = e1− tmax
tmax−t = 1; and F0 = F0 + F1 · 2ω · rand(0, 1) = 0.02 + 0.03× 2× 0.68 = 0.0608

(rand(0,1) was randomly generated as 0.68).
The vector qθα corresponding to the current best binary individual Xα and two different

random target vectors qθr1 and qθr2 are shown as:

qθα =

(
π

4
,

3π

4
,

π

4
,

5π

4
,

7π

4
,

3π

4
,

π

4
,

π

4
,

3π

4
,

3π

4

)
;

qθr1 =

(
3π

4
,

7π

4
,

7π

4
,

5π

4
,

π

4
,

3π

4
,

5π

4
,

5π

4
,

π

4
,

7π

4

)
;

qθr2 =

(
7π

4
,

7π

4
,

3π

4
,

5π

4
,

π

4
,

5π

4
,

π

4
,

π

4
,

5π

4
,

3π

4

)
.

The quantum mutation vector qM0
θ1 was generated by:

qM0
θ1 = qθα + F0(qθr1 − qθr2)

= (0.1892π, 0.75π, 0.3108π, 1.25π, 1.75π, 0.7196π, 0.3108π, 0.3108π, 0.6892π, 0.8108π)
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The quantum trial vector qC0
θ1 at the tth generation was generated by Equations (12)

and (13):

qC0
θ1 = (0.75π, 0.75π, 0.3108π, 1.75π, 1.25π, 1.75π, 0.3108π, 0.25π, 0.6892π, 0.25π)

where CR was randomly generated as 0.35, and rnbr_i = 3.
After quantum observation, the trial binary individual XC0

1 was generated as

(1, 0, 1, 1, 0, 0, 1, 0, 1, 0), and the fitness was evaluated as f
(
XC0

1
)
=

10
∑

i=1
pix0

i = 49. Because

f
(
XCt

1
)
< f

(
Xt

1
)
, qt+1 should be updated by the QRG with an adaptive GWO.

The positions and profits of the current three best wolves were shown as:

X0
α = (1, 1, 1, 0, 1, 1, 0, 1, 0, 0), f (X0

α) =
10

∑
i=1

pix0
i = 55;

X0
β = (1, 1, 1, 1, 1, 0, 0, 0, 1, 0), f (X0

β) =
10

∑
i=1

pix0
i = 54;

X0
δ = (0, 1, 1, 0, 0, 1, 1, 0, 1, 0), f (X0

δ) =
10

∑
i=1

pix0
i = 52.

Additionally, θ = θmin +
(

1− t
tmax

)
· (θmax − θmin) = θmax = 0.03π; γα

1 =
f (X0

α)
f (X0

1)
= 1.1;

γ
β
1 =

f (X0
β)

f (X0
1)

= 1.08; γδ
1 =

f (X0
δ )

f (X0
1)

= 1.04.

Then, the quantum individual of the next iteration qt+1
θi was generated by

Equations (16)–(24) as:

∆q0
θ1 = [∆θ0

11, ∆θ0
12, . . . , ∆θ0

110]
= [−0.0312π, 0.0966π, 0,−0.0642π, 0.0654π, 0.0642π,−0.0654π, 0.033π, 0.0636π,−0.0966π]

q0
θ1 =

(
3π

4
,

π

4
,

5π

4
,

7π

4
,

5π

4
,

7π

4
,

3π

4
,

π

4
,

5π

4
,

π

4

)
q1

θ1 = q0
θ1 + s0

1∆q0
θ1

= (0.7812π, 0.3466π, 1.25π, 1.8142π, 1.3154π, 1.6858π, 0.8154π, 0.283π, 1.3136π, 0.1534π)

The individuals of the next iteration continued to evolve until the maximum number
of iterations was reached. After the iterations, the best profit of this KP01 problem was 57,
and one of the best solutions was (0,1,1,1,1,1,1,0,0,0).

4. Experimental Results

To assess the performance of the proposed QDGWO algorithm, two groups of datasets
are used for solving the KP01.

All experiments were conducted with Matlab 2016b, running on an Intel Core i7-4790
CPU @ 3.60 GHz, and Windows 7 Ultimate Edition.

In the first experiment described in [37], there were 50, 250, 500, 1000, 1500, 2000, 2500,
and 3000 dimension sets of data by Equation (26) to test the performance of the QDGWO
in high-dimension situations.

Given a set of m items, W = (x1, x2, x3, . . . , xm).

wi = rand_i[1, 10]
pi = wi + 5

C = 1
2

m
∑

i=1
wi

(26)
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where wi is the weight of the ith item xi; pi is the value of xi; C is the weight capacity of the
knapsack; and m is the number of items.

In the first experiment, m ranged from 50 to 3000, and the maximum number of
iterations in all cases was set to 1000.

To verify the effectiveness and efficiency of the QDGWO, the results of the proposed
algorithm were compared with three algorithms: QEA [37], AQDE [45], and QSE [48].
The parameters of algorithms used in the experiments are presented in Table 2, where
the population size is 20. The best profits, the average profits, the worst profits, and the
standard deviations of 30 independent runs are shown in Table 3 and Figures 4–7. The
Wilcoxon signed-rank test [59] is performed for the results of the competing algorithms in
Table 3 with a significance level α = 0.05, where +, −, and = indicate that this algorithm is
superior, inferior, or equal to the QDGWO, respectively.

Table 3. Experimental results for 0-1 knapsack problems (Experiment 1).

Number of Items QEA AQDE QSE QDGWO

50

Best 302(=) 292(−) 297(=) 302
Average 300.63(=) 287.2(−) 294.26(−) 302

Worst 297(=) 282(−) 290(−) 302
Std 2.23(−) 2.97(−) 2.41(−) 0

250

Best 1517(=) 1417(−) 1446(−) 1554
Average 1502.9(=) 1397.6(−) 1,427.7(−) 1549.3

Worst 1496(=) 1382(−) 1412(−) 1542
Std 4.4562(−) 7.3178(−) 8.2040(−) 2.3419

500

Best 2946(=) 2772(−) 2799(−) 3091
Average 2917.3(−) 2732(−) 2783(−) 3072.1

Worst 2907(−) 2717(−) 2763(−) 3058
Std 8.8198(=) 11.3304(=) 9.2364(=) 8.9624

1000

Best 5695(−) 5382(−) 5460(−) 6121
Average 5662.5(−) 5,364.4(−) 5442.2(−) 6085.3

Worst 5633(−) 5342(−) 5422(−) 6048
Std 12.7028(=) 11.2975(=) 10.1018(+) 13.4812

1500

Best 8464(−) 8198(−) 8128(−) 9126
Average 8,439.4(−) 8,178.7(−) 8,082.8(−) 9077.1

Worst 8414(−) 8149(−) 8039(−) 9027
Std 15.1535(+) 13.6188(+) 20.6722(=) 21.5347

2000

Best 11,217(−) 10,951(−) 10,813(−) 12,027
Average 11,191.2(−) 10,900.4(−) 10,781.1(−) 11,971.4

Worst 11,164(=) 10,865(−) 10,747(−) 11,913
Std 14.7202(+) 24.6167(=) 16.2827(+) 24.3967

2500

Best 13,907(−) 13,569(−) 13,466(−) 14,886
Average 13,865.8(−) 13,523.3(−) 13,394.2(−) 14,831.4

Worst 13,839(−) 13,482(−) 13,342(−) 14,751
Std 19.0504(+) 24.5971(+) 23.5438(+) 28.4894

3000

Best 16,604(−) 16,221(−) 16,071(−) 17,769
Average 16,549.9(−) 16,175.8(−) 16,033.2(−) 17,670.1

Worst 16,506(−) 16,128(−) 15,995(−) 17,588
Std 20.2286(+) 22.0621(+) 20.5269(+) 29.5280
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To illustrate the importance of the role of the crossover operation of the DE in ex-
ploring the global optimum, comparative tests between the QDGWO with and without
the crossover operation were performed. Moreover, we compared the binomial crossover
operator of the DE with the exponential crossover operator of the DE. The best profits, the
average profits, the worst profits, and the standard deviations of 30 independent runs are
presented in Table 4. The Wilcoxon signed-rank test [59] is performed for the results in
Table 4 with a significance level α = 0.05, where +, −, and = indicate that this strategy is
superior, inferior, or equal to the QDGWO with a binomial crossover of the DE, respectively.
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Table 4. Experimental results of QDGWO algorithm without crossover of DE, with binomial crossover
of DE, and with exponential crossover of DE.

Number of Items Without
Crossover of DE

With Binomial
Crossover of
DE (CR = 0.5)

With
Exponential
Crossover of
DE (CR = 0.5)

500

Best 3001(−) 3046 3046(=)
Average 2990.3(−) 3038.6 3040.1(=)

Worst 2981(−) 3031 3031(=)
Std 6.1752(−) 3.6191 3.4287(=)

1000

Best 5926(−) 6126 6126(=)
Average 5893.8(−) 6109.4 6107.7(=)

Worst 5851(−) 6096 6081(=)
Std 18.0843(−) 7.2612 9.5447(=)

1500

Best 8752(−) 9126 9126(=)
Average 8707.7(−) 9094.9 9090.9(=)

Worst 8647(−) 9066 9042(=)
Std 23.2206(−) 16.8516 21.4710(−)

In the second experiment described in [49], there were 50, 200, 500, 1000, 1500, and
2000 dimension sets of data by Equation (27) to test the performance of the QDGWO in
high-dimension situations.

Given a set of m items, W = (x1, x2, x3, . . . , xm).

wi = rand_i[1, 10]
pi = wi + 5

C = 3
4

m
∑

i=1
wi

(27)

where wi is the weight of the ith item xi; pi is the value of xi; C is the weight capacity of the
knapsack; and m is the number of items.

In the second experiment, m ranged from 50 to 2000, and the maximum number of
iterations in all cases was set to 1000.

To present the performance of the proposed algorithm in the global optimization,
we compared the QDGWO algorithm with the QIHSA [49] for knapsack problems. The
optimization results of the success rate (SR%) and the best profit are shown in Table 5. The
Wilcoxon signed-rank test [59] is performed for the results of the QIHSA in Table 5 with
a significance level α = 0.05, where +, −, and = indicate that this algorithm is superior,
inferior, or equal to the QDGWO, respectively.

The obtained results demonstrate the competitive performance of the proposed
QDGWO algorithm. According to the results, the proposed algorithm is more efficient
for the high-dimensional 0-1 knapsack problems, as shown in Table 4 and Figures 3–5.
Compared with the QEA [25], AQDE [33], QSE [36], and QIHSA [37], the QDGWO was the
most effective and efficient algorithm in the experiments. The advantages of the QDGWO
became more obvious when the number of items was large, especially in high dimensional
cases of the knapsack problems.
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Table 5. Experimental results of QDGWO and QIHSA for 0-1 knapsack problems (Experiment 2).

Test Item Size Optimal Solution QIHSA QDGWO

Knapinst50 50 1177
SR% 99.83(=) 100
best 1175(=) 1177

Knapinst200 200 4860
SR% 97.83(−) 100
best 4755(−) 4860

Knapinst500 500 11,922
SR% 93.74(−) 98.56
best 11,174(−) 11,748

Knapinst1000 1000 24,356
SR% 87.97(−) 98.14
best 21,427(−) 23,903

Knapinst1500 1500 35,891
SR% 86.31(−) 97.25
best 30,978(−) 34,904

Knapinst2000 2000 49,007
SR% 85.8(−) 96.36
best 42,052(−) 47,223

The proposed algorithm obtains both rapid exploration and high exploitation in
searching solutions. The QDGWO converges quickly to the global optimal solution. For
example, the algorithm approaches the global optimum at about the 500th iteration in
the case of 500 items (see Figure 4). However, the algorithm continues searching near the
global optimal solution, i.e., the exploitation. To illustrate this, in the case of 500 items
(see Figure 4), the QDGWO continues seeking further optimization after approaching
the optimal solution and obtains better solutions in the exploitation until the end of
the iterations.

Based on the results shown in Table 3, it can be concluded that the crossover operation
plays a significant role in searching the solution space efficiently. However, the performance
of the QDGWO is not very sensitive to which kind of crossover operator is used in the
algorithm. From the experiment results, the binomial crossover operator of the DE yields
slightly better optimal solutions than the exponential crossover operator of the DE in all
cases. The results can be interpreted to show that quantum updating with the quantum
rotation gate remains the most decisive and crucial operation in exploring the search space
even if the crossover operation is required to improve the solutions.

Finally, compared with the other four methods, the experimental results show the ad-
vantages of the collaborative optimization with operations of adaptive mutation, crossover,
and quantum rotation gate with the adaptive GWO in investigating the search space.

5. Conclusions

A quantum-inspired differential evolution algorithm with grey wolf optimizer (QDGWO)
was proposed to solve the 0-1 knapsack problems. The proposed algorithm combined
the superposition principles of quantum computing, differential evolution operations,
and the hunting behaviors of grey wolves. The QDGWO used the principles of quantum
computing such as quantum superposition states and quantum gates. Furthermore, it con-
tained mutation, crossover, and selection operations of the DE. To maintain a better balance
between the exploration and exploitation of searching for the global optimal solution, the
proposed algorithm adapted a quantum rotation gate with the adaptive GWO to update
the population of solutions. The results of tests performed for resolving the knapsack
problems demonstrate that the QDGWO was able to enhance diversity and convergence
performance for solving 0-1 knapsack problems. In addition, the QDGWO was effective
and efficient in finding the optimal solutions for high-dimensional situations.

Although the QDGWO displays excellent performance in solving 0-1 knapsack prob-
lems, there are several directions of improvement for the proposed algorithm. First, to
improve the effectiveness of the QDGWO, initial solutions of the quantum population can
be generated with metaheuristic methods. In addition, the proposed approaches can be
applied to solve other combinatorial optimization problems. Moreover, it is worth studying
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how to use the concepts of quantum computing in other novel metaheuristic approaches
such as the MPA [22] and AOA [27], as well as multi-objective optimization algorithms.
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