
mathematics

Article

Success History-Based Adaptive Differential
Evolution Using Turning-Based Mutation

Xingping Sun, Linsheng Jiang , Yong Shen *, Hongwei Kang * and Qingyi Chen

School of Software, Yunnan University, Kunming 650000, China; sunxp@ynu.edu.cn (X.S.);
jls@mail.ynu.edu.cn (L.J.); devas9@ynu.edu.cn (Q.C.)
* Correspondence: sheny@ynu.edu.cn (Y.S.); hwkang@ynu.edu.cn (H.K.)

Received: 24 August 2020; Accepted: 7 September 2020; Published: 11 September 2020
����������
�������

Abstract: Single objective optimization algorithms are the foundation of establishing more complex
methods, like constrained optimization, niching and multi-objective algorithms. Therefore, improvements
to single objective optimization algorithms are important because they can impact other domains
as well. This paper proposes a method using turning-based mutation that is aimed to solve the
problem of premature convergence of algorithms based on SHADE (Success-History based Adaptive
Differential Evolution) in high dimensional search space. The proposed method is tested on the Single
Objective Bound Constrained Numerical Optimization (CEC2020) benchmark sets in 5, 10, 15, and 20
dimensions for all SHADE, L-SHADE, and jSO algorithms. The effectiveness of the method is verified
by population diversity measure and population clustering analysis. In addition, the new versions
(Tb-SHADE, TbL-SHADE and Tb-jSO) using the proposed turning-based mutation get apparently
better optimization results than the original algorithms (SHADE, L-SHADE, and jSO) as well as the
advanced DISH and the jDE100 algorithms in 10, 15, and 20 dimensional functions, but only have
advantages compared with the advanced j2020 algorithm in 5 dimensional functions.

Keywords: single objective optimization; differential evolution; success-history; premature convergence;
turning-based mutation

1. Introduction

The single objective global optimization problem involves finding a solution vector x = (x1, . . . , xD)
that minimizes the objective function f (x), where D is the dimension of the problem. The task of
black box optimization is to solve the global optimization problem without clear objective function
form or structure, that is, f is a “black box”. This problem appears in many problems of engineering
optimization, where complex simulations are used to calculate the objective function.

The differential evolution (DE) algorithm, proposed by Price and Storm in 1995, laid the foundation
for a series of successful algorithms for continuous optimization. DE is a random black box search
method, which was originally designed for numerical optimization problems [1], and it’s also an
evolutionary algorithm that ensures that every next generation has better solutions than the previous
generation: a phenomenon known as elitism. The extensive study fields of DE are summarized lately
in the references [2].

Studies on DE have yielded a number of improvements [3–17] to the classical DE algorithm, and
the status of research on it can be easily obtained by noting the results of the Continuous Optimization
Competition and the Evolutionary Computing Conference (CEC).

A popular variant of DE [18] is the algorithm proposed by Fukunaga and Tanabe called Success
History-based Adaptive Differential Evolution (SHADE) [19]. In the optimization process, the scale
factor F and the crossover rate CR of control parameters are adjusted to adapt to the given problem,
and the “current to pbest/1” mutation strategy and the external archive of poor quality solutions in

Mathematics 2020, 8, 1565; doi:10.3390/math8091565 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0003-4353-9957
https://orcid.org/0000-0002-5466-7092
http://dx.doi.org/10.3390/math8091565
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/9/1565?type=check_update&version=2

Mathematics 2020, 8, 1565 2 of 26

JADE [20] are combined in SHADE. The SHADE algorithm ranked third in CEC2013. In the second
year, the author proposed an improved scheme, adding a linear reduction to the population size called
L-SHADE to improve the convergence rate of SHADE [21]. L-SHADE won the CEC2014 competition.
The winners in the subsequent years were SPS-L-SHADE-EIG [22] (CEC2015), LSHADE-EpSin [23]
(joint winner of CEC2016), and jSO [24] (CEC2017). These algorithms are all based on L-SHADE, which
makes it one of the most effective variants of SHADE [25]. With the exception of the jSO, the other
winners benefited from general enhancements in the area [26]. Consequently, this study applies an
improved method to the SHADE, L-SHADE and jSO algorithms. LSHADE-ESP [27] came in second in
CEC2018 and the jDE100 [28] won CEC2019. And the j2020 [29] algorithm, which was proposed on
CEC2020 recently, is also within the reference range. Enhanced versions of these DE algorithms add
new mechanisms or parameters for optimization, similar to those in other optimization algorithms [30],
as described in substantive surveys of these areas [25,31–37]. Moreover, theoretical analysis supporting
DE has also been provided, such as in [38–41].

The DE consists of three main steps: mutation, crossover, and selection. Many proposals [6,10,11,14,
24] have been made to improve the mutation process to improve optimization performance. For instance,
four strategies of combining mutation and crossover was used in SHADE4 [6], SHADE44 [10] and
L-SHADE44 [11] to create a new trial individual and realize an adaptive mechanism. A novel
multi-chaotic framework was used in MC-SHADE [14] to generate random numbers for the parent
selection process in mutation process. A new weighted mutation strategy with parameterization
enhancement was used in jSO [24] to enhance adaptability. This paper also focuses on improving this
process in the DE algorithm, especially SHADE-based algorithms.

The CEC2020 [42] single-objective boundary-constrained numerical optimization benchmark sets
are designed to determine the improvement in performance obtained by increasing the number of the
calculation of the fitness function of an optimization algorithm. There are thus two motivations for this
study. First, we need to solve the problem of premature convergence of algorithms based on SHADE
in high dimensional search spaces on CEC2020 benchmark sets, so that they can maintain a high
population diversity and a longer exploration phase. Second, the improvement to the algorithm should
be simple, should not excessively increase complexity, and should not render the proposed algorithm
incomprehensible and less applicable, as discussed in [43]. We proposed a method using turning-based
mutation, and apply it to the SHADE, L-SHADE, and jSO algorithms to yield good performance while
using relatively simple algorithm structure. Through experimental analysis involving 10, 15, and 20
dimensions, the improved algorithms achieved better performance than the original algorithms as
well as the advanced DISH [44] and jDE100 algorithms on CEC2020 benchmark sets, but were slightly
worse than the j2020 algorithm. We also use population diversity measure and population clustering
analysis to verify the effectiveness of the proposed method.

Section 2 describes the process of evolution from the DE algorithm to the SHADE, L-SHADE,
and jSO algorithms, and turning-based mutation is introduced in Section 3. The experimental settings
and results are described in Sections 4 and 5, respectively. Section 6 discusses the results, and the
conclusion of this paper is given in Section 7.

2. DE SHADE L-SHADE and jSO

2.1. Differential Evolution

The DE consists of three main steps: mutation, crossover, and selection. In mutation, the attribute
vector of the selected individual x is combined in a simple vector operation to generate the mutated
vector v. The scale factor F of the control parameter is used in this operation. In the crossover step,
according to the probability given by the crossover rate CR of the control parameter, the trial vector
u is created by selecting the attribute from the original vector x or mutated vector v. Finally, in the
selection step, the trial vector u is evaluated by the objective function and the fitness f (u) is compared

Mathematics 2020, 8, 1565 3 of 26

with the fitness of the selected vector f (x). The vector with the better fitness value survives to the
next generation.

This paper focuses on improving the mutation process, so the paragraphs below describe the
mutation process of the DE algorithm. The complete steps of DE can be referred to the literature [1].
The mutation strategy of DE/rand/1/bin can be expressed as follows:

vi,G = xr1,G + Fi × (xr2,G − xr3,G) (1)

where vi,G is the mutated vector, and xr1,G, xr2,G, and xr3,G are three different individuals randomly
selected from the population. Fi is the scaling factor, and G is the index of the current generation.

If any dimension of the mutated vector vj,i,G is outside the boundary of the search range [xmin, xmax],
we perform the following correction for boundary-handling to handle infeasible solutions [45]:

v j,i,G =


xmin+x j,i,G

2 i f v j,i,G < xmin
xmax+x j,i,G

2 i f v j,i,G > xmax
(2)

where j is the dimensional index and i is the individual index.
The pseudo-code of the DE/rand/1/bin algorithm is shown in Algorithm 1.

Algorithm 1 DE/rand/1/bin

1: initialize P, NP, F, CR and MaxFES;
2: while FES < MaxFES do
3: for each individual x do
4: use mutation Formula (1) to create mutated vector v;
5: execute boundary-handling (2) to handle infeasible solutions;
6: use binomial crossover to create trial vector u;
7: use selection of classical DE to create individual of next generation;
8: end for
9: end while
10: return the best found solution.

It can be seen from the description of DE algorithm that users need to set three control parameters:
crossover rate CR, scaling factor F and population size NP. The setting of these parameters is very
important to the performance of DE.

Fine-tuning the control parameter is a time-consuming task, because of which most advanced
variants of DE use parameter adaptation. This is also why Tanabe and Fukunaga proposed the
SHADE [19] algorithm in 2013. Because the algorithms used in this paper are based on SHADE, it is
described in more detail below.

2.2. SHADE

In the control parameters of SHADE, crossover rate CR and scaling factor F are discussed.
The algorithm is based on JADE [20], proposed by Sanderson and Zhang, and so they share many
mechanisms [18]. The major difference between them is in historical memories MF and MCR with
their update mechanisms. The next subsections describe the historical memory update of SHADE and
the difference between DE and SHADE algorithm in initialization, mutation, crossover and selection,
respectively. The complete steps of SHADE can be referred to the literature [19].

2.2.1. Initialization

In SHADE, the population is initialized in the same manner as in DE, but there are two additional
components—historical memory and external archive—that also need to be initialized.

Mathematics 2020, 8, 1565 4 of 26

Initialize the control parameters stored in the historical memory, crossover rate CR and scale factor
F to 0.5:

MCR,i = MF,i = 0.5;∀i = 1, · · · , H, (3)

where H is the size of the user-defined historical memory, and the index k to update the historical
memory is initialized to one.

In addition, the initialization of the external archive of poor quality solutions is empty, i.e., A = ∅.

2.2.2. Mutation

In contrast to DE/rand/1/bin, the “current to pbest/1” mutation strategy is used in SHADE:

vi,G = xi,G + Fi ×
(
xpbest,G − xi,G

)
+ Fi × (xr1,G − xr2,G) (4)

pi = rand[pmin, 0.2] (5)

pmin =
2

NP
(6)

where, xi,G is the given individual, and xpbest,G is an individual selected from the best NP × pi (pi ∈ [0, 1])
individuals randomly in the current population. Vector xr1,G is an individual selected from the current
population randomly, and xr2,G is an individual selected from a combination of the external archive
A and the current population randomly. Index r1 , r2 , i. Fi is a scaling factor, rand [] is a uniform
random distribution and NP is the size of population. The vi,G is the mutated vector and G is the index
of the current generation. The greed of the “current-to-pbest/1” mutation strategy depends on the
control parameter pi, which is calculated as shown in Equations (5) and (6). It balances exploration and
exploitation capabilities (a small value of p is more greedy). The scaling factor Fi is generated using the
following formula:

Fi = randci(MF,ri, 0.1) (7)

where randci () is the Cauchy distribution, and MF,ri is randomly selected from historical memory MF
(index ri is a uniformly distributed random value from [1, H]). If Fi > 1, let Fi = 1. If Fi ≤ 0, Equation (7)
is repeated to attempt to generate a valid value.

The boundary handling of SHADE is identical to that of DE, as shown in Equation (2).

2.2.3. Crossover

DE has 2 classic crossover strategies, i.e., binomial and exponential. The crossover strategies of
SHADE is the same as that of DE/rand/1/bin, i.e., binomial crossover. However, the crossover rate of
DE/rand/1/bin is set in advance while the CRi of SHADE is generated by the following formula:

CRi = randni(MCR,ri, 0.1) (8)

where randni () is Gaussian distribution, and MCR,ri are randomly selected from historical memory
MCR (index ri is a uniformly distributed random value from [1, H]). If CRi > 1, let CRi = 1; if CRi < 0,
let CRi = 0.

2.2.4. Selection

The process of selection of SHADE is the same as that of DE. However, the external archive needs
to be updated during selection. If a better trail individual is generated, the original individual xi,G is
stored in the external archive. If the external archive exceeds capacity, one of them is randomly deleted.

2.2.5. Historical Memory Update

Historical memory update is also an important operation in SHADE. The historical memories
MCR and MF are initialized by Formula (3) but their contents change with the iteration of the algorithm.

Mathematics 2020, 8, 1565 5 of 26

These memories store the “successful” crossover rate CR and scaling factor F. “Successful” here means
that the trail vector u is selected instead of the original vector x to survive to the next generation.
In each generation, the values of these “successful” CR and F are first stored in arrays SCR and SF,
respectively. After each generation, a unit of each of the historical memories MF and MCR is updated.
The updated unit is specified by index k, which is initialized to one and increases by one after each
generation. If k exceeds the memory capacity H, it is reset to one. The following formula is used to
update the k-th unit of historical memory:

MCR,k,G+1 =

{
meanWA(SCR) i f SCR , ∅

MCR,k,G otherwise
(9)

MF,k,G+1 =

{
meanWL(SF) i f SF , ∅

MF,k,G otherwise
(10)

If all individuals in the G-th generation fail to generate a better trail vector, i.e., SF = SCR = ∅,
the historical memory will not be updated. The weighted Lehmer mean WL and weighted mean WA
are calculated using the following formulas, respectively:

meanWA(SCR) =

|SCR |∑
k=1

wk × SCR,k, (11)

meanWL(SF) =

∑|SF |

k=1 wk × S2
F,k∑|SF |

k=1 wk × SF,k

(12)

To improve the adaptability of the parameters, the weight vector w is calculated based on the
absolute value of the difference that is obtained by subtracting the objective function value of the given
vector from that of the trail vector in current generation G, as follows:

wk =
∆ fk∑|SCR |

k=1 ∆ fk
(13)

where ∆ fk =
∣∣∣∣ f (uk,G

)
− f

(
xk,G

)∣∣∣∣ in (13).
The pseudo-code of the SHADE algorithm is shown in Algorithm 2.

Algorithm 2 SHADE

1: initialize P, NP, F, CR, A, H and MaxFES;
2: initialize MF, MCR by (3);
3: while FES < MaxFES do
4: for each individual x do
5: use mutation Formulas (7) and (8) to select F and CR;
6: use Formula (4) to create mutated vector v;
7: execute boundary-handling (2) to handle infeasible solutions;
8: use binomial crossover to create trial vector u;
9: use selection of classical DE to create individual of next generation;
10: update external archive A;
11: end for
12: use Formulas (9) and (10) to update historical memory MF and MCR;
13: end while
14: return the best found solution.

2.3. Linear Decrease in Population Size: L-SHADE

In [21], a linear reduction of population size was introduced to SHADE to improve its performance.
The basic thought is to gradually reduce the population size during evolution to improve exploitation

Mathematics 2020, 8, 1565 6 of 26

capabilities. In L-SHADE, the population size is calculated after each generation using Formula (14).
If the new population size NPnew is smaller than the previous population size NP, the all individuals
are sorted on the basis of the value of the objective function, and the worst NP-NPnew individuals are
cut. Also, the size of external archives/A/decreases synchronously with population size:

NPnew = round
(
NPinit −

FES
MAXFES

×

(
NPinit −NP f

))
(14)

where NPf and NPinit are the final and initial population size, respectively. MaxFES and FES are the
maximum and current number of the calculation of the fitness function, respectively. And round () is a
rounding function.

2.4. Weighted Mutation Strategy with Parameterization Enhancement: jSO

The jSO [24] algorithm won the CEC2017 single-objective real parameter optimization competition [46].
It is a type of iL-SHADE algorithm that uses a weighted mutation strategy [47]. The iL-SHADE algorithm
extends L-SHADE by initializing all parameters in the historical memories MF and MCR to 0.8, statically
initializing the last unit of historical memories MF and MCR to 0.9, updating MF and MCR with the
weighted Lehmer average value, limiting the crossover rate CR and scaling factor F in the early stage,
and p is calculated for the “current-to-pbest/1” mutation strategy as:

p = pmin +
FES

MAXFES
(pmax − pmin) (15)

where pmin and pmax are the minimum and maximum value of p, respectively. FES and MaxFES are the
current and maximum number of the calculation of the fitness function, respectively.

The jSO algorithm sets pmax = 0.25 and pmin = pmax/2, initial population size to NPinit = 25
√

D log D,
and the size of the historical memory to H = 5. All parameters in MF and MCR are initialized to 0.3 and
0.8, respectively, and the weighted mutation strategy current-to-pbest-w/1 is used:

vi,G = xi,G + Fw ×
(
xpbest,G − xi,G

)
+ Fi × (xr1,G − xr2,G), (16)

where Fw is calculated as:

Fw =


0.7Fi, FES < 0.2MAXFES,
0.8Fi, FES < 0.4MAXFES,
1.2Fi, otherwise.

(17)

3. Turning-Based Mutation

The opposition-based DE (ODE) algorithm was proposed by Shahryar et al. [48]. The opposition-
based learning (OBL) was used for generation jumping and population initialization, and the opposite
numbers was used to improve the convergence rate of DE. Shahryar et al. let all vectors of the initial
population take the opposite number in the initialization and allowed the trail vectors to take the
opposite number in the selection operation. They then compared their fitness values and selected the
vector with the better fitness to accelerate the convergence of the DE algorithm. We refer to the idea of
“opposition” in the above algorithm, but the purpose of this paper is to change the direction of mutation
under certain conditions to maintain population diversity and enable a longer exploration phase.

Suppose that the search space is two-dimensional (2D). There is a ring-shaped region, the center
of which is the global suboptimal individual xpbest,G. The outer radius of the ring is OR and the inner
radius is IR. If the Euclidean distance Distance between the given individual and the global suboptimal
individual is smaller than the outer radius OR and larger than the inner radius IR, the differential
vector dei from the mutation Formulas (1) and (4) takes the opposite number, and some dimensions are

Mathematics 2020, 8, 1565 7 of 26

randomly selected to assign random values within the search range. Experiments have verified that
better outer radius OR and inner radius IR can be calculated as:

ORinit =
D∑

j=1

2

√(xmax − xmin
2

)2
(18)

IR =
D∑

j=1

2

√(xmax − xmin
40

)2
(19)

OR = ORinit +
IR−ORinit

MaxFES
× FES (20)

where ORinit is the initial value of the outer radius and IR is the inner radius, which is also the
minimum value of the outer radius. The outer radius OR decreases with an increase in the number
of fitness evaluations. MaxFES and FES are the maximum and current number of the calculation of
the fitness function, respectively, and xmax and xmin are the upper and lower bounds of the search
range, respectively.

The Euclidean distance Distance between the given individual and the global suboptimal individual
is calculated as:

Distance = 2

√√√√ D∑
j=1

(
x j,pbest,G − x j,i,G

)2
(21)

The differential vector dei from the mutation Equations (1) and (4) is calculated as:

dei = (Fi or Fw) ×
(
xpbest,G − xi,G

)
+ Fi × (xr1,G − xr2,G) (22)

The pseudo-code of the operation on the differential vector dei in turning-based mutation is shown
as Operation 1:

Operation 1 operation on dei

1: if Distance > IR and Distance < OR then
2: dei = −dei;
3: M = randi(D), R = randperm(D);
4: for d = 1 to M do
5: dei(R(d)) = rand (xmax−xmin) + xmin;
6: end for
7: end if

where R is the randomly disordered dimension index array, M is the number of randomly selected
dimensions, and xmax and xmin are the upper and lower bounds of the search range, respectively.

Finally, the mutation operation is performed as shown in Equation (23):

vi,G = xi,G + dei (23)

If the Euclidean distance Distance between the given individual and the global suboptimal
individual is smaller than the outer radius OR and larger than the inner radius IR, the improved
method changes the direction of mutation of the given individual to maintain the population diversity
and a longer exploration phase, thus enhancing the global search ability and the ability to escape
the local optimum. Then, with an increase in number of fitness evaluations, the performance of
the algorithm can be improved. If the Euclidean distance Distance between the given individual
and the global suboptimal individual is smaller than or equal to the inner radius IR, the former is

Mathematics 2020, 8, 1565 8 of 26

allowed to mutate in the original direction. This enables the given individual to quickly converge
to the global optimal or suboptimal position to avoid the problem of non-convergence caused by
turning-based mutation.

Since Equation (21) and Operation 1 need to be executed in the mutation process of each individual,
the overall time complexity [42] of the improved algorithms is slightly higher than that of the original
algorithms, as shown in Tables 1–3.

Table 1. Time complexity specified by CEC2020 technical document-SHADE vs. Tb-SHADE.

D T0 T1
SHADE Tb-SHADE

T2 (T2 − T1)/T0 T2 (T2 − T1)/T0

5 6.03E+01 2.52E+02 4.81E+03 7.56E+01 5.58E+03 8.84E+01
10 6.03E+01 3.05E+02 5.55E+03 8.70E+01 6.35E+03 1.00E+02
15 6.03E+01 3.39E+02 5.68E+03 8.86E+01 6.76E+03 1.06E+02
20 6.03E+01 4.09E+02 6.03E+03 9.32E+01 7.14E+03 1.12E+02

Table 2. Time complexity specified by CEC2020 technical document—L-SHADE vs. TbL-SHADE.

D T0 T1
L-SHADE TbL-SHADE

T2 (T2 − T1)/T0 T2 (T2 − T1)/T0

5 6.03E+01 2.52E+02 4.44E+03 6.95E+01 4.97E+03 7.82E+01
10 6.03E+01 3.05E+02 4.77E+03 7.40E+01 6.71E+03 1.06E+02
15 6.03E+01 3.39E+02 4.98E+03 7.70E+01 6.97E+03 1.10E+02
20 6.03E+01 4.09E+02 5.24E+03 8.01E+01 7.30E+03 1.14E+02

Table 3. Time complexity specified by CEC2020 technical document-jSO vs. Tb-jSO.

D T0 T1
jSO Tb-jSO

T2 (T2 − T1)/T0 T2 (T2 − T1)/T0

5 6.03E+01 2.52E+02 4.30E+03 6.71E+01 5.24E+03 8.27E+01
10 6.03E+01 3.05E+02 5.28E+03 8.25E+01 6.51E+03 1.03E+02
15 6.03E+01 3.39E+02 6.50E+03 1.02E+02 7.12E+03 1.12E+02
20 6.03E+01 4.09E+02 7.27E+03 1.14E+02 7.81E+03 1.23E+02

The pseudo-code of the Tb-SHADE algorithm (SHADE algorithm using turning-based mutation)
is shown as Algorithm 3, that of the TbL-SHADE algorithm (L-SHADE algorithm using turning-based
mutation) is shown as Algorithm 4, and that of the Tb-jSO algorithm (jSO algorithm using turning-based
mutation) is shown as Algorithm 5. The improved parts of these algorithm are underlined.

Mathematics 2020, 8, 1565 9 of 26

Algorithm 3 Tb-SHADE

1: initialize P, NP, F, CR, A, H and MaxFES;
2: initialize MF, MCR by (3);
3: initialize ORinit by (18), initialize IR by (19);

4: while FES < MaxFES do
5: Calculate OR by (20);

6: for each individual x do
7: use mutation Formulas (7) and (8) to select F and CR;
8: Set Distance by (21);

9: Execute Operation 1;

10: use Formula (23) to create mutated vector v;

11: execute boundary-handling (2) to handle infeasible solutions;
12: use binomial crossover to create trial vector u;
13: use selection of classical DE to create individual of next generation;
14: update external archive A;
15: end for
16: use Formulas (9) and (10) to update historical memory MF and MCR;
17: end while
18: return the best found solution.

Algorithm 4 TbL-SHADE

1: initialize P, NPinit, NPf, F, CR, A, H and MaxFES;

2: initialize MF, MCR by (3);
3: initialize ORinit by (18), initialize IR by (19);

4: while FES < MaxFES do
5: Calculate OR by (20);

6: for each individual x do
7: use mutation Formulas (7) and (8) to select F and CR;
8: Set Distance by (21);

9: Execute Operation 1;

10: use Formula (23) to create mutated vector v;

11: execute boundary-handling (2) to handle infeasible solutions;
12: use binomial crossover to create trial vector u;
13: use selection of classical DE to create individual of next generation;
14: update external archive A;
15: end for
16: use Formulas (9) and (10) to update historical memory MF and MCR;
17: use (14) to calculate NPnew;
18: NP = NPnew, |A| = NPnew;
19: end while
20: return the best found solution.

Mathematics 2020, 8, 1565 10 of 26

Algorithm 5 Tb-jSO

1: initialize P, NPinit, NPf, F, CR, A, H and MaxFES;

2: initialize all values in MF to 0.3 and MCR to 0.8, but MF,H = 0.9 and MCR,H = 0.9;
3: initialize ORinit by (18), initialize IR by (19);

4: while FES < MaxFES do
5: Calculate OR by (20);

6: for each individual x do
7: use mutation Formulas (7) and (8) to select F and CR;
8: use (17) to calculate Fw;
9: if FES < 0.6MaxFES and Fi,G > 0.7 then
10: Fi,G = 0.7;
11: end if
12: if FES < 0.25MaxFES then
13: CRi,G = max(CRi,G, 0.7);
14: else if FES < 0.5MaxFES then
15: CRi,G = max(CRi,G, 0.6);
16: end if
17: Set Distance by (21);

18: Execute Operation 1;

19: use Formula (23) to create mutated vector v;

20: execute boundary-handling (2) to handle infeasible solutions;
21: use binomial crossover to create trial vector u;
22: use selection of classical DE to create individual of next generation;
23: update external archive A;
24: end for
25: use Formulas (9) and (10) to update historical memory MF and MCR;
26: use (14) to calculate NPnew;
27: NP = NPnew, |A| = NPnew;
28: end while
29: return the best found solution.

4. Experimental Settings

To verify the improved method by experiments, the original algorithm, the improved algorithm and
the advanced DISH and the jDE100 algorithms were tested on the Single Objective Bound Constrained
Numerical Optimization (CEC2020) benchmark sets in 5, 10, 15 and 20 dimensions. The termination
criteria, i.e., the maximum number of the calculation of the fitness function (MaxFES) and the minimum
error value (Min error value), were set as in Table 4. The search range is [xmin, xmax] = [−100, 100], and 30
independent repeated experiments were conducted. The parameter setting of most algorithm [19,21,24]
is shown in Tables 5 and 6. In addition, the parameter setting of j2020 algorithm can be found in [29].

Table 4. Termination criteria.

D MaxFES Min Error Value

5 50,000 10−8

10 1,000,000 10−8

15 3,000,000 10−8

20 10,000,000 10−8

Mathematics 2020, 8, 1565 11 of 26

Table 5. Parameter setting of some algorithms.

Algorithm NP H |A| NPinit NPf MaxG MCRinit MFinit

SHADE 100 NP NP − − MaxFES/NP 0.5 0.5
Tb-SHADE 100 NP NP − − MaxFES/NP 0.5 0.5
L-SHADE Calculated by (18) 100 NP 100 4 Not fixed 0.5 0.5
TbL-SHADE Calculated by (18) 100 NP 100 4 Not fixed 0.5 0.5

jSO Calculated by (18) 5 NP 25logD 4 Not fixed 0.8
MCR, H = 0.9

0.3
MF, H = 0.9

Tb-jSO Calculated by (18) 5 NP 25logD 4 Not fixed 0.8
MCR, H = 0.9

0.3
MF, H = 0.9

DISH Calculated by (18) 5 NP 25logD 4 Not fixed 0.8
MCR, H = 0.9

0.3
MF, H = 0.9

Table 6. Parameter setting of jDE100.

Parameter Value Description

Fl
5.0
√

bNP
lower limit of scale factor for the big population

Fl
1.0
√

bNP
lower limit of scale factor for the small population

Fu 1.1 upper limit of scale factor
CRl 0.0 lower limit of crossover parameter
CRu 1.1 upper limit of crossover parameter
Finit 0.5 initial value of scale factor

CRinit 0.5 initial value of crossover parameter
τ1 0.1 probability to self-adapt scale factor
τ2 0.1 probability to self-adapt crossover parameter

bNP 1000 size of big population
sNP 25 size of small population

ageLmt 1 × 109 number of FEs when population restart needs to occurs
eps 1 × 10−16 small value used to check if two value are similar

myEqs 25 reinitialization if myEqs% of individuals in the corresponding
population have the similar function values

MaxG Not fixed the maximum number of generations

The hypothesis that the turning-based mutation can maintain a longer exploration phase can be
verified by analyzing the clustering and density of the population during the optimization process.
These two analyses are described in more detail below.

4.1. Cluster Analysis

The clustering algorithm selected in this experiment is density based noisy application spatial
clustering (DBSCAN) [49], which is based on the clustering density rather than its center, so it can find
clusters of arbitrary shape. DBSCAN algorithm needs to set two control parameters and a distance
measurement. The settings are as follows:

(1) distance between core points, that is, Eps = 1% of the decision space; for the CEC2020 benchmark
sets, Eps = 2;

(2) minimum number of points forming a cluster, that is, MinPts = 4 (minimum number of mutation
individuals); and

(3) distance measure uses Chebyshev distance [50]—if the distance between the corresponding
attributes of two individuals is greater than 1% of the decision space, they are not considered as
direct density reachable.

Mathematics 2020, 8, 1565 12 of 26

4.2. Population Diversity

The population diversity (PD) measure is taken from [51], which is based on the square root of
the deviation sum, Equation (25), of individual components and their corresponding mean values,
Equation (24):

x j =
1

NP

NP∑
i=1

x j,i (24)

PD =

√√√√
1

NP

NP∑
i=1

D∑
j=1

(
x j,i − x j

)2
. (25)

where i is the iterator of members of the population and j is that of the component (dimension).

5. Results

Tables 7–18 compare the error values (when the error value was smaller than 10−8,
the corresponding value was considered optimal) obtained by the original algorithms (SHADE,
L-SHADE, and jSO) and their improved versions using turning-based mutation (Tb-SHADE,
TbL-SHADE and Tb-jSO, respectively). The results of a comparison are showed in the last column of
each table. If the performance of the original version was significantly better, uses the “−” sign; if the
performance of the improved version was significantly better, uses the sign “+”; if their performances
were similar, “=” is used. The better performance values are displayed in bold, and the last row of these
tables shows the results of an overall comparison. Tables 19–22 provide the error values obtained by
the advanced algorithms DISH, jDE100 and j2020 on CEC2020. All tables provide the best, mean and
std (standard deviation) values of 30 independent repetitions of the experiments.

Table 7. SHADE vs. Tb-SHADE on CEC2020 in 5D.

f
SHADE Tb-SHADE

Result
Best Mean Std Best Mean Std

1 1.70E−09 6.44E−09 2.40E−09 8.41E−01 5.37E+00 3.83E+00 −

2 3.78E−01 1.73E+00 1.80E+00 3.43E+00 1.30E+01 6.19E+00 −

3 1.32E+00 5.07E+00 1.07E+00 1.42E+00 6.73E+00 2.16E+00 =
4 1.23E−02 9.32E−02 4.43E−02 4.30E−02 1.71E−01 8.96E−02 =
5 1.65E−09 6.89E−09 2.39E−09 3.71E−02 1.05E+00 6.62E−01 =
6 5.41E−10 6.48E−09 2.54E−09 2.49E−02 5.89E−02 1.81E−02 =
7 2.83E−10 6.62E−09 3.01E−09 1.32E−05 2.12E−04 6.34E−04 =
8 4.29E−09 3.34E+00 1.83E+01 4.09E−01 2.23E+00 1.61E+00 =
9 1.00E+02 1.07E+02 3.65E+01 2.07E+01 7.80E+01 2.78E+01 +

10 3.00E+02 3.46E+02 8.65E+00 5.62E+01 2.76E+02 7.49E+01 +
2 + 2 −

Table 8. SHADE vs. Tb-SHADE on CEC2020 in 10D.

f
SHADE Tb-SHADE

Result
Best Mean Std Best Mean Std

1 2.12E−09 7.52E−09 2.16E−09 1.50E−09 7.38E−09 2.13E−09 =
2 1.91E−01 5.14E+00 4.17E+00 3.67E+00 2.26E+01 1.22E+01 −

3 1.05E+01 1.18E+01 7.29E−01 3.71E+00 1.03E+01 3.49E+00 +
4 9.90E−02 1.63E−01 2.75E−02 3.67E−05 2.54E−02 1.47E−02 =
5 8.82E−09 3.54E−01 1.91E−01 9.23E−07 5.48E+00 5.13E+00 −

6 7.17E−02 1.95E−01 1.01E−01 1.68E−01 5.28E−01 2.05E−01 =
7 4.09E−06 1.39E−01 1.76E−01 3.97E−02 1.83E−01 1.19E−01 =
8 1.00E+02 1.00E+02 6.24E−07 2.15E−04 1.86E+01 1.76E+01 +
9 1.00E+02 2.92E+02 8.72E+01 1.00E+02 1.00E+02 4.45E−02 +

10 3.98E+02 4.16E+02 2.29E+01 1.00E+02 1.21E+02 6.61E+01 +
4 + 2 −

Mathematics 2020, 8, 1565 13 of 26

Table 9. SHADE vs. Tb-SHADE on CEC2020 in 15D.

f
SHADE Tb-SHADE

Result
Best Mean Std Best Mean Std

1 6.48E−09 8.35E−09 9.82E−10 2.06E−09 7.43E−09 2.01E−09 =
2 1.68E−01 7.53E+00 2.16E+01 2.46E+00 3.08E+01 2.79E+01 −

3 1.56E+01 1.57E+01 2.05E−01 3.64E+00 8.46E+00 2.91E+00 +
4 1.78E−01 2.74E−01 3.69E−02 4.06E−02 7.41E−02 3.22E−02 =
5 1.31E+00 5.07E+01 5.74E+01 2.41E+01 4.89E+01 1.76E+01 −

6 7.43E−02 3.78E−01 2.22E−01 3.26E−01 2.61E+00 2.98E+00 =
7 4.18E−01 2.06E+01 4.50E+01 3.02E−01 3.07E+00 2.01E+00 +
8 1.00E+02 1.00E+02 0.00E+00 8.74E−09 5.20E+01 4.49E+01 +
9 3.38E+02 3.87E+02 9.71E+00 1.00E+02 1.46E+02 1.01E+02 +

10 4.00E+02 4.00E+02 0.00E+00 1.00E+02 2.07E+02 7.85E+01 +
5 + 2 −

Table 10. SHADE vs. Tb-SHADE on CEC2020 in 20D.

f
SHADE Tb-SHADE

Result
Best Mean Std Best Mean Std

1 5.87E−09 8.38E−09 9.25E−10 2.21E−09 7.94E−09 1.76E−09 =
2 8.52E−09 2.49E−01 5.14E−01 9.38E−02 1.97E+00 1.38E+00 =
3 2.04E+01 2.06E+01 3.27E−01 6.66E−09 1.46E+01 8.57E+00 +
4 2.27E−01 3.78E−01 4.93E−02 3.50E−01 4.09E−01 3.48E−02 =
5 2.06E+01 2.04E+02 8.51E+01 7.38E+00 1.56E+02 1.11E+02 +
6 9.26E−02 2.04E−01 6.62E−02 2.62E−01 3.84E−01 6.17E−02 =
7 3.55E−01 4.53E+01 5.54E+01 3.06E+00 2.49E+01 2.23E+01 +
8 1.00E+02 1.00E+02 2.23E−13 1.00E+02 1.00E+02 1.89E−13 =
9 4.01E+02 4.05E+02 2.00E+00 1.00E+02 3.99E+02 6.89E+01 +

10 4.14E+02 4.14E+02 9.83E−03 4.10E+02 4.13E+02 9.93E−01 =
4 + 0 −

Table 11. L-SHADE vs. TbL-SHADE on CEC2020 in 5D.

f
L-SHADE TbL-SHADE

Result
Best Mean Std Best Mean Std

1 3.32E−09 7.16E−09 1.95E−09 1.86E−09 5.06E−05 2.77E−04 =
2 6.54E−10 9.34E−02 1.14E−01 1.30E−05 4.24E−01 1.22E+00 =
3 5.15E+00 5.17E+00 6.51E−02 6.14E−01 2.96E+00 1.73E+00 +
4 9.92E−03 6.52E−02 3.08E−02 7.35E−07 1.58E−02 1.81E−02 =
5 2.24E−09 6.88E−09 2.02E−09 2.19E−09 3.60E−05 1.97E−04 =
6 8.44E−10 5.15E−09 2.84E−09 6.25E−11 6.00E−09 5.02E−09 =
7 1.51E−09 6.13E−09 2.69E−09 7.16E−10 4.76E−09 2.96E−09 =
8 5.19E−09 7.95E−09 1.44E−09 6.25E−09 2.77E−04 1.04E−03 =
9 7.81E−09 9.67E+01 1.83E+01 4.50E−09 6.61E+01 4.36E+01 +

10 3.00E+02 3.44E+02 1.20E+01 8.19E−09 2.71E+02 8.34E+01 +
3 + 0 −

Table 12. L-SHADE vs. TbL-SHADE on CEC2020 in 10D.

f
L-SHADE TbL-SHADE

Result
Best Mean Std Best Mean Std

1 5.88E−09 8.29E−09 1.22E−09 1.70E−09 6.65E−09 2.33E−09 =
2 3.44E−04 1.13E+00 1.53E+00 6.39E−02 7.09E+00 8.75E+00 −

3 1.04E+01 1.07E+01 2.92E−01 4.00E+00 9.40E+00 3.00E+00 +
4 9.87E−02 1.52E−01 2.23E−02 9.53E−09 1.90E−02 1.10E−02 =
5 3.83E−09 4.32E+00 2.20E+01 5.39E−02 1.60E+00 1.25E+00 =
6 2.33E−02 9.59E−02 5.58E−02 7.39E−02 3.75E−01 1.38E−01 =
7 1.06E−07 1.39E−01 2.02E−01 1.26E−06 2.14E−03 2.71E−03 =
8 7.59E−09 9.67E+01 1.83E+01 9.62E−09 3.20E+01 2.15E+01 +
9 1.00E+02 2.91E+02 8.70E+01 5.77E−09 1.02E+02 5.05E+01 +
10 3.98E+02 4.16E+02 2.29E+01 1.00E+02 1.40E+02 1.03E+02 +

4 + 1 −

Mathematics 2020, 8, 1565 14 of 26

Table 13. L-SHADE vs. TbL-SHADE on CEC2020 in 15D.

f
L-SHADE TbL-SHADE

Result
Best Mean Std Best Mean Std

1 3.53E−09 7.72E−09 1.70E−09 1.35E−09 7.01E−09 2.54E−09 =
2 3.64E−12 3.73E−01 7.99E−01 8.33E−02 1.08E+00 1.74E+00 =
3 1.56E+01 1.56E+01 1.41E−01 4.45E−09 2.55E+00 1.55E+00 +
4 2.07E−01 2.64E−01 3.91E−02 9.87E−03 4.13E−02 1.23E−02 =
5 2.46E+00 5.21E+01 6.26E+01 7.51E+00 3.40E+01 1.58E+01 +
6 2.43E−03 4.23E−01 1.52E+00 1.13E−01 1.82E+00 3.20E+00 =
7 6.63E−02 1.65E+01 4.13E+01 4.35E−01 9.54E−01 3.53E−01 +
8 1.00E+02 1.00E+02 0.00E+00 7.71E−09 6.02E+01 4.20E+01 +
9 3.00E+02 3.80E+02 2.36E+01 1.00E+02 1.80E+02 1.27E+02 +
10 4.00E+02 4.00E+02 0.00E+00 1.00E+02 2.20E+02 1.27E+02 +

6 + 0 −

Table 14. L-SHADE vs. TbL-SHADE on CEC2020 in 20D.

f
L-SHADE TbL-SHADE

Result
Best Mean Std Best Mean Std

1 4.35E−09 8.54E−09 1.33E−09 1.50E−09 7.72E−09 2.26E−09 =
2 9.46E−11 3.44E−02 3.88E−02 3.12E−02 5.21E−01 7.45E−01 =
3 2.04E+01 2.06E+01 3.93E−01 1.74E−09 2.28E+00 1.58E+00 +
4 2.57E−01 3.66E−01 3.95E−02 2.97E−02 7.35E−02 2.85E−02 =
5 3.02E+01 2.46E+02 1.02E+02 1.13E+01 2.42E+02 1.39E+02 +
6 8.46E−02 1.85E−01 7.59E−02 1.97E−01 3.13E−01 5.12E−02 =
7 2.23E−01 4.34E+01 5.64E+01 1.58E+00 4.15E+01 3.84E+01 =
8 1.00E+02 1.00E+02 1.89E−13 5.14E+01 9.40E+01 1.45E+01 +
9 4.00E+02 4.04E+02 2.37E+00 1.00E+02 4.12E+02 9.59E+01 +
10 4.14E+02 4.14E+02 1.08E−02 3.99E+02 4.03E+02 4.09E+00 +

5 + 0 −

Table 15. jSO vs. Tb-jSO on CEC2020 in 5D.

f
jSO Tb-jSO

Result
Best Mean Std Best Mean Std

1 1.34E−09 6.70E−09 2.16E−09 2.24E−09 7.69E−09 2.26E−09 =
2 9.71E−09 4.11E−01 1.24E+00 8.54E−09 2.01E+00 3.43E+00 =
3 6.13E−01 4.92E+00 1.22E+00 2.91E−08 2.34E+00 1.75E+00 =
4 8.28E−09 6.28E−02 3.35E−02 1.92E−09 3.03E−02 3.47E−02 =
5 3.14E−09 2.08E−02 1.14E−01 3.85E−09 7.48E−02 2.35E−01 =
6 1.00E−09 5.84E−09 2.36E−09 4.08E−10 6.74E−09 2.84E−09 =
7 1.57E−10 5.51E−09 2.94E−09 3.82E−11 4.59E−09 3.30E−09 =
8 4.22E−09 7.95E−09 1.63E−09 5.87E−09 8.58E−09 1.08E−09 =
9 5.55E−09 9.67E+01 1.83E+01 6.29E−09 9.33E+01 2.54E+01 =
10 3.00E+02 3.46E+02 8.65E+00 3.00E+02 3.08E+02 1.80E+01 +

1 + 0 −

Table 16. jSO vs. Tb-jSO on CEC2020 in 10D.

f
jSO Tb-jSO

Result
Best Mean Std Best Mean Std

1 4.05E−09 7.91E−09 1.39E−09 4.56E−09 8.54E−09 1.28E−09 =
2 3.12E−01 6.99E+00 4.53E+00 3.54E+00 2.03E+01 2.14E+01 −

3 1.04E+01 1.19E+01 6.21E−01 2.62E+00 8.28E+00 2.85E+00 +
4 9.86E−02 1.58E−01 3.20E−02 1.97E−02 5.51E−02 3.94E−02 =
5 6.31E−09 2.61E−01 2.94E−01 9.79E−09 1.50E+00 9.92E−01 =
6 1.95E−02 1.05E−01 8.44E−02 2.93E−02 3.63E−01 1.75E−01 =
7 6.94E−07 7.13E−02 1.60E−01 1.23E−06 4.87E−02 1.01E−01 =
8 1.00E+02 1.00E+02 0.00E+00 6.98E−09 1.45E+00 4.49E+00 +
9 1.00E+02 3.02E+02 6.89E+01 1.00E+02 1.19E+02 6.22E+01 +
10 3.98E+02 4.04E+02 1.57E+01 1.00E+02 3.88E+02 5.44E+01 +

4 + 1 −

Mathematics 2020, 8, 1565 15 of 26

Table 17. jSO vs. Tb-jSO on CEC2020 in 15D.

f
jSO Tb-jSO

Result
Best Mean Std Best Mean Std

1 4.88E−09 8.28E−09 1.34E−09 4.93E−09 8.62E−09 1.36E−09 =
2 4.16E−02 2.61E+01 4.47E+01 1.67E−01 2.04E+01 2.49E+01 +
3 1.56E+01 1.66E+01 5.14E−01 1.99E+00 4.75E+00 1.59E+00 +
4 1.78E−01 2.62E−01 3.76E−02 2.96E−02 9.31E−02 4.54E−02 =
5 1.15E+00 3.07E+00 2.07E+00 1.56E−01 1.13E+01 1.04E+01 −

6 3.33E−02 3.20E−01 3.15E−01 8.05E−02 2.70E−01 1.26E−01 =
7 1.24E−01 7.15E−01 2.13E−01 1.06E−01 4.85E−01 2.48E−01 =
8 1.00E+02 1.00E+02 0.00E+00 7.83E−09 5.54E+01 4.08E+01 +
9 3.86E+02 3.89E+02 8.36E−01 1.00E+02 2.55E+02 1.48E+02 +
10 4.00E+02 4.00E+02 0.00E+00 4.00E+02 4.00E+02 0.00E+00 =

4 + 1 −

Table 18. jSO vs. Tb-jSO on CEC2020 in 20D.

f
jSO Tb-jSO

Result
Best Mean Std Best Mean Std

1 5.80E−09 8.53E−09 1.32E−09 6.70E−09 9.21E−09 8.21E−10 =
2 6.25E−02 1.99E+00 1.60E+00 1.74E+00 6.29E+00 3.45E+00 =
3 2.04E+01 2.13E+01 5.24E−01 2.56E+00 5.17E+00 1.63E+00 +
4 1.97E−01 3.53E−01 4.48E−02 5.92E−02 1.21E−01 5.05E−02 =
5 1.20E+00 6.93E+00 5.07E+00 4.16E−01 3.27E+01 4.81E+01 −

6 5.63E−02 9.75E−01 4.25E−01 5.93E−02 3.11E−01 1.49E−01 =
7 5.31E−03 1.12E−01 1.10E−01 1.79E−01 3.07E+00 4.29E+00 =
8 1.00E+02 1.00E+02 8.44E−14 1.00E+02 1.00E+02 2.53E−13 =
9 3.98E+02 4.01E+02 1.36E+00 4.15E+02 4.24E+02 5.11E+00 −

10 4.14E+02 4.14E+02 4.73E−04 3.99E+02 3.99E+02 6.47E−01 +
2 + 2 −

Table 19. DISH and jDE100 on CEC2020 in 5D.

f
DISH jDE100 j2020

Best Mean Std Best Mean Std Best Mean Std

1 2.60E−09 7.84E−09 1.87E−09 1.19E+05 9.94E+05 1.05E+06 0.00E+00 0.00E+00 0.00E+00
2 4.32E−09 3.99E−01 1.22E+00 1.46E+02 3.26E+02 8.04E+01 1.91E−04 3.23E+00 3.74E+00
3 6.13E−01 5.11E+00 8.63E−01 1.07E+01 2.00E+01 4.14E+00 0.00E+00 3.42E+00 2.33E+00
4 2.90E−09 6.82E−02 4.43E−02 2.69E−01 1.32E+00 4.48E−01 0.00E+00 7.68E−02 6.40E−02
5 1.83E−09 6.24E−02 1.90E−01 1.97E+01 5.80E+01 2.42E+01 0.00E+00 1.37E−01 2.86E−01
6 2.01E−09 6.94E−09 2.32E−09 4.19E−01 1.47E+00 5.28E−01 − − −

7 1.49E−09 5.96E−09 2.57E−09 1.95E+00 2.69E+01 2.96E+01 − − −

8 5.76E−09 3.35E+00 1.83E+01 4.06E+00 2.18E+01 9.07E+00 0.00E+00 6.28E−01 2.39E+00
9 1.00E+02 1.07E+02 2.54E+01 1.04E+02 1.23E+02 1.07E+01 0.00E+00 2.05E+01 3.75E+01
10 3.00E+02 3.44E+02 1.20E+01 1.89E+02 3.38E+02 3.24E+01 0.00E+00 1.26E+02 9.03E+01

Table 20. DISH and jDE100 on CEC2020 in 10D.

f
DISH jDE100 j2020

Best Mean Std Best Mean Std Best Mean Std

1 4.26E−09 8.83E−09 1.17E−09 5.88E+07 2.80E+08 1.48E+08 0.00E+00 0.00E+00 0.00E+00
2 6.25E−02 5.26E+00 3.92E+00 7.66E+02 1.06E+03 1.13E+02 0.00E+00 6.79E−01 1.16E+00
3 1.07E+01 1.19E+01 5.71E−01 6.45E+01 8.68E+01 1.23E+01 0.00E+00 8.06E+00 3.88E+00
4 1.28E−01 1.64E−01 2.53E−02 6.08E+00 1.01E+01 2.35E+00 0.00E+00 1.09E−01 9.04E−02
5 4.96E−09 2.43E−01 1.65E−01 4.28E+03 1.38E+04 6.69E+03 0.00E+00 3.02E−01 3.13E−01
6 1.97E−02 1.61E−01 1.28E−01 3.72E+01 1.15E+02 3.93E+01 2.91E−02 4.78E−01 2.49E−01
7 1.14E−07 3.31E−02 1.09E−01 5.59E+02 2.35E+03 1.37E+03 3.10E−07 6.73E−02 1.25E−01
8 1.00E+02 1.00E+02 0.00E+00 7.55E+01 1.35E+02 2.19E+01 0.00E+00 1.54E+00 4.00E+00
9 1.00E+02 2.67E+02 1.02E+02 1.63E+02 2.24E+02 2.24E+01 0.00E+00 8.00E+01 4.07E+01
10 3.98E+02 4.07E+02 1.84E+01 4.49E+02 4.73E+02 1.26E+01 1.00E+02 1.40E+02 8.12E+01

Mathematics 2020, 8, 1565 16 of 26

Table 21. DISH and jDE100 on CEC2020 in 15D.

f
DISH jDE100 j2020

Best Mean Std Best Mean Std Best Mean Std

1 4.42E−09 8.41E−09 1.42E−09 6.48E+08 1.38E+09 5.36E+08 0.00E+00 0.00E+00 0.00E+00
2 1.67E−01 2.19E+01 4.02E+01 1.49E+03 2.02E+03 2.22E+02 0.00E+00 5.72E−02 4.32E−02
3 1.56E+01 1.67E+01 5.06E−01 1.41E+02 1.84E+02 2.41E+01 0.00E+00 6.78E+00 7.82E+00
4 1.78E−01 2.60E−01 3.93E−02 1.75E+01 7.69E+01 6.76E+01 0.00E+00 1.99E−01 7.47E−02
5 1.56E−01 2.54E+00 1.17E+00 3.17E+04 2.06E+05 9.67E+04 0.00E+00 7.58E+00 7.69E+00
6 2.07E−02 2.47E−01 2.06E−01 1.70E+02 3.36E+02 7.58E+01 1.65E−03 8.45E−01 2.09E+00
7 4.38E−01 7.59E−01 1.89E−01 1.51E+04 6.11E+04 3.24E+04 6.81E−02 9.83E−01 2.03E+00
8 1.00E+02 1.00E+02 0.00E+00 1.81E+02 2.82E+02 6.30E+01 0.00E+00 9.49E+00 2.74E+01
9 3.00E+02 3.84E+02 1.88E+01 2.98E+02 4.27E+02 4.89E+01 1.00E+02 1.23E+02 5.68E+01
10 4.00E+02 4.00E+02 0.00E+00 7.07E+02 8.67E+02 8.83E+01 1.00E+02 3.90E+02 5.48E+01

Table 22. DISH and jDE100 on CEC2020 in 20D.

f
DISH jDE100 j2020

Best Mean Std Best Mean Std Best Mean Std

1 6.06E−09 8.44E−09 9.07E−10 1.76E+09 4.18E+09 1.38E+09 0.00E+00 0.00E+00 0.00E+00
2 6.25E−02 1.50E+00 1.69E+00 2.59E+03 3.11E+03 2.27E+02 0.00E+00 2.60E−02 2.47E−02
3 2.06E+01 2.16E+01 4.69E−01 2.29E+02 3.05E+02 3.33E+01 0.00E+00 1.44E+01 9.29E+00
4 2.56E−01 3.60E−01 4.24E−02 6.79E+01 4.38E+02 3.73E+02 2.98E−02 1.80E−01 7.84E−02
5 2.08E−01 6.77E+00 3.21E+00 3.58E+05 6.91E+05 1.88E+05 3.12E−01 7.78E+01 5.75E+01
6 3.67E−02 6.97E−01 4.64E−01 3.96E+02 6.86E+02 1.33E+02 6.84E−02 1.91E−01 1.01E−01
7 1.39E−02 1.17E−01 1.04E−01 2.25E+04 1.48E+05 5.43E+04 1.95E−02 1.98E+00 4.02E+00
8 1.00E+02 1.00E+02 2.23E−13 4.53E+02 7.18E+02 1.67E+02 0.00E+00 9.27E+01 2.21E+01
9 3.96E+02 4.01E+02 1.86E+00 5.04E+02 5.89E+02 3.25E+01 1.00E+02 3.39E+02 1.28E+02
10 4.14E+02 4.14E+02 5.12E−04 5.56E+02 8.34E+02 1.46E+02 1.00E+02 3.39E+02 1.28E+02

Convergence diagrams are shown in Figures 1–12. Figures 1–4 shows the convergence curves of
SHADE and Tb-SHADE, respectively, for some test functions in 5D, 10D, 15D, and 20D, Figures 5–8
shows those of L-SHADE and TbL-SHADE for some test functions in 5D, 10D, 15D, and 20D. and
Figures 9–12 shows those of the jSO and Tb-jSO, respectively, for some test functions in 5D, 10D, 15D
and 20D. It is apparent that the red line of the turning-based mutation version of the algorithm was
often slower to converge but attained better objective function values.

Figure 1. The selected average convergence of SHADE and Tb-SHADE on CEC2020 in 5D is compared.
From left to right f3, f9 and f10.

Figure 2. The selected average convergence of SHADE and Tb-SHADE is compared on CEC2020 in
10D. From left to right f8, f9 and f10.

Mathematics 2020, 8, 1565 17 of 26

Figure 3. The selected average convergence of SHADE and Tb-SHADE is compared on CEC2020 in
15D. From left to right f8, f9 and f10.

Figure 4. The selected average convergence of SHADE and Tb-SHADE is compared on CEC2020 in
20D. From left to right f3, f5 and f9.

Figure 5. The selected average convergence of L-SHADE and TbL-SHADE is compared on CEC2020 in
5D. From left to right f3, f4 and f10.

Figure 6. The selected average convergence of L-SHADE and TbL-SHADE is compared on CEC2020 in
10D. From left to right f8, f9 and f10.

Figure 7. The selected average convergence of L-SHADE and TbL-SHADE is compared on CEC2020 in
15D. From left to right f8, f9 and f10.

Mathematics 2020, 8, 1565 18 of 26

Figure 8. The selected average convergence of L-SHADE and TbL-SHADE is compared on CEC2020 in
20D. From left to right f3, f5 and f9.

Figure 9. The selected average convergence of jSO and Tb-jSO is compared on CEC2020 in 5D. From left
to right f3, f4 and f10.

Figure 10. The selected average convergence of jSO and Tb-jSO is compared on CEC2020 in 10D.
From left to right f3, f8 and f9.

Figure 11. The selected average convergence of jSO and Tb-jSO is compared on CEC2020 in 15D.
From left to right f3, f8 and f9.

Figure 12. The selected average convergence of jSO and Tb-jSO is compared on CEC2020 in 20D.
From left to right f3, f4 and f10.

Tables 23–34 shows the number of runs (#runs) of population aggregation, the average generation
(Mean CO) of the first cluster during these runs, and the average population diversity (Mean PD) of
these generations.

Mathematics 2020, 8, 1565 19 of 26

Table 23. Clustering and population diversity of SHADE and Tb-SHADE on the CEC2020 in 5D.

f
SHADE Tb-SHADE

#runs Mean CO Mean PD #runs Mean CO Mean PD

1 30 3.04E+01 3.74E+01 30 2.29E+02 4.84E+01
2 12 3.97E+02 7.29E+01 0 − −

3 12 4.01E+02 1.20E+01 0 − −

4 13 2.83E+02 1.16E+01 0 − −

5 30 9.24E+01 3.69E+01 30 4.40E+02 3.66E+01
6 30 1.13E+02 3.29E+01 30 4.61E+02 2.28E+01
7 30 7.66E+01 4.57E+01 30 3.63E+02 4.41E+01
8 30 6.46E+01 2.84E+01 29 4.42E+02 2.52E+01
9 30 7.91E+01 6.31E+01 30 4.13E+02 3.61E+01

10 30 3.57E+01 1.30E+01 30 3.87E+02 3.03E+01

Table 24. Clustering and population diversity of SHADE and Tb-SHADE on the CEC2020 in 10D.

f
SHADE Tb-SHADE

#runs Mean CO Mean PD #runs Mean CO Mean PD

1 30 5.84E+01 1.88E+01 30 6.57E+02 8.30E+01
2 0 − − 0 − −

3 3 7.94E+03 1.35E+01 0 − −

4 0 − − 0 − −

5 30 7.14E+02 3.92E+01 16 8.18E+03 8.16E+01
6 0 − − 3 8.76E+03 8.21E+01
7 30 8.78E+02 2.36E+01 14 9.54E+03 3.66E+01
8 30 5.06E+01 1.48E+01 30 8.97E+02 1.39E+02
9 2 5.12E+03 3.09E+01 23 2.41E+03 1.12E+02

10 30 1.03E+02 2.37E+01 29 2.72E+03 7.69E+01

Table 25. Clustering and population diversity of SHADE and Tb-SHADE on the CEC2020 in 15D.

f
SHADE Tb-SHADE

#runs Mean CO Mean PD #runs Mean CO Mean PD

1 30 7.08E+01 1.37E+01 30 8.93E+02 1.05E+02
2 0 − − 0 − −

3 30 1.65E+04 9.53E+00 0 − −

4 0 − − 0 − −

5 29 8.34E+02 3.33E+01 0 − −

6 3 1.44E+04 6.27E+01 0 − −

7 30 6.96E+02 1.56E+01 6 2.72E+04 6.18E+01
8 30 6.59E+01 1.12E+01 30 1.10E+03 2.16E+02
9 25 1.52E+04 3.12E+01 2 8.86E+03 9.17E+01

10 30 1.12E+02 6.72E+00 30 3.22E+03 1.13E+02

Table 26. Clustering and population diversity of SHADE and Tb-SHADE on the CEC2020 in 20D.

f
SHADE Tb-SHADE

#runs Mean CO Mean PD #runs Mean CO Mean PD

1 30 7.64E+01 1.19E+01 30 1.26E+03 8.92E+01
2 4 9.06E+04 7.74E+01 0 − −

3 30 3.34E+04 9.12E+00 0 − −

4 0 − − 0 − −

5 30 5.46E+02 1.86E+01 12 8.62E+04 1.27E+02
6 0 − − 0 - -
7 30 9.20E+02 2.59E+01 4 8.96E+04 4.63E+01
8 30 8.56E+01 1.06E+01 30 1.72E+03 2.82E+02
9 0 − − 0 - -

10 30 1.02E+02 6.21E+00 30 2.63E+03 1.26E+02

Mathematics 2020, 8, 1565 20 of 26

Table 27. Clustering and population diversity of L-SHADE and TbL-SHADE on the CEC2020 in 5D.

f
L-SHADE TbL-SHADE

#runs Mean CO Mean PD #runs Mean CO Mean PD

1 30 3.00E+01 3.75E+01 30 2.53E+02 4.85E+01
2 18 8.71E+02 3.20E+01 6 1.38E+03 1.66E+01
3 30 6.29E+02 7.01E+00 1 1.21E+03 6.85E+00
4 10 4.65E+02 1.06E+01 0 − −

5 30 8.75E+01 3.42E+01 30 1.10E+03 2.17E+01
6 30 1.14E+02 3.01E+01 30 7.34E+02 2.30E+01
7 30 7.66E+01 4.29E+01 30 4.85E+02 4.13E+01
8 30 6.47E+01 2.08E+01 30 7.59E+02 1.97E+01
9 30 7.11E+01 6.15E+01 30 3.90E+02 2.77E+01

10 30 3.52E+01 1.07E+01 30 3.71E+02 2.93E+01

Table 28. Clustering and population diversity of L-SHADE and TbL-SHADE on the CEC2020 in 10D.

f
L-SHADE TbL-SHADE

#runs Mean CO Mean PD #runs Mean CO Mean PD

1 30 5.96E+01 2.01E+01 30 6.61E+02 8.21E+01
2 10 2.88E+04 2.98E+01 9 3.12E+04 2.12E+01
3 20 2.65E+04 4.36E+00 2 3.19E+04 3.52E+00
4 1 2.86E+04 8.35E+00 2 3.21E+04 1.97E+00
5 30 7.31E+02 4.15E+01 15 2.89E+04 1.58E+01
6 6 2.31E+04 1.10E+01 0 − −

7 30 9.46E+02 2.34E+01 30 2.30E+04 1.77E+01
8 30 5.75E+01 1.51E+01 30 8.86E+02 1.26E+02
9 10 1.63E+04 5.77E+01 26 6.57E+03 1.18E+02

10 30 1.08E+02 2.70E+01 28 4.24E+03 7.02E+01

Table 29. Clustering and population diversity of L-SHADE and TbL-SHADE on the CEC2020 in 15D.

f
L-SHADE TbL-SHADE

#runs Mean CO Mean PD #runs Mean CO Mean PD

1 30 7.06E+01 1.45E+01 30 8.80E+02 1.05E+02
2 30 6.19E+04 4.25E+01 30 7.69E+04 3.52E+01
3 30 1.84E+04 7.97E+00 24 8.51E+04 2.14E+01
4 4 9.42E+04 6.03E+00 3 9.80E+04 1.64E+00
5 28 8.35E+02 3.80E+01 2 9.80E+04 1.21E+01
6 18 7.04E+04 1.09E+01 17 9.20E+04 2.24E+01
7 30 6.98E+02 1.54E+01 0 − −

8 30 6.60E+01 1.15E+01 30 1.10E+03 2.16E+02
9 30 2.00E+04 2.82E+01 14 7.38E+04 1.05E+02

10 30 1.14E+02 6.87E+00 30 3.13E+03 1.08E+02

Table 30. Clustering and population diversity of L-SHADE and TbL-SHADE on the CEC2020 in 20D.

f
L-SHADE TbL-SHADE

#runs Mean CO Mean PD #runs Mean CO Mean PD

1 30 7.64E+01 1.22E+01 30 1.26E+03 8.95E+01
2 26 9.06E+04 6.00E+01 30 1.79E+05 6.37E+01
3 30 3.61E+04 8.72E+00 30 2.21E+05 4.83E+01
4 17 3.00E+05 1.14E+01 9 3.03E+05 6.49E+00
5 30 5.46E+02 1.63E+01 19 2.66E+05 7.85E+01
6 17 2.59E+05 1.75E+01 11 2.94E+05 1.89E+01
7 30 8.89E+02 1.92E+01 7 3.24E+05 1.18E+01
8 30 8.64E+01 8.66E+00 30 1.72E+03 2.80E+02
9 19 2.37E+05 3.59E+01 26 2.19E+05 1.11E+02
10 30 1.04E+02 6.78E+00 30 2.52E+03 1.26E+02

Mathematics 2020, 8, 1565 21 of 26

Table 31. Clustering and population diversity of jSO and Tb-jSO on the CEC2020 in 5D.

f
jSO Tb- jSO

#runs Mean CO Mean PD #runs Mean CO Mean PD

1 30 3.17E+01 4.57E+01 30 3.17E+02 4.18E+01
2 29 9.61E+02 4.16E+01 26 1.22E+03 4.92E+01
3 30 9.12E+02 9.36E+00 19 1.43E+03 2.33E+01
4 29 1.08E+03 8.68E+00 22 1.44E+03 1.39E+01
5 30 1.17E+02 3.36E+01 30 9.94E+02 2.81E+01
6 30 1.57E+02 3.68E+01 30 9.66E+02 1.54E+01
7 30 1.06E+02 4.38E+01 29 6.79E+02 3.89E+01
8 30 7.21E+01 1.74E+01 30 7.20E+02 2.13E+01
9 30 5.49E+01 6.52E+01 30 3.94E+02 2.70E+01
10 30 3.25E+01 9.66E+00 30 3.90E+02 2.97E+01

Table 32. Clustering and population diversity of jSO and Tb-jSO on the CEC2020 in 10D.

f
jSO Tb-jSO

#runs Mean CO Mean PD #runs Mean CO Mean PD

1 30 5.88E+01 3.93E+01 30 2.29E+03 7.97E+01
2 30 6.11E+03 1.12E+02 30 6.86E+03 1.65E+02
3 30 6.17E+03 1.48E+01 30 1.04E+04 4.81E+01
4 30 8.55E+03 1.28E+01 30 1.34E+04 2.44E+01
5 30 4.41E+03 3.63E+01 30 8.97E+03 5.36E+01
6 30 5.54E+03 2.38E+01 30 1.07E+04 5.42E+01
7 30 1.44E+03 3.57E+01 30 9.69E+03 3.94E+01
8 30 5.52E+01 9.59E+00 30 3.40E+03 5.53E+01
9 30 4.98E+03 4.19E+01 30 3.73E+03 4.66E+01
10 30 8.33E+01 2.45E+01 30 3.07E+03 6.99E+01

Table 33. Clustering and population diversity of jSO and Tb-jSO on the CEC2020 in 15D.

f
jSO Tb- jSO

#runs Mean CO Mean PD #runs Mean CO Mean PD

1 30 8.09E+01 4.39E+01 30 5.34E+03 1.02E+02
2 30 1.39E+04 1.21E+02 30 1.54E+04 1.66E+02
3 30 1.20E+04 1.37E+01 30 2.02E+04 5.26E+01
4 30 1.69E+04 1.57E+01 30 2.99E+04 2.84E+01
5 30 1.17E+04 4.95E+01 30 1.31E+04 1.24E+02
6 30 1.79E+04 2.23E+01 30 2.41E+04 5.03E+01
7 30 2.53E+03 3.56E+01 30 2.26E+04 3.76E+01
8 30 7.50E+01 7.39E+00 30 3.53E+03 4.65E+01
9 30 1.07E+04 3.03E+01 30 1.83E+04 4.07E+01
10 30 9.39E+01 6.56E+00 30 8.49E+03 8.97E+01

Table 34. Clustering and population diversity of jSO and Tb-jSO on the CEC2020 in 20D.

f
jSO Tb-jSO

#runs Mean CO Mean PD #runs Mean CO Mean PD

1 30 9.32E+01 3.60E+01 30 9.38E+03 9.36E+01
2 30 3.15E+04 1.17E+02 30 3.48E+04 1.69E+02
3 30 2.91E+04 1.37E+01 30 4.65E+04 6.03E+01
4 30 3.86E+04 1.80E+01 30 7.28E+04 3.40E+01
5 30 2.94E+04 6.35E+01 30 3.25E+04 1.28E+02
6 30 3.81E+04 2.77E+01 30 4.80E+04 9.32E+01
7 30 3.06E+04 1.92E+01 30 4.83E+04 6.16E+01
8 30 9.09E+01 7.40E+00 30 7.11E+03 4.78E+01
9 30 2.84E+04 4.81E+01 30 3.68E+04 1.08E+02
10 30 9.94E+01 6.62E+00 30 1.08E+04 1.27E+02

Mathematics 2020, 8, 1565 22 of 26

The rankings of the Friedman test [52] were obtained by using the average value (Mean) of each
algorithm on all 10 test functions in Tables 7–22, and are shown in Tables 35–38. The related statistical
values of the Friedman test are shown in Table 39. If the chi-square statistic was greater than the critical
value, the null hypothesis was rejected. p represents the probability of the null hypothesis obtaining.
The null hypothesis here was that there is no significant difference in performance among the nine
algorithms considered here on CEC2020.

Table 35. The Friedman ranks of comparative algorithms on CEC2020 in 5D.

Rank Name F-Rank

0 TbL-SHADE 3.2
1 Tb-jSO 3.55
2 L-SHADE 3.8
3 jSO 4.05
4 j2020 4.95
5 DISH 5.05
6 SHADE 5.2
7 Tb-SHADE 6.6
8 jDE100 8.6

Table 36. The Friedman ranks of comparative algorithms on CEC2020 in 10D.

Rank Name F-Rank

0 j2020 3.2
1 Tb-jSO 3.6
2 TbL-SHADE 3.9
3 DISH 4.9
4 jSO 4.95
5 Tb-SHADE 5.05
6 L-SHADE 5.05
7 SHADE 5.75
8 jDE100 8.6

Table 37. The Friedman ranks of comparative algorithms on CEC2020 in 15D.

Rank Name F-Rank

0 j2020 3.15
1 TbL-SHADE 3.45
2 Tb-jSO 3.45
3 Tb-SHADE 4.35
4 DISH 4.7
5 jSO 5.2
6 L-SHADE 5.6
7 SHADE 6.1
8 jDE100 9

Table 38. The Friedman ranks of comparative algorithms on CEC2020 in 20D.

Rank Name F-Rank

0 j2020 2.35
1 TbL-SHADE 4.05
2 Tb-jSO 4.3
3 DISH 4.8
4 jSO 4.9
5 Tb-SHADE 5
6 L-SHADE 5.1
7 SHADE 5.5
8 jDE100 9

Mathematics 2020, 8, 1565 23 of 26

Table 39. Related statistical values obtained of Friedman test for α = 0.05.

D Chi-sq’ Prob > Chi-sq’ (p) Critical Value·

5 34.25414365 3.65E−05 15.51
10 28.83468835 3.39E−04 15.51
15 38.8213628 5.31E−06 15.51
20 37.00654818 1.15E−05 15.51

6. Results and Discussion

The results on the CEC2020 benchmark sets are first discussed. As shown in Tables 7–18, the scores
were two improvements against two instances of worsening (5D), four improvements and two instances
of worsening (10D), five improvements and two instances of worsening (15D), and four improvements
no instances of worsening (20D) in the case of SHADE; three improvements against zero instances
of worsening (5D), four improvements and one worsening (10D), six improvements no worsening
(15D), and five improvements and no worsening (20D) in the case of L-SHADE; and one improvement
against no worsening (5D), four improvements and one worsening (10D), four improvements and
one worsening (15D), and two improvements two instances of worsening (20D) in the case of jSO.
In some test functions, the improved algorithm even escaped the local optimum and found the optimal
value (if the error was smaller than 10−8, the relevant value was considered optimal). Examples are
f3 in Tables 10 and 13, and Table 14, f8 in Tables 9, 13 and 16, and Table 17, f9 in Table 12, and f10 in
Table 11. In most cases, the improved version was clearly better than the original algorithm except for
Tb-SHADE (5D) and Tb-jSO (20D).

According to the convergence curves in Figures 1–12, in most cases, the improved algorithm
showed similar convergence to the original in the early stage of the optimization process, but it clearly
maintained a longer exploration phase and achieved better values of the objective function in the
middle and late stages; in a few cases (such as f 4 in Figure 5), the improved algorithm had slower
convergence but did not achieve a better objective function value than the original.

As the numerical analyses in Tables 23–34 show, in most cases, the improved algorithms exhibited
fewer clusters (#runs), later clustering (mean CO), and higher population density (mean PD) than the
original algorithm. But Tb-SHADE (5D) had a lower population density on f 6–f 9, as did TbL-SHADE
(all dimensions) on f 2–f 7, where this might have been related to the linear decrease in the population
size. Tb-jSO showed similar numbers of clusters in all dimensions and a lower population density on
some test functions in 5D. Therefore, in most cases, the improved versions maintained the diversity of
population and a longer exploration phase in the optimization process.

The significant improvements in Tables 7–18 and the clustering analysis in Tables 23 and 24 can
be linked. The results in the former set of tables with the “+” symbol were always connected with
the occurrence of later clustering, none at all, or fewer instances of clusters of 30 (for the last option,
see, for example, column #runs in Tables 24–26, f 3). Consequently, the improvement in the performance
effected by the updated version was related to the maintenance of population diversity and a longer
exploration phase.

According to the Friedman ranking in Tables 35–38, Tb-SHADE, TbL-SHADE, and Tb-jSO were
clearly better than the original algorithms and the advanced DISH and jDE100 in 10D, 15D, and 20D.
But Tb-SHADE did not perform as well as SHADE in 5D and did not perform as well as DISH in 5D,
10D and 20D. In addition, the j2020 algorithm delivered the best performance and ranked first in 10D,
15D and 20D and one of the improved versions, TbL-SHADE, only delivered the best performance
and ranked first in 5D. And jDE100 (winner of CEC2019), which ranks last in Tables 35–38, did not
seem suitable for CEC2020. Table 39 shows that the null hypothesis was rejected in all dimensions,
and thus the Friedman ranking was correct. All in all, the three improved algorithms obtained good
optimization results in contrast to the original algorithm as well as the advanced DISH and jDE100
algorithms but were slightly worse than the advanced j2020 algorithm.

Mathematics 2020, 8, 1565 24 of 26

7. Conclusions

In this paper, a relatively simple and direct method using turning-based mutation was proposed
and tested on Single Objective Bound Constrained Numerical Optimization (CEC2020) benchmark sets
in 5, 10, 15, and 20 dimensions against the SHADE, L-SHADE, and jSO algorithms. The basic thought
of the proposed method is to change the direction of mutation under certain conditions to maintain the
population diversity and a longer exploration phase. It can thus avoid premature convergence and
escape the local optimum to get better optimization results. The results of experiments showed that
this method is effective on CEC2020 benchmark sets in 10, 15, and 20 dimensions. The strong point of
the proposed method is that it can be applied to variants of SHADE easily. A disadvantage is that it
increases the time complexity and its effectiveness lacks theoretical proof. Our future research in the
area will focus on further experiments, and on applying the proposed method to more algorithms.
For example, the improved method may be useful for some practical problems featuring constraints.

Author Contributions: Conceptualization, H.K.; methodology, H.K.; project administration, L.J. and Y.S.; software,
X.S.; validation, X.S. and Q.C.; visualization, L.J. and Q.C.; formal analysis, H.K.; investigation, Q.C.; resources,
Y.S.; data curation, L.J.; writing—original draft preparation, L.J.; writing—review and editing, H.K. and X.S.;
supervision: X.S.; funding acquisition: Y.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by National Natural Science Foundation of China, grant number 61663046,
61876166. This research was funded by Open Foundation of Key Laboratory of Software Engineering of Yunnan
Province, grant number 2015SE204.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Storn, R.; Price, K. Differential evolution–a simple and efficient heuristic for global optimization over
continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [CrossRef]

2. Eltaeib, T.; Mahmood, A. Differential evolution: A survey and analysis. Appl. Sci. 2018, 8, 1945. [CrossRef]
3. Arafa, M.; Sallam, E.A.; Fahmy, M. An enhanced differential evolution optimization algorithm. In Proceedings

of the 2014 Fourth International Conference on Digital Information and Communication Technology and its
Applications (DICTAP), Bangkok, Thailand, 6–8 May 2014; pp. 216–225.

4. Awad, N.H.; Ali, M.Z.; Suganthan, P.N. Ensemble sinusoidal differential covariance matrix adaptation
with Euclidean neighborhood for solving CEC2017 benchmark problems. In Proceedings of the 2017 IEEE
Congress on Evolutionary Computation (CEC), San Sebastian, Spain, 5–8 June 2017; pp. 372–379.

5. Bujok, P.; Tvrdík, J. Adaptive differential evolution: SHADE with competing crossover strategies. In Proceedings
of the International Conference on Artificial Intelligence and Soft Computing, Zakopane, Poland, 14–18 June
2015; pp. 329–339.

6. Bujok, P.; Tvrdík, J.; Poláková, R. Evaluating the performance of shade with competing strategies on CEC
2014 single-parameter test suite. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation
(CEC), Vancouver, BC, Canada, 24–29 July 2016; pp. 5002–5009.

7. Liu, X.-F.; Zhan, Z.-H.; Zhang, J. Dichotomy guided based parameter adaptation for differential evolution.
In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, Madrid, Spain,
11–15 July 2015; pp. 289–296.

8. Liu, Z.-G.; Ji, X.-H.; Yang, Y. Hierarchical differential evolution algorithm combined with multi-cross
operation. Expert Syst. Appl. 2019, 130, 276–292. [CrossRef]

9. Mohamed, A.W.; Hadi, A.A.; Fattouh, A.M.; Jambi, K.M. LSHADE with semi-parameter adaptation hybrid
with CMA-ES for solving CEC 2017 benchmark problems. In Proceedings of the 2017 IEEE Congress on
Evolutionary Computation (CEC), San Sebastian, Spain, 5–8 June 2017; pp. 145–152.

10. Poláková, R.; Tvrdík, J.; Bujok, P. L-SHADE with competing strategies applied to CEC2015 learning-based
test suite. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver,
BC, Canada, 24–29 July 2016; pp. 4790–4796.

http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.3390/app8101945
http://dx.doi.org/10.1016/j.eswa.2019.04.040

Mathematics 2020, 8, 1565 25 of 26

11. Poláková, R.; Tvrdík, J.; Bujok, P. Evaluating the performance of L-SHADE with competing strategies on
CEC2014 single parameter-operator test suite. In Proceedings of the 2016 IEEE Congress on Evolutionary
Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016; pp. 1181–1187.

12. Sallam, K.M.; Sarker, R.A.; Essam, D.L.; Elsayed, S.M. Neurodynamic differential evolution algorithm
and solving CEC2015 competition problems. In Proceedings of the 2015 IEEE Congress on Evolutionary
Computation (CEC), Sendai, Japan, 25–28 May 2015; pp. 1033–1040.

13. Viktorin, A.; Pluhacek, M.; Senkerik, R. Network based linear population size reduction in SHADE.
In Proceedings of the 2016 International Conference on Intelligent Networking and Collaborative Systems
(INCoS), Ostrawva, Czech Republic, 7–9 September 2016; pp. 86–93.

14. Viktorin, A.; Pluhacek, M.; Senkerik, R. Success-history based adaptive differential evolution algorithm
with multi-chaotic framework for parent selection performance on CEC2014 benchmark set. In Proceedings
of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016;
pp. 4797–4803.

15. Viktorin, A.; Senkerik, R.; Pluhacek, M.; Kadavy, T. Distance vs. Improvement Based Parameter Adaptation
in SHADE. In Artificial Intelligence and Algorithms in Intelligent Systems; Springer: Berlin/Heidelberg, Germany,
2019; pp. 455–464.

16. Viktorin, A.; Senkerik, R.; Pluhacek, M.; Kadavy, T.; Zamuda, A. Distance based parameter adaptation for
differential evolution. In Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence
(SSCI), Honolulu, HI, USA, 27 November–1 December 2017; pp. 1–7.

17. Zhao, F.; He, X.; Yang, G.; Ma, W.; Zhang, C.; Song, H. A hybrid iterated local search algorithm with adaptive
perturbation mechanism by success-history based parameter adaptation for differential evolution (SHADE).
J. Eng. Optim. 2020, 52, 367–383. [CrossRef]

18. Al-Dabbagh, R.D.; Neri, F.; Idris, N.; Baba, M.S. Algorithmic design issues in adaptive differential evolution
schemes: Review and taxonomy. Swarm Evol. Comput. 2018, 43, 284–311. [CrossRef]

19. Tanabe, R.; Fukunaga, A. Success-history based parameter adaptation for differential evolution. In Proceedings
of the 2013 IEEE Congress on Evolutionary Computation, Cancun, Mexico, 20–23 June 2013; pp. 71–78.

20. Zhang, J.; Sanderson, A.C. JADE: Adaptive differential evolution with optional external archive. IEEE Trans.
Evol. Comput. 2009, 13, 945–958. [CrossRef]

21. Tanabe, R.; Fukunaga, A.S. Improving the search performance of SHADE using linear population size
reduction. In Proceedings of the 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, China,
6–11 July 2014; pp. 1658–1665.

22. Guo, S.-M.; Tsai, J.S.-H.; Yang, C.-C.; Hsu, P.-H. A self-optimization approach for L-SHADE incorporated
with eigenvector-based crossover and successful-parent-selecting framework on CEC 2015 benchmark set.
In Proceedings of the 2015 IEEE Congress on Evolutionary Computation (CEC), Sendai, Japan, 25–28 May
2015; pp. 1003–1010.

23. Awad, N.H.; Ali, M.Z.; Suganthan, P.N.; Reynolds, R.G. An ensemble sinusoidal parameter adaptation
incorporated with L-SHADE for solving CEC2014 benchmark problems. In Proceedings of the 2016 IEEE
Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016; pp. 2958–2965.

24. Brest, J.; Maučec, M.S.; Bošković, B. Single objective real-parameter optimization: Algorithm jSO. In Proceedings
of the 2017 IEEE Congress on Evolutionary Computation (CEC), San Sebastian, Spain, 5–8 June 2017;
pp. 1311–1318.

25. Piotrowski, A.P.; Napiorkowski, J.J. Step-by-step improvement of JADE and SHADE-based algorithms:
Success or failure? Swarm Evol. Comput. 2018, 43, 88–108. [CrossRef]

26. Piotrowski, A.P. L-SHADE optimization algorithms with population-wide inertia. Inf. Sci. 2018, 468, 117–141.
[CrossRef]

27. Stanovov, V.; Akhmedova, S.; Semenkin, E. LSHADE algorithm with rank-based selective pressure strategy
for solving CEC 2017 benchmark problems. In Proceedings of the 2018 IEEE Congress on Evolutionary
Computation (CEC), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8.

28. Brest, J.; Maučec, M.S.; Bošković, B. The 100-Digit Challenge: Algorithm jDE100. In Proceedings of the 2019
IEEE Congress on Evolutionary Computation (CEC), Wellington, New Zealand, 10–13 June 2019; pp. 19–26.

29. Brest, J.; Maučec, M.S.; Bošković, B. Differential Evolution Algorithm for Single Objective Bound-Constrained
Optimization: Algorithm j2020. In Proceedings of the 2020 IEEE Congress on Evolutionary Computation
(CEC), Glasgow, UK, 19–24 July 2020; pp. 1–8.

http://dx.doi.org/10.1080/0305215X.2019.1595611
http://dx.doi.org/10.1016/j.swevo.2018.03.008
http://dx.doi.org/10.1109/TEVC.2009.2014613
http://dx.doi.org/10.1016/j.swevo.2018.03.007
http://dx.doi.org/10.1016/j.ins.2018.08.030

Mathematics 2020, 8, 1565 26 of 26

30. Suganthan, P.N. Particle swarm optimiser with neighbourhood operator. In Proceedings of the 1999 Congress on
Evolutionary Computation-CEC99 (Cat. No. 99TH8406), Washington, DC, USA, 6–9 July 1999; pp. 1958–1962.

31. Das, S.; Maity, S.; Qu, B.-Y.; Suganthan, P.N. Real-parameter evolutionary multimodal optimization—
A survey of the state-of-the-art. Swarm Evol. Comput. 2011, 1, 71–88. [CrossRef]

32. Mezura-Montes, E.; Coello, C.A.C. Constraint-handling in nature-inspired numerical optimization:
Past, present and future. Swarm Evol. Comput. 2011, 1, 173–194. [CrossRef]

33. Neri, F.; Cotta, C. Memetic algorithms and memetic computing optimization: A literature review.
Swarm Evol. Comput. 2012, 2, 1–14. [CrossRef]

34. Neri, F.; Tirronen, V. Recent advances in differential evolution: A survey and experimental analysis.
Artif. Intell. Rev. 2010, 33, 61–106. [CrossRef]

35. Zamuda, A.; Brest, J. Self-adaptive control parameters’ randomization frequency and propagations in
differential evolution. Swarm Evol. Comput. 2015, 25, 72–99. [CrossRef]

36. Zhou, A.; Qu, B.-Y.; Li, H.; Zhao, S.-Z.; Suganthan, P.N.; Zhang, Q. Multiobjective evolutionary algorithms:
A survey of the state of the art. Swarm Evol. Comput. 2011, 1, 32–49. [CrossRef]

37. Piotrowski, A.P. Review of differential evolution population size. Swarm Evol. Comput. 2017, 32, 1–24. [CrossRef]
38. Opara, K.R.; Arabas, J. Differential Evolution: A survey of theoretical analyses. Swarm Evol. Comput. 2019,

44, 546–558. [CrossRef]
39. Poikolainen, I.; Neri, F.; Caraffini, F. Cluster-based population initialization for differential evolution

frameworks. Inf. Sci. 2015, 297, 216–235. [CrossRef]
40. Weber, M.; Neri, F.; Tirronen, V. A study on scale factor/crossover interaction in distributed differential

evolution. Artif. Intell. Rev. 2013, 39, 195–224. [CrossRef]
41. Zaharie, D. Influence of crossover on the behavior of differential evolution algorithms. Appl. Soft Comput.

2009, 9, 1126–1138. [CrossRef]
42. Yue, C.; Price, K.; Suganthan, P.; Liang, J.; Ali, M.; Qu, B.; Awad, N.; Biswas, P. Problem definitions and

evaluation criteria for the CEC 2020 special session and competition on single objective bound constrained
numerical optimization. In Proceedings of the 2020 IEEE Congress on Evolutionary Computation (CEC),
Glasgow, UK, 19–24 July 2020.

43. Piotrowski, A.P.; Napiorkowski, J.J. Some metaheuristics should be simplified. Inf. Sci. 2018, 427, 32–62.
[CrossRef]

44. Viktorin, A.; Senkerik, R.; Pluhacek, M.; Kadavy, T.; Zamuda, A. Distance based parameter adaptation for
success-history based differential evolution. Swarm Evol. Comput. 2019, 50, 100462. [CrossRef]

45. Caraffini, F.; Kononova, A.V.; Corne, D. Infeasibility and structural bias in differential evolution. Inf. Sci.
2019, 496, 161–179. [CrossRef]

46. Awad, N.; Ali, M.; Liang, J.; Qu, B.; Suganthan, P.; Definitions, P. Evaluation Criteria for the CEC 2017 Special
Session and Competition on Single Objective Real-Parameter Numerical Optimization. In Proceedings of the
2017 IEEE Congress on Evolutionary Computation (CEC), San Sebastian, Spain, 5–8 June 2017.

47. Brest, J.; Maučec, M.S.; Bošković, B. iL-SHADE: Improved L-SHADE algorithm for single objective
real-parameter optimization. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC),
Vancouver, BC, Canada, 24–29 July 2016; pp. 1188–1195.

48. Rahnamayan, S.; Tizhoosh, H.R.; Salama, M.M. Opposition-based differential evolution. IEEE Trans.
Evol. Comput. 2008, 12, 64–79. [CrossRef]

49. Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial
databases with noise. In KDD-96 Proceedings; AAAI: Menlo Park, CA, USA, 1996; pp. 226–231.

50. Deza, M.M.; Deza, E. Encyclopedia of distances. In Encyclopedia of Distances; Springer: Berlin/Heidelberg,
Germany, 2009; pp. 1–583.

51. Poláková, R.; Tvrdík, J.; Bujok, P.; Matoušek, R. Population-size adaptation through diversity-control
mechanism for differential evolution. In Proceedings of the MENDEL, 22th International Conference on Soft
Computing, Brno, Czech Republic, 8–10 June 2016; pp. 49–56.

52. Demšar, J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7, 1–30.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.swevo.2011.05.005
http://dx.doi.org/10.1016/j.swevo.2011.10.001
http://dx.doi.org/10.1016/j.swevo.2011.11.003
http://dx.doi.org/10.1007/s10462-009-9137-2
http://dx.doi.org/10.1016/j.swevo.2015.10.007
http://dx.doi.org/10.1016/j.swevo.2011.03.001
http://dx.doi.org/10.1016/j.swevo.2016.05.003
http://dx.doi.org/10.1016/j.swevo.2018.06.010
http://dx.doi.org/10.1016/j.ins.2014.11.026
http://dx.doi.org/10.1007/s10462-011-9267-1
http://dx.doi.org/10.1016/j.asoc.2009.02.012
http://dx.doi.org/10.1016/j.ins.2017.10.039
http://dx.doi.org/10.1016/j.swevo.2018.10.013
http://dx.doi.org/10.1016/j.ins.2019.05.019
http://dx.doi.org/10.1109/TEVC.2007.894200
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	DE SHADE L-SHADE and jSO
	Differential Evolution
	SHADE
	Initialization
	Mutation
	Crossover
	Selection
	Historical Memory Update

	Linear Decrease in Population Size: L-SHADE
	Weighted Mutation Strategy with Parameterization Enhancement: jSO

	Turning-Based Mutation
	Experimental Settings
	Cluster Analysis
	Population Diversity

	Results
	Results and Discussion
	Conclusions
	References

