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Abstract: Elephant herding optimization (EHO) is a nature-inspired metaheuristic optimization
algorithm based on the herding behavior of elephants. EHO uses a clan operator to update the distance
of the elephants in each clan with respect to the position of a matriarch elephant. The superiority of
the EHO method to several state-of-the-art metaheuristic algorithms has been demonstrated for many
benchmark problems and in various application areas. A comprehensive review for the EHO-based
algorithms and their applications are presented in this paper. Various aspects of the EHO variants for
continuous optimization, combinatorial optimization, constrained optimization, and multi-objective
optimization are reviewed. Future directions for research in the area of EHO are further discussed.

Keywords: elephant herding optimization; engineering optimization; metaheuristic; constrained
optimization; multi-objective optimization

1. Introduction

The rapid growth of the size and complexity of optimization problems implies that the traditional
optimization algorithms are becoming more uncertain for solving these problems [1]. Metaheuristic
algorithms [2–4] have proved to be a viable solution to this challenge. Inspired by nature, these strong
metaheuristic algorithms are applied to solve NP-hard problems, such as flow shop scheduling [5–9],
image encryption [10–12], feature selection [13–15], facial feature detection [16,17], path planning [18,19],
cyber-physical social systems [20,21], texture discrimination [22], factor evaluation [23], saliency
detection [24], classification [25], engineering optimization [26], object extraction [27], gesture
segmentation [28], economic load dispatch [29], shape design [30], big data and large-scale
optimization [31], signal processing [32], multi-objective and many-objective optimization [33–35], unit
commitment [36], vehicle routing [37,38], and the knapsack problem [39,40]. Some of the well-known
methods in this area are genetic algorithms (GAs) [41], particle swarm optimization (PSO) [42–45],
differential evolution (DE) [19,46,47], monarch butterfly optimization (MBO) [48–52], artificial bee
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colonies (ABCs) [53], earthworm optimization algorithms (EWAs) [54], ant colony optimization
(ACO) [55], cuckoo search (CS) [56–62], krill herd (KH) [63–67], firefly algorithms (FAs) [68–73],
simulated annealing (SA) [74], intelligent water drop (IWD) [75], water cycle algorithms (WCAs) [76],
moth search (MS) [77], monkey algorithms (MAs) [78], evolutionary strategy (ES) [79], free search
(FS) [80], probability-based incremental learning (PBIL) [81], biogeography-based optimization
(BBO) [82–85], dragonfly algorithms (DAs) [86], interior search algorithms (ISAs) [87], brain storm
optimization (BSO) [88,89], bat algorithms (BAs) [18,90–97], stud GAs (SGAs) [98], harmony search
(HS) [99–102], fireworks algorithms (FWAs) [103], and chicken swarm optimization (CSO) [104].

Based on the herding behavior of elephants, a new swarm intelligence-based global optimization
algorithm, namely elephant herding optimization (EHO), was proposed by Wang et al. [105]. Two special
operators, a clan updating operator and a separating operator, are included in EHO. The elephants
in each clan are updated with respect to their current position and the position of the matriarch.
The acceptable performance of EHO has drawn much attention from scholars and engineers. In this
paper, a comprehensive review for the EHO-based algorithms and their applications are presented.
The remainder of this paper is organized as follows. The main steps of the EHO is detailed in Section 2.
Improved EHO algorithm variants are presented in Section 3. Section 4 describes the EHO applications
for solving engineering optimization problems. Finally, Section 5 presents a conclusion and suggestions
for future work.

2. Historical Development of Elephant Herding Optimization

2.1. Elephant Herding Optimization Research Studies

The EHO algorithm with the herding behavior of elephant groups has received
significant attention from scholars [105]. Ninety-three related studies have been published in
journals/dissertations/conferences up to 23 April 2020 (Figure 1) since EHO was proposed in 2015.
Among these 93 papers, 2 papers were published in 2015 and 2016, 14 papers were published in 2017,
21 papers were published in 2018, and 32 and 24 papers were published in 2019 and 2020, respectively.
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2.2. Basics of Elephant Herding Optimization

Elephants, as social creatures, live in social structures of females and calves. An elephant clan
is headed by a matriarch and composed of a number of elephants. Female members like to live
with family members, while the male members tend to live elsewhere. They will gradually become
independent of their families until they leave their families completely. The population of all elephants
is shown in Figure 2. The EHO technique proposed by Wang et al. in 2015 [105] was developed after
studying natural elephant herding behavior. The following assumptions are considered in EHO.
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(1) Some clans with fixed numbers of elephants comprise the elephant population.
(2) A fixed number of male elephants will leave their family group and live solitarily far away

from the main elephant group in each generation.
(3) A matriarch leads the elephants in each clan.

2.2.1. Clan-updating Operator

According to the natural habits of elephants, a matriarch leads the elephants in each clan. Therefore,
the new position of each elephant ci is influenced by matriarch ci. The elephant j in clan ci can be
calculated by Equation (1).

xnew,ci, j = xci, j + a× (xbest,ci − xci, j) × r (1)

where xnew,ci,j and xci,j present the new position and old position for elephant j in clan ci, respectively.
xbest,ci is matriarch ci which represents the best elephant in the clan. a ∈ [0,1] indicates a scale factor,
r ∈ [0,1]. The best elephant can be calculated by Equation (2) for each clan.

xnew,ci, j = β× xcenter,ci (2)

where β ∈ [0,1] represents a factor which determines the influence of the xcenter,ci on xnew,ci,j. xnew,ci,j is
the new individual. xcenter,ci is the center individual of clan ci. It can be calculated by Equation (3) for
the d-th dimension.

xcenter,ci,d =
1

nci
×

nci∑
j=1

xci, j,d (3)

where 1 ≤ d ≤ D and nci indicate the number of elephants in clan ci. xci,j,d represents the d-th dimension
of elephant individual xci,j. xcenter,ci is the center of clan ci and it can be updated by Equation (3).

2.2.2. Separating Operator

The separating process whereby male elephants leave their family group can be modeled into
separating operator when solving optimization problems. The separating operator is implemented by
the elephant individual with the worst fitness in each generation, as shown in Equation (4).

xworst,ci = xmin + (xmax − xmin + 1) × rand (4)
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where xmax represents the upper bound of the individual and xmin indicates lower bound of the
individual. xworst,ci indicates the worst individual in clan ci. Rand [0, 1] is a stochastic distribution
between 0 and 1.

According to the description of the clan-updating operator and separating operator, the mainframe
of EHO is summarized. The corresponding flowchart is shown as follows. MaxGen is the maximum
generation. The MATLAB code of EHO can be found on the website: https://www.mathworks.com/

matlabcentral/fileexchange/53486. The basic steps of the EHO is shown as follows (Algorithm 1).
The corresponding flowchart can also be seen in Figure 3.Mathematics 2020, 8, x FOR PEER REVIEW 5 of 25 
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Algorithm 1. Elephant herding optimization

(1) Begin
(2) Initialization. Set the initialize iterations G = 1; initialize the population P randomly; set maximum
generation MaxGen.
(3) While stopping criterion is not met do
(4) Sort the population according to fitness of individuals.
(5) For all clans ci do
(6) For elephant j in the clan ci do
(7) Generate xnew, ci,j and update xci,j by Equation (1).
(8) If xci,j = xbest,ci then
(9) Generate xnew, ci,j and update xci,j by Equation (2).
(10) End if
(11) End for
(12) End for
(13) For all clans ci do
(14) Replace the worst individual ci by Equation (4).
(15) End for
(16) Evaluate each elephant individual according to its position.
(17) T = T + 1.
(18) End while
(19) End.

2.2.3. Analysis of Algorithm Complexity

The computational complexity of the EHO algorithm is analyzed according to the steps in the
EHO algorithm. Let the population size and dimension be NP and D, respectively. Obviously,
sort the population according to the fitness of individuals in step (4) with time complexity O(NP).
In steps (5)–(12), execute clan-updating operator for all clans ci with time complexity O(NP × D).
In steps (13)–(15), execute separating operator for all clans ci with time complexity O(NP). Evaluate
each elephant individual according to its position in step (16) with time complexity O(NP). To do so,
the total time complexity of elephant herding optimization is O(T × NP × D). From the above results,
after omitting the low-order terms, the total time complexity of the EHO algorithm is O(T × NP × D),
which is only related to T, NP, and D.

3. Different Variants of EHO

Several EHO variants have been proposed to solve different optimization problems. The variants
of EHO can be generally divided into three groups: improved EHO algorithms, hybrid EHO algorithms,
and variants of EHO.

3.1. Improved EHO Algorithms

A list of the improved EHO algorithms is given in Table 1 and Figure 4. An overview of each of
these methods is given below.

3.1.1. Chaotic EHO

Tuba et al. [106] proposed a new EHO algorithm with chaos theory called CEHO to solve
unconstrained global optimization problems. In CEHO, two different chaotic maps are introduced
into the EHO algorithm. Compared with 15 standard benchmark functions from IEEE Congress on
Evolutionary Computation (CEC) 2013, the CEHO algorithm outperforms the basic EHO and PSO in
almost all cases.
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Table 1. The improved EHO algorithms.

Name Author Reference

Chaotic elephant herding optimization (CEHO) Tuba et al. [106]
EHO with individual updating strategies Li et al. [107]

EHO with Lévy flight (LFEHO) Xu et al. [108]
Improved elephant herding optimization (IEHO) Xu et al. [109]

Multi-search elephant herding optimization (Multi-EHO) Hakli et al. [110]
k-means EHO Tuba et al. [111]

Dynamic Cauchy mutation EHO (EHO-DCM) Chakraborty et al. [112]
Adaptive whale elephant herding optimization (AWEHO) Chowdary et al. [113]Mathematics 2020, 8, x FOR PEER REVIEW 6 of 25 

 

 

Figure 4. Different variants of EHO. 

Table 1. The improved EHO algorithms. 

Name Author Reference 
Chaotic elephant herding optimization (CEHO) Tuba et al. [106] 

EHO with individual updating strategies Li et al. [107] 
EHO with Lévy flight (LFEHO) Xu et al. [108] 

Improved elephant herding optimization (IEHO) Xu et al. [109] 
Multi-search elephant herding optimization (Multi-EHO) Hakli et al. [110] 

k-means EHO Tuba et al. [111] 
Dynamic Cauchy mutation EHO (EHO-DCM) Chakraborty et al. [112] 

Adaptive whale elephant herding optimization (AWEHO) Chowdary et al. [113] 

3.1.1. Chaotic EHO 

Tuba et al. [106] proposed a new EHO algorithm with chaos theory called CEHO to solve 
unconstrained global optimization problems. In CEHO, two different chaotic maps are introduced 
into the EHO algorithm. Compared with 15 standard benchmark functions from IEEE Congress on 
Evolutionary Computation (CEC) 2013, the CEHO algorithm outperforms the basic EHO and PSO in 
almost all cases. 

Different 
variants of 

EHO

Improved EHO 
algorithms

Chaotic EHO [102]

EHO with individual updating strategies 
[103]

Lévy-flight EHO [104-105]

Multi-search EHO [106]

K-means EHO [107]

Oppositional-based learning EHO [108]

Adaptive EHO [109]

Hybrid EHO 
algorithms

CBEHO, ATEHO, and BIEHO [110]

EEHO-ElShaarawy [111]

EEHO-Ismaeel [112]

Fuzzy logic EHO [113]

Hybrid EHO (EHO and GWO) [114]

Hybrid EHO (GA and EHO) [115]

Limit control parameter EHO [116]

Extreme learning machine EHO [117]

Global and local search EHO [118]

Variants of EHO
Binary EHO [119]

Multi-objective EHO [120-121]

Figure 4. Different variants of EHO.

3.1.2. EHO with Individual Updating Strategies

Li et al. [107] incorporated six individual updating strategies into basic EHO. The experimental
results for sixteen test functions show that the proposed improved EHO variant significantly
outperformed basic EHO.
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3.1.3. Lévy Flight EHO

Xu et al. [108] applied an improved EHO algorithm with Lévy flight (LFEHO) to solve network
intrusion detection problems. The research results showed that the LFEHO algorithm increased the
accuracy rate of the network.

Xu et al. [109] proposed improved EHO (IEHO) to solve network intrusion detection problems,
which improved the classification performance of intrusion detection under the premise of ensuring
the accuracy rate and meeting the needs in real time. The experimental results showed that the IEHO
algorithm was superior to other algorithms (EHO [105], PSO [2], and MS [77]).

3.1.4. Multi-Search EHO

Hakli et al. [110] proposed new EHO with a multi-search strategy (multi-EHO). Fifteen different
benchmark functions were used to verify the effectiveness of multi-EHO. In addition, the proposed
multi-EHO was compared with the whale optimization algorithm (WOA) and the gray wolf optimizer
(GWO). The multi-EHO method was also superior to other competitive algorithms.

3.1.5. k-Means EHO

Tuba et al. [111] introduced data clustering into EHO in which the local search ability of EHO
was improved through k-means. The proposed k-means EHO was tested on six benchmark datasets.
The clustering results showed that k-means EHO found better clusters than other algorithms.

3.1.6. Oppositional-Based Learning EHO

Chakraborty et al. [112] proposed improved EHO with a dynamic Cauchy mutation (EHO-DCM)
to solve the multilevel image thresholding for image segmentation problems. In EHO-DCM,
oppositional-based learning (OBL) and DCM were introduced, in which OBL and DCM were employed
to accelerate the conventional and mitigate the premature convergence, respectively. The results were
compared with five metaheuristic algorithms (EHO [105], CSO [104], ABCs [53], BAs [91], and PSO [2]).
It was demonstrated that EHO-DCM provided promising performance in view of optimized fitness
value, feature similarity index, and structure similarity index.

3.1.7. Adaptive Whale EHO

Chowdary et al. [113] proposed a hybrid mixture model based on the adaptive whale EHO
(AWEHO) algorithm, which is the integration of three technologies: EHO [105], the whale optimization
algorithm (WOA), and the adaptive concept. In the proposed method, the AWEHO algorithm was
applied to perform optimal sensing by using the foraging behavior of whales and the herding behavior
of elephants. The analysis of the computational results indicated that the herding and foraging behavior
of the AWEHO achieved efficient spectrum sensing in the cognitive radio network.

3.2. Hybrid EHO Algorithms

The hybrid EHO algorithms are presented in Table 2. The details are included in the
following sections.

3.2.1. CBEHO, ATEHO, and BIEHO

Rashwan et al. [114] studied three approaches, which are cultural-based EHO (CBEHO),
alpha-tuning EHO (ATEHO), and biased initialization EHO (BIEHO), to enhance the performance of
standard EHO. A comparative experiment from CEC 2016 was done between three EHO approaches
and the other optimization methods. It was demonstrated that the performances of the three EHO
approaches were superior to other comparison methods. In order to further verify the performance of
the three EHO approaches, various experiments were carried out on engineering problems such as the
welded beam, gear train, continuous stirred tank reactor, and three-bar truss design problem.
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Table 2. The hybrid EHO algorithms.

Name Author Reference

Cultural-based EHO, alpha-tuning EHO, and biased initialization EHO
(CBEHO, ATEHO, and BIEHO) Rashwan et al. [114]

Enhanced elephant herding optimization (EEHO-ElShaarawy) ElShaarawy et al. [115]
Enhanced elephant herding optimization (EEHO-Ismaeel) Ismaeel et al. [116]

Fuzzy elephant herding optimization (FEHO) Veera et al. [117]
Elephant herding optimization and gray wolf optimization (EHGWO) Arora et al. [118]

Genetic algorithm and elephant herding optimization (GEHO) Bukhsh et al. [119]
Hybrid elephant herding optimization (HEHO) Ivana et al. [120]

Extreme learning machine and elephant herding optimization (ELM-EHO) Satapathy et al. [121]
Global and local search (GL-EHO) Hakli et al. [122]

3.2.2. EEHO-ElShaarawy

ElShaarawy et al. [115] used an enhanced elephant herding optimization (EEHO-ElShaarawy)
algorithm to overcome the fast convergence of EHO. The exploitation and exploration of
EEHO-ElShaarawy were achieved by separating operators with balanced control. EEHO-ElShaarawy
showed a better performance of convergence rate compared with basic EHO.

3.2.3. EEHO-Ismaeel

Ismaeel et al. [116] proposed another enhanced elephant herding optimization algorithm with a
constant function (EEHO-Ismaeel). In order to overcome the shortcomings of EHO. In EEHO-Ismaeel,
two operators, the clan and separating operator, improved the exploitation abilities of the EEHO-Ismaeel
algorithms. The CEC 2017 test benchmark functions were utilized to verify the performance of the three
EEHO-Ismaeel versions (EEHO15, EEHO20, and EEHO25). The experimental results demonstrated
that, in most cases, the EEHO-Ismaeel algorithms obtained better results compared with the other
competitive algorithms, such as the PSO, bird swarm algorithm (BSA), and ant lion optimization
(ALO) algorithms.

3.2.4. FEHO

Veera et al. [117] introduced a fuzzy logic controller into EHO and proposed improved fuzzy
EHO (FEHO) to maximize power point tracking (MPPT) for a hybrid wind–solar system. Simulation
results indicated that the MPPT using the proposed FEHO had better performance compared with the
other type of controllers, which efficiently tracked the maximum power point of the wind–solar power
systems even with variations in the climatic conditions.

3.2.5. EHGWO

Arora et al. [118] combined the advantages of EHO and GWO and proposed a hybrid algorithm
(EHGWO). In EHGWO, the optimal virtual machines (VMs) are selected and reallocated by using
a newly devised fitness function. The tasks for overloaded VMs are removed and assigned to VMs
without affecting the system performance, which performed a load balancing technique.

3.2.6. GEHO

Bukhsh et al. [119] proposed a hybrid algorithm called GEHO by combining a GA and EHO.
Based on the results, the developed GEHO approach was able to schedule the appliance efficiently,
which reduced maximum cost compared with EHO for home appliance optimization problems.

3.2.7. HEHO

Strumberger et al. [120] developed improved hybrid EHO, named HEHO, to solve the wireless
sensor network localization problem. The limit control parameter from the ABC algorithm was
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incorporated into EHO to control the process of diversification. The usefulness of HEHO was
demonstrated using different sizes of sensor networks from 25 to 150 target nodes. Based on the results,
the HEHO approach was able to obtain more consistent and accurate locations of the unknown target
nodes than other approaches.

3.2.8. ELM-EHO

Satapathy et al. [121] proposed a combination model named EHO-ELM with a combination of
the advantages of extreme learning machine (ELM) and EHO. In this model, EHO-ELM was used to
determine the input weights of an ELM model. EHO-ELM was tested on three different brain image
datasets. The results demonstrated that EHO-ELM outperformed the basic ELM model in the three
brain image datasets.

3.2.9. Global and Local Search EHO

Hakli et al. [122] developed a new EHO approach to solve constrained optimization problems.
The EHO variants (GL-EHO) were adapted to implement constrained optimization. Experimental
results showed that GL-EHO was capable of overtaking EHO.

3.3. Variants of EHO

Different variants of the EHO algorithm are presented in Table 3. The detailed methods are
presented herein.

Table 3. Different variants of EHO.

Name Author Reference

Binary EHO algorithm (BinEHO) Huseyin et al. [123]
Multi-objective clustering EHO algorithm (MOEHO) Jaiprakash et al. [124]

Improved and multi-objective EHO (IMOEHO) Meena et al. [125]

3.3.1. Binary EHO

Hakli et al. [123] proposed a new binary variant of EHO (BinEHO) for solving binary optimization
problems. Through a dimension rate (DR) parameter and mutation process, BinEHO strengthened the
compromise between exploitation and exploration. In order to prove the robustness and accuracy of
BinEHO, it was compared with various binary variants in three different binary optimization problems.
The results concluded that BinEHO outperformed the other binary algorithm variants.

3.3.2. Multi-Objective EHO

Jaiprakash et al. [124] presented a multi-objective clustering EHO (MOEHO) to solve
multi-objective optimization problems. Comparative results revealed that MOEHO provided superior
performance compared with (fast and elitist multiobjective genetic algorithm) NSGA-II and MOPSO
in eight cases. In addition, MOEHO was used to cluster the activities of human models. The results
showed that MOEHO succeeded in eight out of five case studies.

Meena et al. [125] presented improved multi-objective EHO (IMOEHO) to solve distribution
system optimization problems. In IMOEHO, two techniques (order of preference by similarity to
the ideal solution technique and improved EHO technique) were combined. The IMOEHO method
was implemented in three benchmark test distribution systems. It was concluded that the IMOEHO
method was very effective for optimizing multi-objective complex optimization problems.
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4. Engineering Optimization/Applications

The EHO algorithm has been successfully applied to engineering optimization problems since it
was proposed. A summary for EHO in engineering optimization is presented in Tables 4 and 5 and
Figure 5.

Table 4. A summary of the EHO applications in engineering optimization.

Category Problem/Application Author Ref.

Continuous optimization

Training artificial neural networks Moayedi et al. [126]

Selecting structure and weights for neural networks Kowsalya et al. [127]

Training neural networks Sahlol et al. [128]

Optimizing underwater sensor networks Sukhman et al. [129]

Unmanned aerial vehicle path planning Alihodzic et al. [130]

Clustering Rani et al. [131]
Jaiprakash et al. [132]

Support vector regression (SVR) classifier

Hassanien et al. [133]
Hassanien et al. [134]

Tuba et al. [135]
Tuba et al. [136]

Control problem Sambariya et al. [137]

4.1. Continuous Optimization

4.1.1. Neural Networks

Moayedi et al. [126] synthesized a new EHO-MLP ensemble with a multi-layer perceptron (MLP)
neural network to predict cooling load. The results revealed that EHO-MLP performed efficiently for
adjusting biases of the MLP and the neural weights. It also outperformed the ACO [55] and EHO [105]
optimization algorithms both in training and testing accuracies. Meanwhile, EHO-MLP took less time
than ACO [55] and EHO [105] with regard to the time-effectiveness of the models.

Kowsalya et al. [127] used EHO to optimize neural network weights. The performance of the
proposed method was evaluated on evaluation metrics. It was concluded that the proposed method
provided better accuracy than existing classifiers.

Sahlol et al. [128] applied EHO to neural networks to classify each cell for the acute lymphoblastic
leukemia problem. In the proposed method, the weights and biases of the network were updated by
the EHO algorithm. The research results showed that EHO outperformed other classification methods.

4.1.2. Underwater Sensor Networks

Kaur et al. [129] used EHO to solve underwater sensor networks optimization tasks. The research
outcomes indicated that the proposed approach showed better performance than other strategies for
most parameters.

4.1.3. Unmanned Aerial Vehicle Path Planning

Alihodzic et al. [130] considered an approximation algorithm, adjusted EHO (AEHO), to solve
the unmanned aerial vehicle (UAV) path planning problem. AEHO was used for adjusting the UAV
path planning problem and it was compared with other state-of-the-art algorithms. The simulation
experiments showed that AEHO obtained a safe flight path and was an excellent choice for the UAV
path planning problem.



Mathematics 2020, 8, 1415 11 of 25

4.1.4. Clustering

Rani et al. [131] proposed a new detection approach for dynamic protein complexes by using
Markov clustering with EHO (MC-EHO). The MC-EHO method divided the protein–protein interaction
(PPI) network into a set of dynamic sub-networks and employed the clustering analysis on every
sub-network. The experimental analysis was employed on 11 various widespread datasets and
four different benchmark databases. The results showed that MC-EHO surpassed various existing
approaches in terms of accuracy measures.

Jaiprakash et al. [132] formulated EHO to perform a clustering task by minimizing intra-cluster
distance. The simulation was verified on six benchmark datasets and three synthetic datasets.
The superior percentage accuracy of EHO was demonstrated by comparing it with other algorithms in
the form of box plots.

Table 5. A summary of the EHO applications in engineering optimization.

Category Problem/Application Author Ref.

Combinatorial
optimization

Traveling salesman problem Almufti et al. [138]

Knapsack Darmawan et al. [139]

Acoustic energy-based positioning Arora et al. [140]

Scheduling

Parasha et al. [141]
Cahig et al. [142]

Sarwar et al. [143]
Komal et al. [144]
Mohsin et al. [145]
Gholam et al. [146]
Fatima et al. [147]

Electrostatic powder coating process Pongchanun et al. [148]

Image safety model Shankar et al. [149]
Chibani et al. [150]

Image processing

Tuba et al. [151]
Shankar et al. [152]
Jayanth et al. [153]
Cardoso et al. [154]

Wireless sensor networks
Sérgio et al. [155]
Ivana et al. [156]
Kaur et al. [157]

Feature selection Xu et al. [158]

Optimal power flow problem
Mukherjee et al. [159]

S. Mani et al. [160]
Sambariya et al. [161]

Distribution systems Prasad et al. [162]
Vijay et al. [163]

Constrained
Optimization

Linear and nonlinear constrained optimization problems Ivana e et al. [164]
Economic dispatch problems Singh et al. [165]

Stochastic inequality constrained optimization problems Horng et al. [166]

Multi-objective
optimization

Quality of service (QoS) aware web service
composition optimization Sadouki et al. [167]

Civil engineering Adarsha et al. [168]
Structural optimization Malihe et al. [169]
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4.1.5. SVR Classifier

Hassanien et al. [133] introduced EHO to adjust the regression of emotional states for a support
vector regression (SVR) repressor (SVR-EHO). In this method, the feature selection was adapted and
the SVR classifier parameters were adjusted by using EHO, which provided a fast regression rate.
The SVR-EHO approach was verified on the open database for emotion detection. The results of emotion
regression on the SVR classifier indicated that SVR-EHO significantly improved regression accuracy.

Hassanien et al. [134] used two technologies, EHO and SVM (EHO-SVM), to develop a hybrid
approach for automatic electrocardiogram (ECG) signal classification. The proposed approach included
three modules, which were the efficient preprocessing module, feature extraction module, and feature
classification module. EHO-SVM was utilized to optimize the features and parameters. The experiments
showed that EHO-SVM achieved accurate classification results in terms of five statistical indices.

Tuba et al. [135] used the EHO algorithm to adjust the SVM parameter. The proposed approach
was tested on standard datasets and the results were obtained by EHO and compared with two
other approaches, which were the GA [41] and the grid search method (Grid). The computational
experiments concluded that the EHO algorithm outperformed the GA [41] and Grid in the accuracy of
classification for the same test problems.

Tuba et al. [136] used the EHO algorithm to find the optimal parameters of the SVM. In the
proposed approach, the parameters of SVM were adjusted by EHO. Four different experiments based
on a standard dataset were carried out. The simulation results showed that the performance of the
proposed method achieved better results than the other strategies in all cases.
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4.1.6. PID Control

Sambariya et al. [137] used the EHO algorithm to adjust the parameters of the proportional integral
derivative (PID) controller, which minimized the change in frequency of a single-area non-reheat
thermal power plant. The experimental results showed that a controller based on EHO had a better
performance than other conventional PID controllers.

4.2. Combinatorial Optimization

4.2.1. Traveling Salesman Problem

Almufti et al. [138] introduced EHO to solve symmetric traveling salesman problems (STSPs).
The experiment results indicated that EHO was adapted to solve STSPs by comparing the optimal
solutions of the traveling salesman problem library (TSPLIB).

4.2.2. Knapsack

Darmawan et al. [139] used the EHO algorithm to solve 0–1 knapsack problems. The analysis of
the computational results indicated that EHO outperformed other algorithms for convergence rate and
global search ability when more and more iterations were done.

4.2.3. Acoustic Energy-Based Positioning

Correia et al. [140] used the EHO algorithm to validate and adjust the decay acoustic model for
acoustic energy-based positioning problems. The implementation results for both simulation results
and real measurements showed EHO had a good alignment with conducted simulations and was
successfully applied to acoustic energy-based positioning problems.

4.2.4. Scheduling

Parashar et al. [141] used modified elephant herding optimization (MEHO) to model uncertain
renewable generation. The analysis of the computational results indicated that the proposed MEHO
approach had significant effects on the operational management of the microgrid compared with the
deterministic approach.

Cahig et al. [142] proposed a decision tool based on EHO for a virtual power plant (VPP) scheduling
problem. The algorithm was illustrated for a test system with a VPP. The results showed that the
canonical variant of EHO yielded the optimal scheduling, which suggested that it performed well as a
decision support tool to the VPP operator.

Sarwar et al. [143] used EHO to solve a home energy management system (HEMS) scheduling
problem. Simulations of a single home with 12 appliances were performed and the results showed
the EHO technique performed better than the other reported algorithms in reducing the waiting time
and cost.

Parvez et al. [144] used two optimizing techniques, EHO [105] and harmony search algorithm
(HSA) [99], to evaluate the performance of a home energy management system (HEMS). The simulation
results revealed that the proposed method was more effective in terms of electricity cost.

Mohsin et al. [145] implemented the EHO technique to solve the scheduling of smart home
appliances. The simulation results revealed that EHO performed much better in terms of total cost and
peak load reduction for different operation time intervals (OTIs). In addition, EHO with shorter OTIs
provided better results compared with longer OTIs.

Gholami et al. [146] developed improved EHO to solve large instances for hybrid flow shop
scheduling problems. The performance of the proposed algorithm was compared with two available
algorithms, which were SA and shuffled frog-leaping algorithm (SFLA). Based on the results,
the developed approach outperformed the other algorithms.
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Fatima et al. [147] developed an efficient optimization method via the hybridization of two
optimization algorithms, namely EHO [105] and the FA [69]. This method was used to reduce the
electricity cost for home energy management controller problems. The results indicated that the
proposed hybrid optimization technique performed more efficiently for achieving the lowest cost and
maximizing consumer satisfaction.

4.2.5. Electrostatic Powder Coating Process

Luangpaiboon et al. [148] proposed a modified simplex EHO algorithm with multiple performance
measures (MEHO). MEHO was used to solve the optimization of electrostatic powder coating process
parameter optimization problems. According to some performance measures, two phases based on
the response surface methodology were applied to study the EHO parameter levels. The simulation
experimental results demonstrated that MEHO was more efficient compared with the previous
operating condition.

4.2.6. Image Safety Model

Shankar et al. [149] proposed an image safety model based on the EHO algorithm. Two keys,
a general public key and a non-public key, were optimized by utilizing adaptive EHO (AEHO).
The device was optimized by a hybrid algorithm applying encryption and optimization techniques
which mixed the functionality of encryption and digital signatures. The experimental results indicated
that the confidentiality of the image was ultimately upheld.

Chibani et al. [150] introduced EHO into the quality of service (QoS) aware web service composition.
It was shown that the proposed method offered excellent performances compared with PSO in terms
of convergence speed, scalability, and fitness evaluations.

4.2.7. Image Processing

Tuba et al. [151] used the EHO algorithm to solved multilevel image thresholding problems based
on Kapur and Otsu’s criteria. The proposed algorithm was compared with four swarm intelligence
approaches. The experimental results concluded that the EHO algorithm successfully solved multilevel
thresholding problems and additionally had smaller variance.

Jino et al. [152] presented the short review of nature-inspired optimization algorithms, such as
EHO [105], BAs [91], ACO [55], ABCs [53], PSO [2], FAs [69], bumble bees mating (BBM), and CSO [104].
These algorithms were applied to advanced image processing fields.

Jayanth et al. [153] used the EHO algorithm to classify the high spatial resolution multispectral
image classification. According to the fitness function, EHO determines the information of class and
multispectral pixels. When compared with the SVM method, the experimental results of two datasets
demonstrated that the proposed method improved overall accuracy by 10.7% for dataset 1 and 6.63%
for dataset 2.

Cardoso et al. [154] used EHO to improve the search for the maximum correlation point of the
image. The search process was implemented in software based on an embedded general purpose
processor. The performance results showed that the proposed method outperformed other optimization
metaheuristics, which were PSO [2] and ES [79].

4.2.8. Wireless Sensor Networks

Correia et al. [155] applied the EHO algorithm to solve the energy-based source localization
problem for wireless sensors networks. The energy decay model between two sensor nodes was
matched through key optimized parameters of the EHO algorithm. Comparing the performance
between the proposed method and existing non-metaheuristic algorithms, EHO significantly reduced
the estimation error in environments with high noise power. In addition, EHO represented an excellent
balance between estimation accuracy and computational complexity.
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Strumberger et al. [156] solved localization problems for wireless sensor networks using
the EHO algorithm. According to the simulation results and comparative analysis with other
state-of-the-art algorithms, EHO found the coordinates of unknown nodes randomly deployed in the
monitoring field, which proved to be robust and efficient metaheuristics when tackling wireless sensor
network localization.

Kaur et al. [157] proposed a novel and energy-efficient approach based on EHO to improve the
span of energy in nodes of an underwater network. In the proposed approach, a dynamic cluster
head in underwater wireless networks was formed by the behavior of the elephants selecting their
heads. It was demonstrated that the EHO algorithm was a promising algorithm for tackling multiple
parameters of underwater networks.

4.2.9. Feature Selection

Xu et al. [158] proposed an improved elephant herding optimization (IEHO) algorithm for feature
selection in several datasets and distributed environments, which effectively reduced the running
time of the algorithm under the premise of ensuring classification accuracy. The experiments showed
that the classification efficiency of the IEHO algorithm significantly outperformed other optimization
algorithms, such as PSO [2] and EHO [105].

4.2.10. Optimal Power Flow

Dhillon et al. [159] applied EHO to mitigate frequency deviations under sudden variations in
demand on the automatic generation control of an interconnected power system. The outcomes of
the EHO-based automatic generation control was compared with PSO-based automatic generation
control. It was concluded that the settling time of the EHO-based strategy took less time than the
PSO-based strategy.

Kuchibhatla et al. [160] used an EHO algorithm to improve the power quality (PQ) and reduce
the harmonic distortion in a photovoltaic (PV) interconnected wind energy conversion system (WECS).
The performances of three methods (EHO [105], BAs [91], and FAs [69]) were evaluated. The obtained
results showed that the proposed method enhanced the performance of the grid-connected hybrid
energy system.

Sambariya et al. [161] used EHO to adjust the parameters of a PID controller for the load frequency
control of a single-area reheat power system. The solution results showed that the proposed technique
obtained better robustness compared with the PID controller.

4.2.11. Distribution Systems

Prasad et al. [162] used EHO to determine the optimal distributed generation (DG) unit size.
The proposed model was performed on two types of DG (DG operating at 0.9 power factor lag and DG
operating at unity power factor). The numerical results indicated that the EHO algorithm obtained
overall better results compared with other algorithms in terms of reducing power consumption.

Vijay et al. [163] applied the EHO technique to the optimal placement and sizing of distributed
generation on an electric distribution network. EHO was tested on a 5-bus radial distribution
system. The results indicated that the overloading of the equipment, active power, reactive power,
and production cost of electricity were reduced, which was more intelligent and precise for the
allocation of distributed generation in an electric distribution network.

4.3. Constrained Optimization

4.3.1. Linear and Nonlinear Constrained Optimization

Strumberger et al. [164] presented a hybridized elephant herding optimization (HEHO) algorithm
to solve constrained optimization problems. Thirteen standard constrained benchmark functions were
conducted for evaluating the efficiency and robustness of the HEHO algorithm. The simulation results
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were compared with other state-of-the-art algorithms, such as firefly algorithms, seeker optimization
algorithms, and self-adaptive penalty function genetic algorithms. The study results showed that the
proposed HEHO was more efficient than the other reported algorithms.

4.3.2. Economic Dispatch Problems

Economic-Based Dispatch Problem

Singh et al. [165] proposed a new modified EHO called MEHO. MEHO was further applied to
solve the optimization of linear as well as nonlinear cost functions for economic load dispatch problems.
The results obtained showed that the total operating cost obtained by MEHO was less than that of
EHO [105], PSO [2], and ACO [55]. The results showed that the MEHO methods had potential for
solving linear as well as nonlinear optimization problems.

Stochastic Inequality Constrained Optimization Problems

Horng et al. [166] presented a heuristic method coupling EHO with ordinal optimization (EHOO)
to resolve stochastic inequality constrained optimization problems. The proposed method utilized
an improved elephant herding optimization to achieve diversification with an accelerated optimal
computing budget allocation. The simulation experiment results were obtained by EHOO and
compared with three optimization methods (PSO [2], GAs [1], and ES [79]). The results showed that the
EHOO approach obtained higher computational efficiency than the other three comparative methods.

4.4. Multi-Objective Optimization

4.4.1. QoS Aware Web Service Composition Optimization

Sadouki et al. [167] proposed a new discrete multi-objective metaheuristic bio-inspired
pareto-based approach based on the EHO algorithm to solve the QoS aware web service composition
problem. Compared with the multi-objective particle swarm optimization (MOPSO) algorithm and
strength pareto evolutionary algorithm 2 (SPEA2), the results showed that the presented method
significantly outperformed MOPSO and SPEA2 in terms of set coverage and spacing metrics.

4.4.2. Civil Engineering

Adarsha et al. [168] introduced a hybridized technique named elephant herding optimization-based
artificial neural network (EHO-ANN). Furthermore, the complicated experimental procedures for
finding the elastic modulus of concrete was solved by the EHO-ANN. The performance of the
EHO-ANN algorithm was compared with that of linear regression, empirical formula, and test
correlation coefficient (CC). The results showed that the EHO-ANN was more accurate than other
methods in predicting the elastic modulus of concrete.

4.4.3. Structural optimization

Jafari et al. [169] combined the advantage of elephant herding optimization (EHO) and the cultural
algorithm (CA) and proposed a hybrid algorithm (EHOC). In EHOC, EHO was improved by using
the belief space defined by the cultural algorithm. The performance of the EHOC algorithm was
evaluated on eight mathematical optimization problems and four truss weight minimization problems.
The solution results showed that EHOC was capable of accelerating the convergence rate effectively
compared with the CA and EHO.

5. Conclusions and Future Directions

In this paper, tens of research articles related to the EHO algorithm were reviewed. We also
discussed the application of the EHO variants in continuous optimization, combinatorial optimization,
constrained optimization, and multi-objective optimization. Researchers improved the EHO algorithms



Mathematics 2020, 8, 1415 17 of 25

and successfully applied them to various optimization fields. This algorithm has proved to be a
promising tool for many optimization problems and engineering applications. However, several
aspects of the EHO method that should be further studied, and are as follows:

(1) Most researchers have merely focused on the optimization effects of EHO. There is not sufficient
explanation for theoretical analysis. Therefore, strengthening the theoretical analysis of EHO and the
mathematical model will remain a challenge in future research.

(2) Employing EHO to solve unsolved optimization problems, especially multi-objective
optimization problems, needs to be studied in more depth.

(3) Hybridizing EHO with other algorithm components, such as differential evolution and hill
climbing, is another interesting topic for future research [170].

(4) EHO has achieved some notable accomplishments in solving discrete and continuous
optimization problems. Therefore, expanding the application scope of EHO and designing suitable
optimization operators should be considered in future research.

(5) EHO has a lower level of constrained optimization than similar methods. This is undoubtedly
a shortcoming of EHO. Therefore, more research should be carried out to expand EHO for more
constrained optimization applications.
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