
mathematics

Article

Hybrid Annealing Krill Herd and Quantum-Behaved
Particle Swarm Optimization

Cheng-Long Wei 1 and Gai-Ge Wang 1,2,3,4,*
1 Department of Computer Science and Technology, Ocean University of China, Qingdao 266100, China;

weichenglong@stu.ouc.edu.cn
2 Institute of Algorithm and Big Data Analysis, Northeast Normal University, Changchun 130117, China
3 School of Computer Science and Information Technology, Northeast Normal University,

Changchun 130117, China
4 Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education,

Jilin University, Changchun 130012, China
* Correspondence: wgg@ouc.edu.cn

Received: 27 July 2020; Accepted: 17 August 2020; Published: 21 August 2020
����������
�������

Abstract: The particle swarm optimization algorithm (PSO) is not good at dealing with discrete
optimization problems, and for the krill herd algorithm (KH), the ability of local search is relatively poor.
In this paper, we optimized PSO by quantum behavior and optimized KH by simulated annealing, so
a new hybrid algorithm, named the annealing krill quantum particle swarm optimization (AKQPSO)
algorithm, is proposed, and is based on the annealing krill herd algorithm (AKH) and quantum
particle swarm optimization algorithm (QPSO). QPSO has better performance in exploitation and
AKH has better performance in exploration, so AKQPSO proposed on this basis increases the diversity
of population individuals, and shows better performance in both exploitation and exploration.
In addition, the quantum behavior increased the diversity of the population, and the simulated
annealing strategy made the algorithm avoid falling into the local optimal value, which made the
algorithm obtain better performance. The test set used in this paper is a classic 100-Digit Challenge
problem, which was proposed at 2019 IEEE Congress on Evolutionary Computation (CEC 2019), and
AKQPSO has achieved better performance on benchmark problems.

Keywords: swarm intelligence; simulated annealing; krill herd; particle swarm optimization; quantum

1. Introduction

With the development of modern technology, artificial intelligence is becoming more and more
important in society, and more and more mature, and can be used to deal with many problems
that cannot be solved by traditional methods, such as wind energy decision system (WEDS) [1]
and social cognitive radio network (SCRN) [2]. There are many kinds of classification methods; the
simplest classification method is divided into the traditional method and modern intelligent method [3].
The traditional optimization algorithms generally deal with structured problems. The algorithms are
deterministic and have only one global optimal solution. Meanwhile, the intelligent optimization
algorithms generally deal with a more general description of the problems, which is heuristic, and have
multiple extreme values. Intelligent optimization algorithms require certain strategies to prevent falling
into the local optimum and try to find the global optimum, such as scheduling [4–7], image [8–10], feature
selection [11–13] and detection [14,15], path planning [16,17], cyber-physical social system [18,19],
texture discrimination [20], factor evaluation [21], saliency detection [22], classification [23,24], object
extraction [25], gesture segmentation [26], economic load dispatch [27,28], shape design [29], big data
and large-scale optimization [30,31], signal processing [32], multi-objective optimization [33,34], big

Mathematics 2020, 8, 1403; doi:10.3390/math8091403 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-3295-8972
http://www.mdpi.com/2227-7390/8/9/1403?type=check_update&version=1
http://dx.doi.org/10.3390/math8091403
http://www.mdpi.com/journal/mathematics


Mathematics 2020, 8, 1403 2 of 23

data optimization [30,31], unit commitment [35], vehicle routing [36], knapsack problem [37–39], fault
diagnosis [40–42], and test-sheet composition [43]. Because intelligent algorithms are not strictly
dependent on the mathematical relationship, and because the problems that need to be solved are
becoming more and more complex, intelligent algorithms are widely used to solve various complex
optimization problems. As a result, the frequency of intelligent algorithms has exceeded that of
traditional algorithms. At present, some main intelligent algorithms are widely used, such as genetic
algorithm (GA) [44,45], particle swarm optimization algorithm (PSO) [46–48], krill herd (KH) [49–54],
ant colony optimization algorithm (ACO) [55–57], differential evolution algorithm (DE) [58,59], adaptive
island evolutionary algorithm (AIE) [60], and delayed start parallel evolutionary algorithm (DSPE) [61].

The swarm intelligence algorithms mainly come from the bionic idea, which is a set of methods
summarized by referring to the laws of life and predatory behavior of animals in the biological world.
A swarm intelligence algorithm is a kind of algorithm that works by studying the collective behavior
of animals, and the most famous swarm intelligence algorithms are particle swarm optimization
algorithm (PSO) [46] and ant colony optimization algorithm (ACO) [55]. An evolutionary algorithm
is mainly a kind of method obtained by studying the process of biological genetic change, and these
include genetic algorithm (GA) [44], genetic programming (GP) [62], evolutionary strategy (ES) [63,64],
differential evolution (DE) [58] and other algorithms are based on genes. The krill herd (KH) [49] and
quantum-behaved particle swarm optimization (QPSO) [65] algorithms mentioned in this paper belong
to the swarm intelligence algorithm. The KH algorithm has the advantages of simplicity, flexibility, and
high computational efficiency, and the QPSO algorithm has a relatively fast convergence speed, but
when they are used to solve the 100-Digit Challenge problems, they do not do well. Owing to the poor
local optimization ability of QPSO, it is easy to fall into the local optimal value, so it does not solve this
problem well. In order to study an algorithm with very high accuracy, as well as to simultaneously
optimize the exploitation and exploration and improve the accuracy of annealing krill quantum particle
swarm optimization (AKQPSO), we studied the KH algorithm with strong exploitation and the QPSO
algorithm with strong exploration. By combining their advantages, the new algorithm overcomes
their original shortcomings and has a strong ability in exploration and exploitation. We combine
the advantages of KH and QPSO, and optimize them, forming the annealing krill quantum particle
swarm optimization (AKQPSO) algorithm. The new algorithm solved the 100-Digit Challenge better.
Moreover, the study solved the problem of the poor accuracy of general algorithms, and exploitation
and exploration cannot achieve the optimal at the same time.

In this paper, the 100-Digit Challenge problem is difficult to solve by traditional methods, and
we can solve this problem better by using a swarm intelligence algorithm. In 2002, academician
Nick Trefethen of Oxford University and the Society for Industrial and Applied Mathematics (SIAM)
jointly developed the 100-Digit Challenge problem, which was proposed mainly to test high-precision
computing [18]. The challenge consists of ten problems, each of which needs to be accurate to ten
decimal places, with a total of 100 digits, so the problem is named the 100-Digit Challenge. However,
traditional methods need a lot of computation to solve this challenge, and they cannot get good results,
so we use swarm intelligence algorithm to solve these problems, and get satisfactory results.

The rest of paper is organized as follows. Most representative studies regarding the KH and QPSO
algorithm are reviewed in Section 2, and these two algorithms are introduced in Section 3. The proposed
algorithm is described in Section 4 and the experimental results of AKQPSO are presented in Section 5.
Section 6 provides the main conclusions and highlights future work.

2. Related Work

In order to illustrate the hybrid method, we introduced KH and PSO algorithms. In the following,
we will introduce the KH algorithm, PSO algorithm, and 100-Digit Challenge problem, respectively.



Mathematics 2020, 8, 1403 3 of 23

2.1. KH

At present, we have two kinds of optimizations for the KH algorithm [49]; one is to improve the
KH algorithm itself, and the other is to improve the KH by other excellent operators or algorithms.
Wang et al. [54] changed the parameters of the KH algorithm and improved the speed of global
convergence through chaos theory. Then, in order to improve the performance, they [66] used harmony
search to replace the physical diffusion, which greatly improved the performance and efficiency. These
algorithms belong to the first category, which optimized the KH algorithm itself. The following
are the second category, which optimized the algorithm with better strategies. Abualigah et al. [50]
put forward a new algorithm, which combined harmony search algorithm with he KH algorithm to
generate a new probability factor and improved exploration search ability, so as to get a better solution.
Another algorithm is proposed by Abualigah et al. [67], which combined the objective function with
the KH algorithm, and had better performance in solving the problem of text clustering. Niu et al. [68]
sped up the exploration convergence and improved the efficiency by using the opposite learning
strategy, using a sinusoidal graph to change the inertia weight, and modifying the search process
according to the inertia weight and acceleration coefficient.

2.2. PSO

The PSO algorithm is one of the most famous swarm intelligence algorithms [47,69,70]. It was
proposed in 1995, and it has the advantages of few parameters, a simple principle, and fast convergence.
This algorithm has been widely used. For example, Sun et al. [71] used the agent model to assist the
PSO algorithm to solve complex optimization problems. Through the combination of exploration
and exploitation, they can better solve high-dimensional problems with limited resources. Similarly,
for high-dimensional problems, Tran et al. [72] changed the fixed length of feature selection in the
PSO algorithm, so that the particle swarm had a shorter length. This operation reduced the search
space and gave shorter particles better performance. Thus, the overall efficiency of the PSO algorithm
is improved, and it is also more suitable for high-dimensional problems. For the feature selection
of the PSO algorithm, they [73] also optimized other methods. They improved the algorithm by
discretizing the feature selection, and proved that the single variable discretization may reduce the
performance of the feature selection stage, so they proposed a new discretization method, and got better
performance. Zhang et al. [74] considered that there was no PSO algorithm that can work in noisy
and noiseless environment at the same time, so they proposed the dual-environment PSO algorithm.
This new algorithm is based on the top-k elite particles to search, which not only guaranteed the good
performance in the noise environment, but also can be re-applied to the noise-free environment, so it
filled a gap in the field of the PSO algorithm.

2.3. 100-Digit Challenge

The 100-Digit Challenge problem was originally proposed by SIAM [75], which is a test method
for accuracy calculation, and has been studied by many experts. Many algorithms have been applied
to this challenge, and some of them are hybrid algorithms that are used to challenge this problem.
Epstein et al. [76] combined the genetic algorithm (GA) with differential evolution (DE) algorithm to
search the genetic space and find the latest solution. The new algorithm improved the ability to find
the right answer through the fitness-based opposition and tide mutation. Brest et al. [77] used the
self-adaptive differential evolution (jDE) algorithm in the DE algorithm to solve this problem, and also
got better results. Different from the above algorithms, Zhang et al. [78] proposed a new DE algorithm
named collective information powered DE. This new algorithm proposed a restart mechanism through
collective population information to improve the robustness.



Mathematics 2020, 8, 1403 4 of 23

3. KH and PSO

KH and PSO are very efficient algorithms in the field of swarm intelligence, and we will respectively
introduce them in the following.

3.1. KH

In the process of predation, the predator will change the distribution of krill population, which
will make them move rapidly, and then cause their distribution density to decrease and the distance
between the predator and the food to become more and more far, which is the initial stage of KH.
In this process, the distribution of krill population is determined by the following three situations: the
influence of other krill individuals, behavior of getting food, and random diffusion. The KH algorithm
can be described as follows:

dXi
dt

= Ni + Fi + Di (1)

where Ni is the influence of other krill individuals, Fi is the behavior of getting food, and Di is the
behavior of random diffusion; i = 1, 2, . . . , N, and N is the population size.

For the influence of other krill individuals, the motion Ni,new of krill i induced by other krill is
defined as follows:

Ni,new = Nmaxαi +ωnNi,old (2)

where Nmax represents the maximum induced velocity, Ni,old represents the previously induced
movement, ωn represents the inertia weight and the value range is (0,1), and αi indicates that the
individuali is affected by the induction direction of the surrounding neighbors.

The next behavior Fi is to get food, as follows:

Fi = V fβi +ω f Fi,old (3)

where Vf is the maximum foraging speed, and its value is a constant, which is 0.02 (ms−1);ωf is the
inertia weight of foraging movement, and its range is (0, 1); Fi,old is the previous foraging movement;
and βi is the foraging direction.

The individual Di in the last behavior can be represented as follows:

Di = Dmax(1−
I

Imax
)δ (4)

where Dmax represents the maximum random diffusion speed; δ represents the direction of random
diffusion; and I and Imax represent the current number and the maximum number of iterations,
respectively. From above process, we can get the krill update process of the KH algorithm as follows:

Xi(t + ∆t) = Xi(t) + ∆t
dXi
dt

(5)

∆t = Ct
NV∑
j=1

(UB j − LB j) (6)

where ∆t is the time interval related to the specific application; NV is the dimension of the decision
variable; step factor Ct is a constant between 0 and 2; and UBj and LBj are the upper and lower bounds
of corresponding variable j (j = 1, 2, . . . , NV), respectively.

The process of the KH algorithm (Algorithm 1) is as follows.



Mathematics 2020, 8, 1403 5 of 23

Algorithm 1. KH [49]

1. Begin
2. Step 1: Initialization. Initialize the generation counter G, the population P, Vf, Dmax, and Nmax.
3. Step 2: Fitness calculation. Calculate fitness for each krill according to its initial position.
4. Step 3: While G < MaxGeneration do

5. Sort the population according to their fitness.
6. for i = 1:N (all krill) do
7. Perform the following motion calculation.

8. Motion induced by other individuals
9. Foraging motion
10. Physical diffusion

11. Implement the genetic operators.
12. Update the krill position in the search space.
13. Calculate fitness for each krill according to its new position

14. end for i
15. G = G + 1.
16. Step 4: end while.
17. End.

3.2. PSO

In the PSO algorithm, each individual is called a “particle”, and each particle will find a potential
optimal solution at each iteration. Assuming that the size of the population is N, each particle i (i = 1, 2,
. . . , N) in the population has its own initial position Xi (Xi = xi1, xi2, . . . , xid) and initial velocity Vi (Vi
= vi1, vi2, . . . , vid), and they will search for the optimal solution in D-dimensional space according to
their own individual extremum pbest and global extremum gbest. Individual extremum is the current
best point found by each particle in the search space, and global extremum is the current best point
found by the whole particle group in the search space. During the search process, the updating formula
of particle’s relevant state parameters is as follows:

vt+1
i = ηvt

i + c1 ∗ rand1()·(pt
best − xt

i) + c2 ∗ rand2()·(gt
best − xt

i) (7)

xt+1
i = xt

i + vt
i (8)

η = ηstart − (ηstart − ηend)
t
T

(9)

where η is the inertia weight that determines the specific gravity of the particle to the current velocity.
If the η is large, the particle has a strong exploration ability and can span a longer distance to find the
global optimal solution, but it may cause the particle to oscillate back and forth before and after the
optimal solution. If the η is small, it means that particles have better ability to find the optimal solution
locally, but they can easily to fall into the local optimization solution.

The flow of the standard PSO algorithm (Algorithm 2) is given below, where bup and blo represent
the upper and lower bounds of the problem domain, respectively, and D represents the dimension of
the solution space.



Mathematics 2020, 8, 1403 6 of 23

Algorithm 2. PSO [46]

Begin
Step 1: Initialization.

1. Initial position: the initial position of each particle obeys uniform distribution, that is Xi ∼ U(bup, blo).
2. Initialize its own optimal solution and the overall optimal solution: the initial position is its own

optimal solution pi = xi, and then calculating the corresponding value of each particle according to the defined utility
function f, and find the global optimal solution gbest.

3. Initial speed: the speed also obeys the uniform distribution.
Step 2: Update.
According to Equations (7) and (8), the velocity and position of particles are updated, and the current fitness

of particles is calculated according to the utility function f of the problem. If it is better than its own historical
optimal solution, it will update its own historical optimal solution pbest, otherwise it will not update. If the particle’s
own optimal solution pbest is better than the global optimal solution g, then the global optimal solution g is updated,
otherwise it is not updated.

Step 3: Determine whether to terminate:
Determine whether the best solution meets the termination conditions, if yes, stop.
Otherwise, return to Step 2.

End.

As shown in Equations (7) and (8), during each iteration, the particles update the direction and
speed of the next flight based on their own and group experience. The main characteristics of the PSO
algorithm are as follows:

1. Particles have memory. Each iteration of particles will transfer the optimal solution of the
population to each other, and update the database of all particles. If the particles deviate, the
direction and velocity can be corrected by self-cognition and group-cognition.

2. PSO algorithm has fewer parameters, so it is easy to adjust, and the structure is simple, so it is
easy to implement.

3. The operation is simple, and it only searches for the optimal solution in the solution space
according to the flight of particles.

4. AKQPSO

The AKQPSO algorithm is a mixed metaheuristic algorithm, which combines the advantages
of annealing krill herd (AKH) and QPSO [79]. AKH solves the disadvantage that KH cannot escape
from the local optimal solution. At the same time, the efficiency of KH algorithm is improved by
the simulated annealing strategy. Quantum behaved PSO (QPSO) is a new algorithm proposed by
Sun et al. [79] in 2004. By introducing the quantum behavior and combining it with the idea of
simulated annealing, the search ability of AKQPSO is greatly improved, and the new algorithm has
better performance. The principle of QPSO is shown below.

Quantum computing is a new computing mode, which follows the laws of quantum mechanics
and regulates the quantum information unit. In quantum space, when the aggregation state property
is satisfied, particles can search in the whole feasible solution space, thus greatly improving the
exploration search ability of QPSO. According to the analysis theory of particle convergence trajectory,
if every particle can converge to its local attraction point Pi = (pi1, pi2 . . . , pid), then the algorithm
has the possibility of convergence. The particle position update expression of the standard QPSO
algorithm is as follows:

xt+1
i j = pt

i j ± α·
∣∣∣∣Ct

i j − xt
i j

∣∣∣∣· ln[1/ut
i j], ut

i j ∼ U(0, 1) (10)

where α is the only parameter that needs to be adjusted in the algorithm, called the
compression-expansion factor, which is used to control the convergence rate of particles. During
the iterative process, the calculation method of individual and global optimal position is the same



Mathematics 2020, 8, 1403 7 of 23

as that of the PSO algorithm, and the biggest difference is that the QPSO algorithm removes the
speed information.

First of all, we initialize the whole population, and all the individuals in the population are
randomly generated. After initialization, we divide the population into two subpopulations according
to the ratio of 3:7, which is discussed in Section 5.2. The population with the proportion of 3/10 is
optimized by the improved KH algorithm, which is called subpopulation-AKH, and the population
with the proportion of 7/10 is optimized by the QPSO algorithm, which is called subpopulation-QPSO.
The two subpopulations will be re-integrated into a population after iterative optimization. If the
optimization result of the new population meets the output conditions, then the result can be output.
However, if it does not meet the output conditions, then it can be re-divided according to the proportion
of 3:7, and repeat the above process until the results meet the termination conditions. In the process
of decentralized and re-fusion of this population, the location information of individuals is shared,
so it will greatly improve the efficiency of fusion search and get the best results faster. In the process
of the AKQPSO algorithm, we also optimized the KH algorithm by the idea of simulated annealing,
named annealing KH (AKH), so we used QPSO and simulated annealing strategy to guarantee the
algorithm to escape from the local optimal value. The framework of AKQPSO is shown in Figure 1
and the process of the AKQPSO algorithm (Algorithm 3) is as follows.

Algorithm 3 AKQPSO

Initialization:
N random individuals were generated.
Set initialization parameters of AKH and QPSO.

Evaluation:
Evaluate all individuals based on location.

Partition:
The whole population was divided into subpopulation-AKH and subpopulation-QPSO.

AKH process:
Subpopulation-AKH individuals were optimized by AKH.
Update through these three actions of the influence of other krill individuals, behavior of getting food and

random diffusion.
The simulated annealing strategy is used to deal with the above behaviors.
Update the individual position according to the above behavior.

QPSO process:
Subpopulation-QPSO individuals were optimized by QPSO.
Update the particle’s local best point Pi and global best point Pbest.
Update the position xt+1

i j by Equation (10).

Combination:
The population optimized by AKH and QPSO was reconstituted into a new population.

Finding the best solution:
The fitness of all individuals was calculated, and the best solution was found in the newly-combined

population.
Determine whether to terminate:

Determine whether the best solution meets the termination conditions, if yes, stop.
Otherwise, return to step Evaluation.



Mathematics 2020, 8, 1403 8 of 23

Mathematics 2020, 8, x FOR PEER REVIEW 7 of 25 

 

α+ = ± ⋅ − ⋅1 ln[1 / ], ~ (0,1)t t t t t t
ij ij ij ij ij ijx p C x u u U  (10) 

where α is the only parameter that needs to be adjusted in the algorithm, called the 
compression-expansion factor, which is used to control the convergence rate of particles. During the 
iterative process, the calculation method of individual and global optimal position is the same as 
that of the PSO algorithm, and the biggest difference is that the QPSO algorithm removes the speed 
information. 

First of all, we initialize the whole population, and all the individuals in the population are 
randomly generated. After initialization, we divide the population into two subpopulations 
according to the ratio of 3:7, which is discussed in Section 5.2. The population with the proportion of 
3/10 is optimized by the improved KH algorithm, which is called subpopulation-AKH, and the 
population with the proportion of 7/10 is optimized by the QPSO algorithm, which is called 
subpopulation-QPSO. The two subpopulations will be re-integrated into a population after iterative 
optimization. If the optimization result of the new population meets the output conditions, then the 
result can be output. However, if it does not meet the output conditions, then it can be re-divided 
according to the proportion of 3:7, and repeat the above process until the results meet the 
termination conditions. In the process of decentralized and re-fusion of this population, the location 
information of individuals is shared, so it will greatly improve the efficiency of fusion search and get 
the best results faster. In the process of the AKQPSO algorithm, we also optimized the KH algorithm 
by the idea of simulated annealing, named annealing KH (AKH), so we used QPSO and simulated 
annealing strategy to guarantee the algorithm to escape from the local optimal value. The 
framework of AKQPSO is shown in Figure 1 and the process of the AKQPSO algorithm (Algorithm 
3) is as follows. 

Start

Initialize the AKQPSO

Evaluate the individuals in the population

Partition the population 

Motion induced by other individuals

Foraging motion

Physical diffusion

Simulated annealing strategy

Calculate p(i) and g(best)

Update the position x(i) by 
Equation (11)

Combine the two subpopulations into one population

Find and record the best solution at present.

Whether the termination 
conditions are met

Output the optimal result

End

AKH QPSO

Y

N

 

Figure 1. Framework of annealing krill quantum particle swarm optimization (AKQPSO). 
Figure 1. Framework of annealing krill quantum particle swarm optimization (AKQPSO).

5. Simulation Results

The 100-Digit Challenge problem comes from CEC 2019 and can be found through the website
http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2019. This challenge includes 10 problems,
which are 10 functions in our data. The goal is to calculate the accuracy of the function to 10 digits
without a time limit. The proposed algorithm was written in MATLAB R2016a and was run in the
following conditions: Intel(R) Core(TM) i5-8100 CPU 3.60 GHz, which possesses 8G of RAM on
Windows 10. Table 1 shows the basic parameters of the 100-Digit Challenge. The 10 test problems are
the definition of minimization and some other definitions are as follows:

Min f (x), x = [x1, x2, . . . , xD]
T (11)

where D is the dimension, the global optimal value of the shift is randomly distributed in (−80, 80),
and all testing problems are scalable.

Table 1. The basic parameters of the 100-Digit Challenge.

No. Functions F*
i=Fi(x*) D Search Range

1 Storn’s Chebyshev Polynomial Fitting Problem 1 9 (−8192–8192)
2 Inverse Hilbert Matrix Problem 1 16 (−16,384–16,384)
3 Lennard–Jones Minimum Energy Cluster 1 18 (−4–4)
4 Rastrigin’s Function 1 10 (−100–100)
5 Griewangk’s Function 1 10 (−100–100)
6 Weierstrass Function 1 10 (−100–100)
7 Modified Schwefel’s Function 1 10 (−100–100)
8 Expanded Schaffer’s F6 Function 1 10 (−100–100)
9 Happy Cat Function 1 10 (−100–100)
10 Ackley Function 1 10 (−100–100)

http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2019


Mathematics 2020, 8, 1403 9 of 23

5.1. The Comparison of AKQPSO and Other Algorithms

In this paper, we compared the AKQPSO algorithm with the following eight
state-of-the-art algorithms.

1. By improving krill migration operator, biogeography-based KH (BBKH) [51] was proposed.
2. By adding a new hybrid differential evolution operator, the efficiency of the updating process is

improved, and differential evolution KH (DEKH) [80] was proposed.
3. By quantum behavior to optimize KH, quantum-behaved KH (QKH) [65] was proposed.
4. By adding the stud selection and crossover operator, the efficiency was improved and stud krill

herd (SKH) [81] was proposed.
5. By adding chaos map to optimize cuckoo search (CS), the chaotic CS (CCS) [82] was proposed.
6. By adding variable neighborhood (VN) search to bat algorithm (BA), VNBA [83] was proposed.
7. By discussing physical biogeography and its mathematics, biogeography-based optimization

(BBO) [84] was proposed.
8. Genetic algorithm (GA) [45] is basic algorithm of evolutionary computing.

Table 2 is the common parameter setting of these algorithms. We set the population size (N) to 50;
after 7500 iterations (max_gen) and 100 independent runs (max_run), all algorithm experiments are
carried out under the condition that the basic parameters are consistent.

Table 2. Parameter settings.

Parameters N max_gen max_run

Value 50 7500 100

Table 3 shows the optimization results of AKQPSO and eight other algorithms for ten of the
100-Digits Challenge, with the best value in bold. From the experimental results, we can see that the
optimal values of the ten problems are all calculated by the AKQPSO algorithm. AKQPSO is the best
algorithm among these algorithms, and the result is the best in every problem, but QKH is not the
second in every problem, so we can know that our algorithm improvement is very effective. Through
Figure 2, we can clearly conclude that the performance of AKQPSO is the best in general, followed by
QKH, and the performance of GA is the worst. In general, we rank the algorithms as follows: AKQPSO
> QKH > CCS > BBKH > DEKH > SKH > VNBA > GA.Mathematics 2020, 8, x FOR PEER REVIEW 11 of 25 

 

 

Figure 2. Accuracy of AKQPSO and other algorithms on all problems. 

Figures 3–12 show the results of the nine algorithms on each problem, and the experimental 
results show that AKQPSO algorithm has obvious advantages over other algorithms. From these 
column charts, we can see that the fluctuation of problem 1 is the largest. In problem 1, the results of 
the GA algorithm with the worst performance are 735 times different from those of AKQPSO 
algorithm with the best performance, which can be said to be very different. Because the 100-Digits 
Challenge problem is used to test the computational accuracy, we can know that the computational 
accuracy of AKQPSO algorithm is the highest among the nine algorithms. In Figure 3, because the 
results of AKQPSO, QKH, and BBO are so different from those of GA, the columns of these 
algorithms are almost invisible, so they are not obvious in the same chart. However, in fact, the 
improvement of AKQPSO compared with QKH and BBO is significant. 

 
Figure 3. Accuracy of AKQPSO and other algorithms on problem 1: Storn’s Chebyshev polynomial 
fitting problem. BBKH, biogeography-based krill herd; DEKH, differential evolution KH; QKH, 
quantum-behaved KH; SKH, stud KH; CCS, chaotic cuckoo search; VNBA, variable neighborhood bat 
algorithm; BBO, biogeography-based optimization; GA, genetic algorithm. 

Figure 2. Accuracy of AKQPSO and other algorithms on all problems.



Mathematics 2020, 8, 1403 10 of 23

Table 3. The minimum value of annealing krill quantum particle swarm optimization (AKQPSO) and
other algorithms in the 100-Digit Challenge. BBKH, biogeography-based krill herd; DEKH, differential
evolution KH; QKH, quantum-behaved KH; SKH, stud KH; CCS, chaotic cuckoo search; VNBA,
variable neighborhood bat algorithm; BBO, biogeography-based optimization; GA, genetic algorithm.
(The table results retain ten decimal places.).

Algorithm Problem 1 Problem 2 Problem 3

AKQPSO
(Algorithm 3) 10,893.3861385383 215.6832766302 1.3068652046

BBKH 291,803.2852933580 613.7135086878 5.9027057769
DEKH 975,339.7308122220 708.0601338156 6.5872946609
QKH 47,583.9014728552 404.4416682185 2.1853645745
SKH 1,773,168.4809322700 402.7243166556 8.0692567398
CCS 211,411.5538712060 358.9175375272 12.4818284785

VNBA 2,550,944.5550316900 816.8071391350 4.6163144446
BBO 72,287.9373622652 311.8124377894 2.9209583205
GA 8,009,879.0206872900 2209.1904660292 9.7547945042

Algorithm Problem 4 Problem 5 Problem 6

AKQPSO
(Algorithm 3) 4.0398322695 1.0434696313 1.1185826442

BBKH 17.7900443880 1.8852367864 3.9551854227
DEKH 29.4088567232 1.9507021960 3.1953451545
QKH 7.1133424631 2.0695362381 3.1213610789
SKH 50.9548872356 1.9350825919 10.2543233489
CCS 61.4604530135 3.4583111771 6.6010211976

VNBA 24.7278199397 3.0251295691 5.7134938818
BBO 17.4206259198 1.0971964590 2.5154932374
GA 53.9444360765 2.7126573212 6.2420012291

Algorithm Problem 7 Problem 8 Problem 9

AKQPSO
(Algorithm 3) 121.8932375270 2.3131324015 1.0715438957

BBKH 779.4066229661 4.3846591727 1.3554069744
DEKH 1060.0387128932 4.4509969471 1.3614909209
QKH 195.0770363640 2.5711387868 1.2989726797
SKH 1348.8213407547 4.8795287164 1.5980935412
CCS 2247.4406602539 5.4002626350 1.6453371395

VNBA 644.6334455535 4.1477932707 1.3950038682
BBO 950.8018632939 3.5941524656 1.2098037868
GA 1276.4565372145 4.2393160129 1.3580083289

Algorithm Problem 10 - -

AKQPSO
(Algorithm 3) 21.0237707978 - -

BBKH 21.6420368754 - -
DEKH 21.6383024320 - -
QKH 21.1582649016 - -
SKH 21.6017549654 - -
CCS 21.9603961872 - -

VNBA 21.0799825759 - -
BBO 21.9988888954 - -
GA 21.4392031521 - -

Figures 3–12 show the results of the nine algorithms on each problem, and the experimental results
show that AKQPSO algorithm has obvious advantages over other algorithms. From these column
charts, we can see that the fluctuation of problem 1 is the largest. In problem 1, the results of the GA
algorithm with the worst performance are 735 times different from those of AKQPSO algorithm with
the best performance, which can be said to be very different. Because the 100-Digits Challenge problem



Mathematics 2020, 8, 1403 11 of 23

is used to test the computational accuracy, we can know that the computational accuracy of AKQPSO
algorithm is the highest among the nine algorithms. In Figure 3, because the results of AKQPSO, QKH,
and BBO are so different from those of GA, the columns of these algorithms are almost invisible, so
they are not obvious in the same chart. However, in fact, the improvement of AKQPSO compared with
QKH and BBO is significant.

Mathematics 2020, 8, x FOR PEER REVIEW 11 of 25 

 

 

Figure 2. Accuracy of AKQPSO and other algorithms on all problems. 

Figures 3–12 show the results of the nine algorithms on each problem, and the experimental 
results show that AKQPSO algorithm has obvious advantages over other algorithms. From these 
column charts, we can see that the fluctuation of problem 1 is the largest. In problem 1, the results of 
the GA algorithm with the worst performance are 735 times different from those of AKQPSO 
algorithm with the best performance, which can be said to be very different. Because the 100-Digits 
Challenge problem is used to test the computational accuracy, we can know that the computational 
accuracy of AKQPSO algorithm is the highest among the nine algorithms. In Figure 3, because the 
results of AKQPSO, QKH, and BBO are so different from those of GA, the columns of these 
algorithms are almost invisible, so they are not obvious in the same chart. However, in fact, the 
improvement of AKQPSO compared with QKH and BBO is significant. 

 
Figure 3. Accuracy of AKQPSO and other algorithms on problem 1: Storn’s Chebyshev polynomial 
fitting problem. BBKH, biogeography-based krill herd; DEKH, differential evolution KH; QKH, 
quantum-behaved KH; SKH, stud KH; CCS, chaotic cuckoo search; VNBA, variable neighborhood bat 
algorithm; BBO, biogeography-based optimization; GA, genetic algorithm. 

Figure 3. Accuracy of AKQPSO and other algorithms on problem 1: Storn’s Chebyshev polynomial
fitting problem. BBKH, biogeography-based krill herd; DEKH, differential evolution KH; QKH,
quantum-behaved KH; SKH, stud KH; CCS, chaotic cuckoo search; VNBA, variable neighborhood bat
algorithm; BBO, biogeography-based optimization; GA, genetic algorithm.Mathematics 2020, 8, x FOR PEER REVIEW 12 of 25 

 

 
Figure 4. Accuracy of AKQPSO and other algorithms on problem 2: inverse Hilbert matrix problem. 

 
Figure 5. Accuracy of AKQPSO and other algorithms on problem 3: Lennard–Jones minimum energy 
cluster. 

 
Figure 6. Accuracy of AKQPSO and other algorithms on problem 4: Rastrigin’s function. 

Figure 4. Accuracy of AKQPSO and other algorithms on problem 2: inverse Hilbert matrix problem.



Mathematics 2020, 8, 1403 12 of 23

Mathematics 2020, 8, x FOR PEER REVIEW 12 of 25 

 

 
Figure 4. Accuracy of AKQPSO and other algorithms on problem 2: inverse Hilbert matrix problem. 

 
Figure 5. Accuracy of AKQPSO and other algorithms on problem 3: Lennard–Jones minimum energy 
cluster. 

 
Figure 6. Accuracy of AKQPSO and other algorithms on problem 4: Rastrigin’s function. 

Figure 5. Accuracy of AKQPSO and other algorithms on problem 3: Lennard–Jones minimum
energy cluster.

Mathematics 2020, 8, x FOR PEER REVIEW 12 of 25 

 

 
Figure 4. Accuracy of AKQPSO and other algorithms on problem 2: inverse Hilbert matrix problem. 

 
Figure 5. Accuracy of AKQPSO and other algorithms on problem 3: Lennard–Jones minimum energy 
cluster. 

 
Figure 6. Accuracy of AKQPSO and other algorithms on problem 4: Rastrigin’s function. Figure 6. Accuracy of AKQPSO and other algorithms on problem 4: Rastrigin’s function.

Mathematics 2020, 8, x FOR PEER REVIEW 13 of 25 

 

 

Figure 7. Accuracy of AKQPSO and other algorithms on problem 5: Griewangk’s function. 

 

Figure 8. Accuracy of AKQPSO and other algorithms on problem 6: Weierstrass function. 

 

Figure 9. Accuracy of AKQPSO and other algorithms on problem 7: modified Schwefel’s function. 

Figure 7. Accuracy of AKQPSO and other algorithms on problem 5: Griewangk’s function.



Mathematics 2020, 8, 1403 13 of 23

Mathematics 2020, 8, x FOR PEER REVIEW 13 of 25 

 

 

Figure 7. Accuracy of AKQPSO and other algorithms on problem 5: Griewangk’s function. 

 

Figure 8. Accuracy of AKQPSO and other algorithms on problem 6: Weierstrass function. 

 

Figure 9. Accuracy of AKQPSO and other algorithms on problem 7: modified Schwefel’s function. 

Figure 8. Accuracy of AKQPSO and other algorithms on problem 6: Weierstrass function.

Mathematics 2020, 8, x FOR PEER REVIEW 13 of 25 

 

 

Figure 7. Accuracy of AKQPSO and other algorithms on problem 5: Griewangk’s function. 

 

Figure 8. Accuracy of AKQPSO and other algorithms on problem 6: Weierstrass function. 

 

Figure 9. Accuracy of AKQPSO and other algorithms on problem 7: modified Schwefel’s function. 
Figure 9. Accuracy of AKQPSO and other algorithms on problem 7: modified Schwefel’s function.

Mathematics 2020, 8, x FOR PEER REVIEW 14 of 25 

 

 

Figure 10. Accuracy of AKQPSO and other algorithms on problem 8: expanded Schaffer’s F6 
function. 

 
Figure 11. Accuracy of AKQPSO and other algorithms on problem 9: happy cat function. 

 
Figure 12. Accuracy of AKQPSO and other algorithms on problem 10: Ackley function. 

Figure 10. Accuracy of AKQPSO and other algorithms on problem 8: expanded Schaffer’s F6 function.



Mathematics 2020, 8, 1403 14 of 23

Mathematics 2020, 8, x FOR PEER REVIEW 14 of 25 

 

 

Figure 10. Accuracy of AKQPSO and other algorithms on problem 8: expanded Schaffer’s F6 
function. 

 
Figure 11. Accuracy of AKQPSO and other algorithms on problem 9: happy cat function. 

 
Figure 12. Accuracy of AKQPSO and other algorithms on problem 10: Ackley function. 

Figure 11. Accuracy of AKQPSO and other algorithms on problem 9: happy cat function.

Mathematics 2020, 8, x FOR PEER REVIEW 14 of 25 

 

 

Figure 10. Accuracy of AKQPSO and other algorithms on problem 8: expanded Schaffer’s F6 
function. 

 
Figure 11. Accuracy of AKQPSO and other algorithms on problem 9: happy cat function. 

 
Figure 12. Accuracy of AKQPSO and other algorithms on problem 10: Ackley function. Figure 12. Accuracy of AKQPSO and other algorithms on problem 10: Ackley function.

Among these ten problems, we divide the problems into four groups according to the ability of
these problems to test the computational accuracy of AKQPSO. Some groups have a strong ability
to test, so it is more obvious which algorithm is better. The first group: problem 1. According to the
computational accuracy, the results displayed in this group are quite different. The second group:
problems 2, 3, and 7. This group has higher requirements for the accuracy, so it is difficult to calculate
the best value of the function. The third group: problems 4, 6, 8, and 10. This group has a slightly lower
requirement for the computational accuracy, so the results of various algorithms are very close, but it is
difficult to achieve the best results. The fourth group: problems 5 and 9. This group has the lowest
requirements for the computational accuracy, so many algorithms can be very close to the optimal
result 1.0000000000.

Figures 13–16 show the advantage of AKQPSO over other algorithms in each group of the
100-Digits Challenge problem. Although the accuracy of GA is the worst when ranking from the whole,
and in the first of the four groups, it is also the GA. In the other three groups, however, the algorithm
with the worst accuracy is CCS algorithm, so in terms of grouping comparison, CCS algorithm is the
worst. In addition, the accuracy of AKQPSO algorithm is still the best among the four groups, which
has not changed. From the above analysis, AKQPSO is the best in all aspects, and the computational
accuracy of this algorithm is also the highest.



Mathematics 2020, 8, 1403 15 of 23

Mathematics 2020, 8, x FOR PEER REVIEW 15 of 25 

 

Among these ten problems, we divide the problems into four groups according to the ability of 
these problems to test the computational accuracy of AKQPSO. Some groups have a strong ability to 
test, so it is more obvious which algorithm is better. The first group: problem 1. According to the 
computational accuracy, the results displayed in this group are quite different. The second group: 
problems 2, 3, and 7. This group has higher requirements for the accuracy, so it is difficult to 
calculate the best value of the function. The third group: problems 4, 6, 8, and 10. This group has a 
slightly lower requirement for the computational accuracy, so the results of various algorithms are 
very close, but it is difficult to achieve the best results. The fourth group: problems 5 and 9. This 
group has the lowest requirements for the computational accuracy, so many algorithms can be very 
close to the optimal result 1.0000000000. 

Figures 13–16 show the advantage of AKQPSO over other algorithms in each group of the 
100-Digits Challenge problem. Although the accuracy of GA is the worst when ranking from the 
whole, and in the first of the four groups, it is also the GA. In the other three groups, however, the 
algorithm with the worst accuracy is CCS algorithm, so in terms of grouping comparison, CCS 
algorithm is the worst. In addition, the accuracy of AKQPSO algorithm is still the best among the 
four groups, which has not changed. From the above analysis, AKQPSO is the best in all aspects, and 
the computational accuracy of this algorithm is also the highest. 

 

Figure 13. Ratio of AKQPSO over other algorithms in the first group. 

 
Figure 14. Ratio of AKQPSO over other algorithms in the second group. 

Figure 13. Ratio of AKQPSO over other algorithms in the first group.

Mathematics 2020, 8, x FOR PEER REVIEW 15 of 25 

 

Among these ten problems, we divide the problems into four groups according to the ability of 
these problems to test the computational accuracy of AKQPSO. Some groups have a strong ability to 
test, so it is more obvious which algorithm is better. The first group: problem 1. According to the 
computational accuracy, the results displayed in this group are quite different. The second group: 
problems 2, 3, and 7. This group has higher requirements for the accuracy, so it is difficult to 
calculate the best value of the function. The third group: problems 4, 6, 8, and 10. This group has a 
slightly lower requirement for the computational accuracy, so the results of various algorithms are 
very close, but it is difficult to achieve the best results. The fourth group: problems 5 and 9. This 
group has the lowest requirements for the computational accuracy, so many algorithms can be very 
close to the optimal result 1.0000000000. 

Figures 13–16 show the advantage of AKQPSO over other algorithms in each group of the 
100-Digits Challenge problem. Although the accuracy of GA is the worst when ranking from the 
whole, and in the first of the four groups, it is also the GA. In the other three groups, however, the 
algorithm with the worst accuracy is CCS algorithm, so in terms of grouping comparison, CCS 
algorithm is the worst. In addition, the accuracy of AKQPSO algorithm is still the best among the 
four groups, which has not changed. From the above analysis, AKQPSO is the best in all aspects, and 
the computational accuracy of this algorithm is also the highest. 

 

Figure 13. Ratio of AKQPSO over other algorithms in the first group. 

 
Figure 14. Ratio of AKQPSO over other algorithms in the second group. Figure 14. Ratio of AKQPSO over other algorithms in the second group.

Mathematics 2020, 8, x FOR PEER REVIEW 16 of 25 

 

 

Figure 15. Ratio of AKQPSO over other algorithms in the third group. 

 
Figure 16. Ratio of AKQPSO over other algorithms in the fourth group. 

5.2. Evaluation Parameter λ 

In Section 4, after the initialization of the population, AKQPSO algorithm divided the 
population into two subpopulations: AKH and QPSO. We set the parameter λ, which represents the 
proportion of the two subpopulations. In the experiment, λ = 0.1, 0.2, …, 0.9. For example, if λ = 0.1, 
this means that the ratio of subpopulation-AKH/subpopulation-QPSO is 1:9, and other numbers 
mean the same thing. After a lot of experiments, the optimal parameter value is λ = 0.3. All the above 
experiments are based on the results obtained using λ = 0.3, and the following part will introduce the 
experiments on λ = 0.3. The parameters of this part of experiments are still the same as Table 2 to 
ensure that all experiments are tested under the same conditions. 

Table 4 shows the experimental results of 10 problems that are calculated by different λ in the 
AKQPSO algorithm in the 100-Digit Challenge. Bold font indicates the best value. From Table 4, we 
can see that, in the case of λ = 0.3, eight of the ten problems can get the best value. In the remaining 
two problems, even if λ = 0.3 does not reach the best value, its result is the second among the nine 
values, and it is very close to the best value. Therefore, when λ = 0.3, the performance of AKQPSO 
can reach the best. 

As can be seen from Figure 17a, the fluctuation range of the result of problem 1 is the largest. As 
problems 1–10 are in the same chart, and the fluctuation of problem 1 is much larger than that of 

Figure 15. Ratio of AKQPSO over other algorithms in the third group.



Mathematics 2020, 8, 1403 16 of 23

Mathematics 2020, 8, x FOR PEER REVIEW 16 of 25 

 

 

Figure 15. Ratio of AKQPSO over other algorithms in the third group. 

 
Figure 16. Ratio of AKQPSO over other algorithms in the fourth group. 

5.2. Evaluation Parameter λ 

In Section 4, after the initialization of the population, AKQPSO algorithm divided the 
population into two subpopulations: AKH and QPSO. We set the parameter λ, which represents the 
proportion of the two subpopulations. In the experiment, λ = 0.1, 0.2, …, 0.9. For example, if λ = 0.1, 
this means that the ratio of subpopulation-AKH/subpopulation-QPSO is 1:9, and other numbers 
mean the same thing. After a lot of experiments, the optimal parameter value is λ = 0.3. All the above 
experiments are based on the results obtained using λ = 0.3, and the following part will introduce the 
experiments on λ = 0.3. The parameters of this part of experiments are still the same as Table 2 to 
ensure that all experiments are tested under the same conditions. 

Table 4 shows the experimental results of 10 problems that are calculated by different λ in the 
AKQPSO algorithm in the 100-Digit Challenge. Bold font indicates the best value. From Table 4, we 
can see that, in the case of λ = 0.3, eight of the ten problems can get the best value. In the remaining 
two problems, even if λ = 0.3 does not reach the best value, its result is the second among the nine 
values, and it is very close to the best value. Therefore, when λ = 0.3, the performance of AKQPSO 
can reach the best. 

As can be seen from Figure 17a, the fluctuation range of the result of problem 1 is the largest. As 
problems 1–10 are in the same chart, and the fluctuation of problem 1 is much larger than that of 

Figure 16. Ratio of AKQPSO over other algorithms in the fourth group.

5.2. Evaluation Parameter λ

In Section 4, after the initialization of the population, AKQPSO algorithm divided the population
into two subpopulations: AKH and QPSO. We set the parameter λ, which represents the proportion of
the two subpopulations. In the experiment, λ = 0.1, 0.2, . . . , 0.9. For example, if λ = 0.1, this means
that the ratio of subpopulation-AKH/subpopulation-QPSO is 1:9, and other numbers mean the same
thing. After a lot of experiments, the optimal parameter value is λ = 0.3. All the above experiments
are based on the results obtained using λ = 0.3, and the following part will introduce the experiments
on λ = 0.3. The parameters of this part of experiments are still the same as Table 2 to ensure that all
experiments are tested under the same conditions.

Table 4 shows the experimental results of 10 problems that are calculated by different λ in the
AKQPSO algorithm in the 100-Digit Challenge. Bold font indicates the best value. From Table 4, we
can see that, in the case of λ = 0.3, eight of the ten problems can get the best value. In the remaining
two problems, even if λ = 0.3 does not reach the best value, its result is the second among the nine
values, and it is very close to the best value. Therefore, when λ = 0.3, the performance of AKQPSO can
reach the best.

Table 4. The different subpopulations in the AKQPSO algorithm.

λ Problem 1 Problem 2 Problem 3 Problem 4 Problem 5

0.1 49,649.1118923043 371.5625700159 1.4091799599 6.9697543426 1.1082189445
0.2 133,608.1106469210 370.0473039979 1.4091358439 3.9848771713 1.0983396055
0.3 10,893.3861385383 215.6832766302 1.3068652046 4.0398322695 1.0434696313
0.4 53,539.2035950009 346.1060025716 1.4091347288 4.9798362284 1.0588561989
0.5 86,346.3589566716 424.4795442904 1.4091497973 5.9747952855 1.0564120753
0.6 82,979.4098834243 422.2483723507 1.4094790359 5.0457481023 1.0861547616
0.7 99,948.7393233432 609.3844384539 7.7057897580 7.9647083618 1.0885926731
0.8 172,794.7224327620 462.1482898652 1.4091546130 13.9344627044 1.0689273036
0.9 29,013.1541012323 412.4776865757 3.9404220234 8.9597299262 1.0642761100

λ Problem 6 Problem 7 Problem 8 Problem 9 Problem 10

0.1 1.4704093392 401.1855067018 3.0118025092 1.0958187632 21.1048204811
0.2 1.2289194470 336.4312675492 2.7987816724 1.0968167661 21.0708288643
0.3 1.1185826442 121.8932375270 2.3131324015 1.0715438957 21.0237707978
0.4 2.6943320338 119.5337169812 2.3299026264 1.1010758378 21.0389405345
0.5 2.9771884111 209.5578114314 2.5217968033 1.1257275250 21.0587530353
0.6 2.5706601162 253.1211550958 3.5227629532 1.1353127271 21.0976573470
0.7 1.4737157145 187.5895821815 3.0884949525 1.1344605652 21.1144506567
0.8 1.5487741806 144.3502633617 3.1612574448 1.1553497252 21.0835644844
0.9 4.0000000000 131.2707035329 4.0209018951 1.1615503990 21.0768903380



Mathematics 2020, 8, 1403 17 of 23

As can be seen from Figure 17a, the fluctuation range of the result of problem 1 is the largest.
As problems 1–10 are in the same chart, and the fluctuation of problem 1 is much larger than that
of other problems, the fluctuation range of problems 2–10 is not obvious in Figure 17a. In order to
compare problems 2–10 more clearly, we used Figure 17b to show the fluctuation of other problems
2–10. Through Figure 17b, we can see that the fluctuation of problems 2 and 7 are also obvious.
Therefore, among these ten problems, problems 1, 2, and 7 are the three problems with the largest
fluctuation. Among these ten problems, the fluctuation of problem 7 is different from that of the other
nine problems. With the increasing proportion of AKH and QPSO, the result of problem 7 tends to be
better. For other problems, however, with the increasing proportion of AKH and QPSO, their results
tend to be worse, which is the opposite of problem 7.

Mathematics 2020, 8, x FOR PEER REVIEW 18 of 25 

 

Table 4. The different subpopulations in the AKQPSO algorithm. 

λ Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 
0.1 49,649.1118923043 371.5625700159 1.4091799599 6.9697543426 1.1082189445 
0.2 133,608.1106469210 370.0473039979 1.4091358439 3.9848771713 1.0983396055 
0.3 10,893.3861385383 215.6832766302 1.3068652046 4.0398322695 1.0434696313 
0.4 53,539.2035950009 346.1060025716 1.4091347288 4.9798362284 1.0588561989 
0.5 86,346.3589566716 424.4795442904 1.4091497973 5.9747952855 1.0564120753 
0.6 82,979.4098834243 422.2483723507 1.4094790359 5.0457481023 1.0861547616 
0.7 99,948.7393233432 609.3844384539 7.7057897580 7.9647083618 1.0885926731 
0.8 172,794.7224327620 462.1482898652 1.4091546130 13.9344627044 1.0689273036 
0.9 29,013.1541012323 412.4776865757 3.9404220234 8.9597299262 1.0642761100 
λ Problem 6 Problem 7 Problem 8 Problem 9 Problem 10 

0.1 1.4704093392 401.1855067018 3.0118025092 1.0958187632 21.1048204811 
0.2 1.2289194470 336.4312675492 2.7987816724 1.0968167661 21.0708288643 
0.3 1.1185826442 121.8932375270 2.3131324015 1.0715438957 21.0237707978 
0.4 2.6943320338 119.5337169812 2.3299026264 1.1010758378 21.0389405345 
0.5 2.9771884111 209.5578114314 2.5217968033 1.1257275250 21.0587530353 
0.6 2.5706601162 253.1211550958 3.5227629532 1.1353127271 21.0976573470 
0.7 1.4737157145 187.5895821815 3.0884949525 1.1344605652 21.1144506567 
0.8 1.5487741806 144.3502633617 3.1612574448 1.1553497252 21.0835644844 
0.9 4.0000000000 131.2707035329 4.0209018951 1.1615503990 21.0768903380 

 

 

(a) 
Mathematics 2020, 8, x FOR PEER REVIEW 19 of 25 

 

 
(b) 

Figure 17. The different subpopulations in different problems. (a) The different subpopulations in 
problems 1–10 and (b) the different subpopulations in problems 2–10. 

5.3. Complexity Analysis of AKQPSO 

The main computing overhead of AKQPSO associated with Step “Partition” of the AKQPSO 
algorithm in Section 4. The following is a detailed analysis of the single computational complexity of 
Step “Partition” and other step in AKQPSO. N is the number of individuals in the population. 

1. Step “Partition”: This step accounts for the main computational overhead, so we focus on this 
step. 

• Step “AKH process”: The computational complexity of this step mainly includes 
“Subpopulation-AKH individuals were optimized by AKH”, “Update through these three 
actions of the influence of other krill individuals, behavior of getting food and random 
diffusion”, “The simulated annealing strategy is used to deal with the above behaviors”, 
and “Update the individual position according to the above behavior”, and their 
complexities are O(N), O(N2), O(N), and O(N), respectively. 

• Step “QPSO process”: The computational complexity of this step mainly includes 
“Subpopulation-QPSO individuals were optimized by QPSO”, “Update the particle’s local 
best point Pi and global best point Pbest”, and “Update the position +1t

ijx  by Equation (10)”, 

and their complexities are all O(N). 

2. Other step. 

• The computational complexity of Step “Initialization”, Step “Evaluation”, Step 
“Combination”, and Step “Finding the best solution” are all O(N). 

Therefore, in one generation AKQPSO, the worst-case complexity is O(N2). 

6. Conclusions 

In this paper, aiming at the disadvantage of poor local search ability of KH algorithm, we 
optimized it by simulated annealing strategy and QPSO algorithm, and proposed a new algorithm: 
AKQPSO. This algorithm was compared with eight other excellent algorithms, and the 
computational accuracy of AKQPSO was tested by the 100-Digit Challenge problem. As predicted 
before the experiment, the computational accuracy of AKQPSO algorithm is the highest among these 
algorithms. Moreover, we also adjusted the parameters of AKQPSO through experiments to further 

Figure 17. The different subpopulations in different problems. (a) The different subpopulations in
problems 1–10 and (b) the different subpopulations in problems 2–10.



Mathematics 2020, 8, 1403 18 of 23

From the results of Sections 5.1 and 5.2, problems 1, 2, and 7 belong to the first and the second of
the four groups, respectively, and they are also the two groups with the highest requirements for the
computational accuracy of AKQPSO. Therefore, the adjustment of subpopulation has a very direct
effect on the accuracy of AKQPSO.

5.3. Complexity Analysis of AKQPSO

The main computing overhead of AKQPSO associated with Step “Partition” of the AKQPSO
algorithm in Section 4. The following is a detailed analysis of the single computational complexity of
Step “Partition” and other step in AKQPSO. N is the number of individuals in the population.

1. Step “Partition”: This step accounts for the main computational overhead, so we focus on
this step.

• Step “AKH process”: The computational complexity of this step mainly includes
“Subpopulation-AKH individuals were optimized by AKH”, “Update through these three
actions of the influence of other krill individuals, behavior of getting food and random
diffusion”, “The simulated annealing strategy is used to deal with the above behaviors”, and
“Update the individual position according to the above behavior”, and their complexities are
O(N), O(N2), O(N), and O(N), respectively.

• Step “QPSO process”: The computational complexity of this step mainly includes
“Subpopulation-QPSO individuals were optimized by QPSO”, “Update the particle’s local
best point Pi and global best point Pbest”, and “Update the position xt+1

i j by Equation (10)”,
and their complexities are all O(N).

2. Other step.

• The computational complexity of Step “Initialization”, Step “Evaluation”, Step
“Combination”, and Step “Finding the best solution” are all O(N).

Therefore, in one generation AKQPSO, the worst-case complexity is O(N2).

6. Conclusions

In this paper, aiming at the disadvantage of poor local search ability of KH algorithm, we optimized
it by simulated annealing strategy and QPSO algorithm, and proposed a new algorithm: AKQPSO.
This algorithm was compared with eight other excellent algorithms, and the computational accuracy
of AKQPSO was tested by the 100-Digit Challenge problem. As predicted before the experiment, the
computational accuracy of AKQPSO algorithm is the highest among these algorithms. Moreover, we
also adjusted the parameters of AKQPSO through experiments to further improve the computational
accuracy. By calculating the accuracy of the 100-Digit Challenge problem, our experiment provided
a new method to study the accuracy of the algorithm, and the paper provided a very high accuracy
algorithm. However, the research of this paper still has some limitations. The accuracy of the algorithm
in 100-Digit Challenge problem is very high, but it is unclear whether AKQPSO still has high accuracy
in general problems.

In the future, we can focus on other aspects. Firstly, besides the simulated annealing strategy
and QPSO algorithm, we could look for other metaheuristic algorithms [85] that can be used to
improve the search ability of KH and carry out in-depth research such as bat algorithm (BA) [86,87],
biogeography-based optimization (BBO) [84,88], cuckoo search (CS) [82,89–92], earthworm optimization
algorithm (EWA) [93], elephant herding optimization (EHO) [94,95], moth search (MS) algorithm [96],
firefly algorithm (FA) [97], artificial bee colony (ABC) [98–100], harmony search (HS) [101], monarch
butterfly optimization (MBO) [102,103], and genetic programming (GP) [104], as well as more recent
research. Secondly, for the parameters in the algorithm, besides the proportion of subpopulation,
we can also study the influence of other parameters on the computational accuracy of AKQPSO.



Mathematics 2020, 8, 1403 19 of 23

Thirdly, now we just use two kinds of algorithms to make them cooperate and optimize in a relatively
simple way, and we can also study how to make them cooperate more efficiently through other
methods. Finally, although the 100-Digit Challenge is a classical problem, it is still less used for testing
computational accuracy of algorithms, and there is still a large development space in this area.

Author Contributions: Conceptualization, C.-L.W. and G.-G.W.; methodology, C.-L.W.; software, G.-G.W.;
validation, C.-L.W.; formal analysis, G.-G.W.; investigation, C.-L.W.; resources, G.-G.W.; data curation, C.-L.W.;
writing—original draft preparation, C.-L.W.; writing—review and editing, C.-L.W.; visualization, C.-L.W.;
supervision, G.-G.W.; project administration, G.-G.W.; funding acquisition, G.-G.W. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China, grant number U1706218,
41576011, 41706010 and 61503165.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhao, X.; Wang, C.; Su, J.; Wang, J. Research and application based on the swarm intelligence algorithm and
artificial intelligence for wind farm decision system. Renew. Energy 2019, 134, 681–697. [CrossRef]

2. Anandakumar, H.; Umamaheswari, K. A bio-inspired swarm intelligence technique for social aware cognitive
radio handovers. Comput. Electr. Eng. 2018, 71, 925–937. [CrossRef]

3. Shang, K.; Ishibuchi, H. A New Hypervolume-based Evolutionary Algorithm for Many-objective
Optimization. IEEE Trans. Evol. Comput. 2020, 1. [CrossRef]

4. Sang, H.-Y.; Pan, Q.-K.; Duan, P.-Y.; Li, J.-Q. An effective discrete invasive weed optimization algorithm for
lot-streaming flowshop scheduling problems. J. Intell. Manuf. 2015, 29, 1337–1349. [CrossRef]

5. Sang, H.-Y.; Pan, Q.-K.; Li, J.-Q.; Wang, P.; Han, Y.-Y.; Gao, K.-Z.; Duan, P. Effective invasive weed optimization
algorithms for distributed assembly permutation flowshop problem with total flowtime criterion. Swarm Evol.
Comput. 2019, 44, 64–73. [CrossRef]

6. Pan, Q.-K.; Sang, H.-Y.; Duan, J.-H.; Gao, L. An improved fruit fly optimization algorithm for continuous
function optimization problems. Knowl. Based Syst. 2014, 62, 69–83. [CrossRef]

7. Gao, D.; Wang, G.-G.; Pedrycz, W. Solving Fuzzy Job-shop Scheduling Problem Using DE Algorithm
Improved by a Selection Mechanism. IEEE Trans. Fuzzy Syst. 2020, 1. [CrossRef]

8. Li, M.; Xiao, D.; Zhang, Y.; Nan, H. Reversible data hiding in encrypted images using cross division and
additive homomorphism. Signal Process. Image Commun. 2015, 39, 234–248. [CrossRef]

9. Li, M.; Guo, Y.; Huang, J.; Li, Y. Cryptanalysis of a chaotic image encryption scheme based on
permutation-diffusion structure. Signal Process. Image Commun. 2018, 62, 164–172. [CrossRef]

10. Fan, H.; Li, M.; Liu, N.; Zhang, E. Cryptanalysis of a colour image encryption using chaotic APFM nonlinear
adaptive filter. Signal Process. 2018, 143, 28–41. [CrossRef]

11. Zhang, Y.; Gong, D.-W.; Hu, Y.; Zhang, W. Feature selection algorithm based on bare bones particle swarm
optimization. Neurocomputing 2015, 148, 150–157. [CrossRef]

12. Zhang, Y.; Song, X.-F.; Gong, D.-W. A return-cost-based binary firefly algorithm for feature selection. Inf. Sci.
2017, 418, 561–574. [CrossRef]

13. Mao, W.; He, J.; Tang, J.; Li, Y. Predicting remaining useful life of rolling bearings based on deep feature
representation and long short-term memory neural network. Adv. Mech. Eng. 2018, 10, 10. [CrossRef]

14. Jian, M.; Lam, K.M.; Dong, J. Facial-feature detection and localization based on a hierarchical scheme. Inf. Sci.
2014, 262, 1–14. [CrossRef]

15. Fan, L.; Xu, S.; Liu, D.; Ru, Y. Semi-Supervised Community Detection Based on Distance Dynamics.
IEEE Access 2018, 6, 37261–37271. [CrossRef]

16. Wang, G.; Chu, H.E.; Mirjalili, S. Three-dimensional path planning for UCAV using an improved bat
algorithm. Aerosp. Sci. Technol. 2016, 49, 231–238. [CrossRef]

17. Wang, G.; Guo, L.; Duan, H.; Liu, L.; Wang, H.; Shao, M. Path Planning for Uninhabited Combat Aerial
Vehicle Using Hybrid Meta-Heuristic DE/BBO Algorithm. Adv. Sci. Eng. Med. 2012, 4, 550–564. [CrossRef]

18. Wang, G.; Cai, X.; Cui, Z.; Min, G.; Chen, J. High Performance Computing for Cyber Physical Social Systems
by Using Evolutionary Multi-Objective Optimization Algorithm. IEEE Trans. Emerg. Top. Comput. 2017, 8, 1.
[CrossRef]

http://dx.doi.org/10.1016/j.renene.2018.11.061
http://dx.doi.org/10.1016/j.compeleceng.2017.09.016
http://dx.doi.org/10.1109/TEVC.2020.2964705
http://dx.doi.org/10.1007/s10845-015-1182-x
http://dx.doi.org/10.1016/j.swevo.2018.12.001
http://dx.doi.org/10.1016/j.knosys.2014.02.021
http://dx.doi.org/10.1109/tfuzz.2020.3003506
http://dx.doi.org/10.1016/j.image.2015.10.001
http://dx.doi.org/10.1016/j.image.2018.01.002
http://dx.doi.org/10.1016/j.sigpro.2017.08.018
http://dx.doi.org/10.1016/j.neucom.2012.09.049
http://dx.doi.org/10.1016/j.ins.2017.08.047
http://dx.doi.org/10.1177/1687814018817184
http://dx.doi.org/10.1016/j.ins.2013.12.001
http://dx.doi.org/10.1109/ACCESS.2018.2838568
http://dx.doi.org/10.1016/j.ast.2015.11.040
http://dx.doi.org/10.1166/asem.2012.1223
http://dx.doi.org/10.1109/TETC.2017.2703784


Mathematics 2020, 8, 1403 20 of 23

19. Cui, Z.; Sun, B.; Wang, G.; Xue, Y.; Chen, J. A novel oriented cuckoo search algorithm to improve DV-Hop
performance for cyber-physical systems. J. Parallel Distrib. Comput. 2017, 103, 42–52. [CrossRef]

20. Jian, M.; Lam, K.M.; Dong, J. Illumination-insensitive texture discrimination based on illumination
compensation and enhancement. Inf. Sci. 2014, 269, 60–72. [CrossRef]

21. Wang, G.-G.; Guo, L.; Duan, H.; Liu, L.; Wang, H. The model and algorithm for the target threat assessment
based on elman_adaboost strong predictor. Acta Electron. Sin. 2012, 40, 901–906.

22. Jian, M.; Lam, K.M.; Dong, J.; Shen, L. Visual-Patch-Attention-Aware Saliency Detection. IEEE Trans. Cybern.
2014, 45, 1575–1586. [CrossRef] [PubMed]

23. Wang, G.; Lu, M.; Dong, Y.-Q.; Zhao, X.-J. Self-adaptive extreme learning machine. Neural Comput. Appl.
2015, 27, 291–303. [CrossRef]

24. Mao, W.; Zheng, Y.; Mu, X.; Zhao, J. Uncertainty evaluation and model selection of extreme learning machine
based on Riemannian metric. Neural Comput. Appl. 2013, 24, 1613–1625. [CrossRef]

25. Liu, G.; Zou, J. Level set evolution with sparsity constraint for object extraction. IET Image Process. 2018, 12,
1413–1422. [CrossRef]

26. Liu, K.; Gong, D.; Meng, F.; Chen, H.; Wang, G. Gesture segmentation based on a two-phase estimation of
distribution algorithm. Inf. Sci. 2017, 88–105. [CrossRef]

27. Parouha, R.P.; Das, K.N. Economic load dispatch using memory based differential evolution. Int. J.
Bio-Inspired Comput. 2018, 11, 159–170. [CrossRef]

28. Rizk-Allah, R.M.; El-Sehiemy, R.A.; Wang, G. A novel parallel hurricane optimization algorithm for secure
emission/economic load dispatch solution. Appl. Soft Comput. 2018, 63, 206–222. [CrossRef]

29. Rizk-Allah, R.M.; El-Sehiemy, R.A.; Deb, S.; Wang, G. A novel fruit fly framework for multi-objective shape
design of tubular linear synchronous motor. J. Supercomput. 2017, 73, 1235–1256. [CrossRef]

30. Yi, J.-H.; Xing, L.; Wang, G.; Dong, J.; Vasilakos, A.V.; Alavi, A.H.; Wang, L. Behavior of crossover operators
in NSGA-III for large-scale optimization problems. Inf. Sci. 2020, 509, 470–487. [CrossRef]

31. Yi, J.-H.; Deb, S.; Dong, J.; Alavi, A.H.; Wang, G. An improved NSGA-III algorithm with adaptive mutation
operator for Big Data optimization problems. Future Gener. Comput. Syst. 2018, 88, 571–585. [CrossRef]

32. Liu, G.; Deng, M. Parametric active contour based on sparse decomposition for multi-objects extraction.
Signal Process. 2018, 148, 314–321. [CrossRef]

33. Sun, J.; Miao, Z.; Gong, D.; Zeng, X.-J.; Li, J.; Wang, G.-G. Interval multi-objective optimization with memetic
algorithms. IEEE Trans. Cybern. 2020, 50, 3444–3457. [CrossRef] [PubMed]

34. Zhang, Y.; Wang, G.; Li, K.; Yeh, W.-C.; Jian, M.; Dong, J. Enhancing MOEA/D with information feedback
models for large-scale many-objective optimization. Inf. Sci. 2020, 522, 1–16. [CrossRef]

35. Srikanth, K.; Panwar, L.K.; Panigrahi, B.; Herrera-Viedma, E.; Sangaiah, A.K.; Wang, G. Meta-heuristic
framework: Quantum inspired binary grey wolf optimizer for unit commitment problem. Comput. Electr.
Eng. 2018, 70, 243–260. [CrossRef]

36. Chen, S.; Chen, R.; Wang, G.; Gao, J.; Sangaiah, A.K. An adaptive large neighborhood search heuristic for
dynamic vehicle routing problems. Comput. Electr. Eng. 2018, 67, 596–607. [CrossRef]

37. Feng, Y.; Wang, G.-G. Binary moth search algorithm for discounted {0–1} knapsack problem. IEEE Access
2018, 6, 10708–10719. [CrossRef]

38. Feng, Y.; Wang, G.; Wang, L. Solving randomized time-varying knapsack problems by a novel global firefly
algorithm. Eng. Comput. 2018, 34, 621–635. [CrossRef]

39. Abdel-Basst, M.; Zhou, Y. An elite opposition-flower pollination algorithm for a 0–1 knapsack problem. Int. J.
Bio-Inspired Comput. 2018, 11, 46–53. [CrossRef]

40. Yi, J.-H.; Wang, J.; Wang, G. Improved probabilistic neural networks with self-adaptive strategies for
transformer fault diagnosis problem. Adv. Mech. Eng. 2016, 8, 1–13. [CrossRef]

41. Mao, W.; He, J.; Li, Y.; Yan, Y. Bearing fault diagnosis with auto-encoder extreme learning machine: A
comparative study. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2016, 231, 1560–1578. [CrossRef]

42. Mao, W.; Feng, W.; Liang, X. A novel deep output kernel learning method for bearing fault structural
diagnosis. Mech. Syst. Signal Process. 2019, 117, 293–318. [CrossRef]

43. Duan, H.; Zhao, W.; Wang, G.; Feng, X. Test-Sheet Composition Using Analytic Hierarchy Process and
Hybrid Metaheuristic Algorithm TS/BBO. Math. Probl. Eng. 2012, 2012, 1–22. [CrossRef]

44. Goldberg, D.E. Genetic algorithms in search. In Optimization, and Machine Learning; Addison-Wesley: Reading,
MA, USA, 1989.

http://dx.doi.org/10.1016/j.jpdc.2016.10.011
http://dx.doi.org/10.1016/j.ins.2014.01.019
http://dx.doi.org/10.1109/TCYB.2014.2356200
http://www.ncbi.nlm.nih.gov/pubmed/25291809
http://dx.doi.org/10.1007/s00521-015-1874-3
http://dx.doi.org/10.1007/s00521-013-1392-0
http://dx.doi.org/10.1049/iet-ipr.2017.0939
http://dx.doi.org/10.1016/j.ins.2017.02.021
http://dx.doi.org/10.1504/IJBIC.2018.091700
http://dx.doi.org/10.1016/j.asoc.2017.12.002
http://dx.doi.org/10.1007/s11227-016-1806-8
http://dx.doi.org/10.1016/j.ins.2018.10.005
http://dx.doi.org/10.1016/j.future.2018.06.008
http://dx.doi.org/10.1016/j.sigpro.2018.02.032
http://dx.doi.org/10.1109/TCYB.2019.2908485
http://www.ncbi.nlm.nih.gov/pubmed/31034428
http://dx.doi.org/10.1016/j.ins.2020.02.066
http://dx.doi.org/10.1016/j.compeleceng.2017.07.023
http://dx.doi.org/10.1016/j.compeleceng.2018.02.049
http://dx.doi.org/10.1109/ACCESS.2018.2809445
http://dx.doi.org/10.1007/s00366-017-0562-6
http://dx.doi.org/10.1504/IJBIC.2018.090080
http://dx.doi.org/10.1177/1687814015624832
http://dx.doi.org/10.1177/0954406216675896
http://dx.doi.org/10.1016/j.ymssp.2018.07.034
http://dx.doi.org/10.1155/2012/712752


Mathematics 2020, 8, 1403 21 of 23

45. Mistry, K.; Zhang, L.; Neoh, S.C.; Lim, C.P.; Fielding, B. A Micro-GA Embedded PSO Feature Selection
Approach to Intelligent Facial Emotion Recognition. IEEE Trans. Cybern. 2017, 47, 1496–1509. [CrossRef]
[PubMed]

46. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE International Conference
on Neural Networks, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948.

47. Song, X.-F.; Zhang, Y.; Guo, Y.-N.; Sun, X.-Y.; Wang, Y.-L. Variable-size Cooperative Coevolutionary Particle
Swarm Optimization for Feature Selection on High-dimensional Data. IEEE Trans. Evol. Comput. 2020, 1.
[CrossRef]

48. Sun, Y.; Jiao, L.; Deng, X.; Wang, R. Dynamic network structured immune particle swarm optimisation with
small-world topology. Int. J. Bio-Inspired Comput. 2017, 9, 93–105. [CrossRef]

49. Gandomi, A.H.; Alavi, A.H. Krill herd: A new bio-inspired optimization algorithm. Commun. Nonlinear Sci.
Numer. Simul. 2012, 17, 4831–4845. [CrossRef]

50. Abualigah, L.M.; Khader, A.T.; Hanandeh, E.S.; Gandomi, A.H. A novel hybridization strategy for krill herd
algorithm applied to clustering techniques. Appl. Soft Comput. 2017, 60, 423–435. [CrossRef]

51. Wang, G.; Gandomi, A.H.; Alavi, A.H. An effective krill herd algorithm with migration operator in
biogeography-based optimization. Appl. Math. Model. 2014, 38, 2454–2462. [CrossRef]

52. Wang, G.-G.; Gandomi, A.H.; Alavi, A.H.; Deb, S. A Multi-Stage Krill Herd Algorithm for Global Numerical
Optimization. Int. J. Artif. Intell. Tools 2016, 25, 1550030. [CrossRef]

53. Wang, G.; Gandomi, A.H.; Alavi, A.H.; Gong, D. A comprehensive review of krill herd algorithm: Variants,
hybrids and applications. Artif. Intell. Rev. 2019, 51, 119–148. [CrossRef]

54. Wang, G.; Guo, L.; Gandomi, A.H.; Hao, G.-S.; Wang, H. Chaotic Krill Herd algorithm. Inf. Sci. 2014, 274,
17–34. [CrossRef]

55. Dorigo, M.; Maniezzo, V.; Colorni, A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans.
Syst. Man. Cybern. Part B Cybern. 1996, 26, 29–41. [CrossRef]

56. Zheng, F.; Zecchin, A.C.; Newman, J.P.; Maier, H.R.; Dandy, G.C. An Adaptive Convergence-Trajectory
Controlled Ant Colony Optimization Algorithm With Application to Water Distribution System Design
Problems. IEEE Trans. Evol. Comput. 2017, 21, 773–791. [CrossRef]

57. Dorigo, M.; Stutzle, T. Ant Colony Optimization; MIT Press: Cambridge, UK, 2004.
58. Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over

continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [CrossRef]
59. Gao, S.; Yu, Y.; Wang, Y.; Wang, J.; Cheng, J.; Zhou, M. Chaotic Local Search-Based Differential Evolution

Algorithms for Optimization. IEEE Trans. Syst. Man Cybern. Syst. 2019, 1–14. [CrossRef]
60. Dulebenets, M.A. An Adaptive Island Evolutionary Algorithm for the berth scheduling problem.

Memetic Comput. 2020, 12, 51–72. [CrossRef]
61. Dulebenets, M.A. A Delayed Start Parallel Evolutionary Algorithm for just-in-time truck scheduling at a

cross-docking facility. Int. J. Prod. Econ. 2019, 212, 236–258. [CrossRef]
62. Agapitos, A.; Loughran, R.; Nicolau, M.; Lucas, S.; OrNeill, M.; Brabazon, A. A Survey of Statistical Machine

Learning Elements in Genetic Programming. IEEE Trans. Evol. Comput. 2019, 23, 1029–1048. [CrossRef]
63. Back, T. Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic

Algorithms; Oxford University Press: Oxford, UK, 1996.
64. Kashan, A.H.; Keshmiry, M.; Dahooie, J.H.; Abbasi-Pooya, A. A simple yet effective grouping evolutionary

strategy (GES) algorithm for scheduling parallel machines. Neural Comput. Appl. 2016, 30, 1925–1938.
[CrossRef]

65. Wang, G.; Gandomi, A.H.; Alavi, A.H.; Deb, S. A hybrid method based on krill herd and quantum-behaved
particle swarm optimization. Neural Comput. Appl. 2015, 27, 989–1006. [CrossRef]

66. Wang, G.; Guo, L.; Wang, H.; Duan, H.; Liu, L.; Li, J. Incorporating mutation scheme into krill herd algorithm
for global numerical optimization. Neural Comput. Appl. 2012, 24, 853–871. [CrossRef]

67. Abualigah, L.M.; Khader, A.T.; Hanandeh, E.S. A combination of objective functions and hybrid Krill herd
algorithm for text document clustering analysis. Eng. Appl. Artif. Intell. 2018, 73, 111–125. [CrossRef]

68. Niu, P.; Chen, K.; Ma, Y.; Li, X.; Liu, A.; Li, G. Model turbine heat rate by fast learning network with tuning
based on ameliorated krill herd algorithm. Knowl. Based Syst. 2017, 118, 80–92. [CrossRef]

69. Slowik, A.; Kwasnicka, H. Nature Inspired Methods and Their Industry Applications—Swarm Intelligence
Algorithms. IEEE Trans. Ind. Inform. 2018, 14, 1004–1015. [CrossRef]

http://dx.doi.org/10.1109/TCYB.2016.2549639
http://www.ncbi.nlm.nih.gov/pubmed/28113688
http://dx.doi.org/10.1109/TEVC.2020.2968743
http://dx.doi.org/10.1504/IJBIC.2017.083100
http://dx.doi.org/10.1016/j.cnsns.2012.05.010
http://dx.doi.org/10.1016/j.asoc.2017.06.059
http://dx.doi.org/10.1016/j.apm.2013.10.052
http://dx.doi.org/10.1142/S021821301550030X
http://dx.doi.org/10.1007/s10462-017-9559-1
http://dx.doi.org/10.1016/j.ins.2014.02.123
http://dx.doi.org/10.1109/3477.484436
http://dx.doi.org/10.1109/TEVC.2017.2682899
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1109/TSMC.2019.2956121
http://dx.doi.org/10.1007/s12293-019-00292-3
http://dx.doi.org/10.1016/j.ijpe.2019.02.017
http://dx.doi.org/10.1109/TEVC.2019.2900916
http://dx.doi.org/10.1007/s00521-016-2789-3
http://dx.doi.org/10.1007/s00521-015-1914-z
http://dx.doi.org/10.1007/s00521-012-1304-8
http://dx.doi.org/10.1016/j.engappai.2018.05.003
http://dx.doi.org/10.1016/j.knosys.2016.11.011
http://dx.doi.org/10.1109/TII.2017.2786782


Mathematics 2020, 8, 1403 22 of 23

70. Brezočnik, L.; Fister, J.I.; Podgorelec, V. Swarm Intelligence Algorithms for Feature Selection: A Review.
Appl. Sci. 2018, 8, 1521. [CrossRef]

71. Sun, C.; Jin, Y.; Cheng, R.; Ding, J.; Zeng, J. Surrogate-Assisted Cooperative Swarm Optimization of
High-Dimensional Expensive Problems. IEEE Trans. Evol. Comput. 2017, 21, 644–660. [CrossRef]

72. Tran, B.N.; Xue, B.; Zhang, M. Variable-Length Particle Swarm Optimization for Feature Selection on
High-Dimensional Classification. IEEE Trans. Evol. Comput. 2019, 23, 473–487. [CrossRef]

73. Tran, B.N.; Xue, B.; Zhang, M. A New Representation in PSO for Discretization-Based Feature Selection.
IEEE Trans. Cybern. 2018, 48, 1733–1746. [CrossRef]

74. Zhang, J.; Zhu, X.; Wang, Y.; Zhou, M. Dual-Environmental Particle Swarm Optimizer in Noisy and Noise-Free
Environments. IEEE Trans. Cybern. 2019, 49, 2011–2021. [CrossRef]

75. Bornemann, F.; Laurie, D.; Wagon, S.; Waldvogel, J. The siam 100-digit challenge: A study in high-accuracy
numerical computing. SIAM Rev. 2005, 1, 47.

76. Epstein, A.; Ergezer, M.; Marshall, I.; Shue, W. Gade with fitness-based opposition and tidal mutation
for solving ieee cec2019 100-digit challenge. In Proceedings of the 2019 IEEE Congress on Evolutionary
Computation (CEC), Wellington, New Zealand, 10–13 June 2019; pp. 395–402.

77. Brest, J.; Maučec, M.S.; Bošković, B. The 100-digit challenge: Algorithm jde100. In Proceedings of the 2019
IEEE Congress on Evolutionary Computation (CEC), Wellington, New Zealand, 10–13 June 2019; pp. 19–26.

78. Zhang, S.X.; Chan, W.S.; Tang, K.S.; Zheng, S.Y. Restart based collective information powered differential
evolution for solving the 100-digit challenge on single objective numerical optimization. In Proceedings of
the 2019 IEEE Congress on Evolutionary Computation (CEC), Wellington, New Zealand, 10–13 June 2019;
pp. 14–18.

79. Jun, S.; Bin, F.; Wenbo, X. Particle swarm optimization with particles having quantum behavior. In Proceedings
of the 2004 Congress on Evolutionary Computation, Portland, OR, USA, 19–23 June 2004; Volume 321,
pp. 325–331.

80. Wang, G.; Gandomi, A.H.; Alavi, A.H.; Hao, G.-S. Hybrid krill herd algorithm with differential evolution for
global numerical optimization. Neural Comput. Appl. 2014, 25, 297–308. [CrossRef]

81. Wang, G.; Gandomi, A.H.; Alavi, A.H. Stud krill herd algorithm. Neurocomputing 2014, 128, 363–370.
[CrossRef]

82. Wang, G.; Deb, S.; Gandomi, A.H.; Zhang, Z.; Alavi, A.H. Chaotic cuckoo search. Soft Comput. 2016, 20,
3349–3362. [CrossRef]

83. Wang, G.; Lu, M.; Zhao, X. An improved bat algorithm with variable neighborhood search for global
optimization. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver,
BC, Canada, 24–29 July 2016; pp. 1773–1778.

84. Simon, D. Biogeography-based optimization. IEEE Trans. Evol. Comput. 2008, 12, 702–713. [CrossRef]
85. Wang, G.; Tan, Y. Improving Metaheuristic Algorithms With Information Feedback Models. IEEE Trans.

Cybern. 2017, 49, 542–555. [CrossRef]
86. Yang, X.-S.; Gandomi, A.H. Bat algorithm: A novel approach for global engineering optimization. Eng. Comput.

2012, 29, 464–483. [CrossRef]
87. Wang, G.; Guo, L. A Novel Hybrid Bat Algorithm with Harmony Search for Global Numerical Optimization.

J. Appl. Math. 2013, 2013, 1–21. [CrossRef]
88. Wang, G.; Guo, L.; Duan, H.; Liu, L.; Wang, H. Dynamic Deployment of Wireless Sensor Networks by

Biogeography Based Optimization Algorithm. J. Sens. Actuator Netw. 2012, 1, 86–96. [CrossRef]
89. Li, J.; Li, Y.-X.; Tian, S.-S.; Zou, J. Dynamic cuckoo search algorithm based on taguchi opposition-based

search. Int. J. Bio-Inspired Comput. 2019, 13, 59–69. [CrossRef]
90. Yang, X.-S.; Deb, S. Engineering optimisation by cuckoo search. Int. J. Math. Model. Numer. Optim. 2010, 1,

330. [CrossRef]
91. Gandomi, A.H.; Yang, X.-S.; Alavi, A.H. Cuckoo search algorithm: A metaheuristic approach to solve

structural optimization problems. Eng. Comput. 2013, 29, 17–35. [CrossRef]
92. Wang, G.; Gandomi, A.H.; Zhao, X.; Chu, H.C.E. Hybridizing harmony search algorithm with cuckoo search

for global numerical optimization. Soft Comput. 2016, 20, 273–285. [CrossRef]
93. Wang, G.; Deb, S.; Coelho, L.D.S. Earthworm optimization algorithm: A bio-inspired metaheuristic algorithm

for global optimization problems. Int. J. Bio-Inspired Comput. 2018, 12, 1–22. [CrossRef]

http://dx.doi.org/10.3390/app8091521
http://dx.doi.org/10.1109/TEVC.2017.2675628
http://dx.doi.org/10.1109/TEVC.2018.2869405
http://dx.doi.org/10.1109/TCYB.2017.2714145
http://dx.doi.org/10.1109/TCYB.2018.2817020
http://dx.doi.org/10.1007/s00521-013-1485-9
http://dx.doi.org/10.1016/j.neucom.2013.08.031
http://dx.doi.org/10.1007/s00500-015-1726-1
http://dx.doi.org/10.1109/TEVC.2008.919004
http://dx.doi.org/10.1109/TCYB.2017.2780274
http://dx.doi.org/10.1108/02644401211235834
http://dx.doi.org/10.1155/2013/696491
http://dx.doi.org/10.3390/jsan1020086
http://dx.doi.org/10.1504/IJBIC.2019.097728
http://dx.doi.org/10.1504/IJMMNO.2010.035430
http://dx.doi.org/10.1007/s00366-011-0241-y
http://dx.doi.org/10.1007/s00500-014-1502-7
http://dx.doi.org/10.1504/IJBIC.2018.093328


Mathematics 2020, 8, 1403 23 of 23

94. Wang, G.-G.; Deb, S.; Coelho, L.D.S. Elephant herding optimization. In Proceedings of the 2015 3rd
International Symposium on Computational and Business Intelligence (ISCBI 2015), Bali, Indonesia,
7–9 December 2015; pp. 1–5.

95. Wang, G.-G.; Deb, S.; Gao, X.-Z.; Coelho, L.d.S. A new metaheuristic optimization algorithm motivated by
elephant herding behavior. Int. J. Bio-Inspired Comput. 2016, 8, 394–409. [CrossRef]

96. Wang, G. Moth search algorithm: A bio-inspired metaheuristic algorithm for global optimization problems.
Memetic Comput. 2018, 10, 151–164. [CrossRef]

97. Yang, X.-S. Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspired Comput.
2010, 2, 78. [CrossRef]

98. Wang, H.; Yi, J.-H. An improved optimization method based on krill herd and artificial bee colony with
information exchange. Memetic Comput. 2018, 10, 177–198. [CrossRef]

99. Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial
bee colony (ABC) algorithm. J. Glob. Optim. 2007, 39, 459–471. [CrossRef]

100. Liu, F.; Sun, Y.; Wang, G.-G.; Wu, T. An artificial bee colony algorithm based on dynamic penalty and chaos
search for constrained optimization problems. Arab. J. Sci. Eng. 2018, 43, 7189–7208. [CrossRef]

101. Geem, Z.W.; Kim, J.H.; Loganathan, G. A New Heuristic Optimization Algorithm: Harmony Search.
Simulation 2001, 76, 60–68. [CrossRef]

102. Wang, G.; Deb, S.; Cui, Z. Monarch butterfly optimization. Neural Comput. Appl. 2019, 31, 1995–2014.
[CrossRef]

103. Wang, G.; Deb, S.; Zhao, X.; Cui, Z. A new monarch butterfly optimization with an improved crossover
operator. Oper. Res. 2018, 18, 731–755. [CrossRef]

104. Gandomi, A.H.; Alavi, A.H. Multi-stage genetic programming: A new strategy to nonlinear system modeling.
Inf. Sci. 2011, 181, 5227–5239. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1504/IJBIC.2016.081335
http://dx.doi.org/10.1007/s12293-016-0212-3
http://dx.doi.org/10.1504/IJBIC.2010.032124
http://dx.doi.org/10.1007/s12293-017-0241-6
http://dx.doi.org/10.1007/s10898-007-9149-x
http://dx.doi.org/10.1007/s13369-017-3049-2
http://dx.doi.org/10.1177/003754970107600201
http://dx.doi.org/10.1007/s00521-015-1923-y
http://dx.doi.org/10.1007/s12351-016-0251-z
http://dx.doi.org/10.1016/j.ins.2011.07.026
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Work 
	KH 
	PSO 
	100-Digit Challenge 

	KH and PSO 
	KH 
	PSO 

	AKQPSO 
	Simulation Results 
	The Comparison of AKQPSO and Other Algorithms 
	Evaluation Parameter  
	Complexity Analysis of AKQPSO 

	Conclusions 
	References

