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Abstract: Software reliability and quality are crucial in several fields. Related studies have focused
on software reliability growth models (SRGMs). Herein, we propose a new SRGM that assumes
interdependent software failures. We conduct experiments on real-world datasets to compare the
goodness-of-fit of the proposed model with the results of previous nonhomogeneous Poisson process
SRGMs using several evaluation criteria. In addition, we determine software reliability using Wald’s
sequential probability ratio test (SPRT), which is more efficient than the classical hypothesis test
(the latter requires substantially more data and time because the test is performed only after data
collection is completed). The experimental results demonstrate the superiority of the proposed model
and the effectiveness of the SPRT.
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1. Introduction

Software performance and reliability are essential in various fields, such as the Internet of Things.
If software reliability is not guaranteed, economic and human losses may occur. Hence, various studies
have been conducted to improve software reliability and prevent loss.

Software reliability growth models (SRGMs) are tools that estimate the quality and reliability of
software products. SRGMs not only provide information regarding software reliability for developers
and consumers, but also help establish an optimal release policy.

Most SRGMs assume that the mean value function, m(t), is a nonhomogeneous Poisson process
(NHPP). The m(t) of each model is a single function that reflects the failure intensity, failure detection,
number of remaining failures, and the environment. In particular, assumptions regarding the test and
development environments are essential; furthermore, the parameters and the form of m(t) depend on
the assumptions regarding the environment.

Previous studies have considered the types of fault detection functions and the shape of m(t).
The Goel–Okumoto (GO) model [1] is a basic stochastic NHPP SRGM that has inspired several
researchers. Ohba et al. [2] proposed an inflection S-shaped curve model. Yamada [3] developed
a similar delayed model. Pham et al. [4] reported a nondecreasing inflection S-shaped model with
an error introduction rate as an exponential function; the model is known as the Pham–Zhang (PZ)
model. Moreover, Pham et al. [5] proposed a generalized NHPP software model that reflected the
testing coverage. Subsequently, researchers became interested in environmental factors. In particular,
many studies have focused on uncertain operating or testing environments [6–13]. Some recent
research has been studied on SRGMs with considerations of time-dependent fault detection [14–19],
random operating environments [20,21], and multi release software [22–24].
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Recent studies combined deep learning and machine learning with software reliability [25–28].
Wang et al. discussed an optimal release policy and the selection of the best software reliability
model [28]. Lee et al. proposed an SRGM to consider the actual test time instead of the designed test
time [29]. Minamino et al. [30] discussed software reliability and release policies that considered the
change-points of data based on the theory of multiproperty utilities. Rani et al. [31] developed a hazard
rate model that introduced an imperfect debugging parameter and a single change-point parameter.

Some studies suggest statistical techniques to predict software reliability. Typically, parameters
of reliability models are estimated using the least-square estimator (LSE) method. Additionally,
the maximum likelihood estimator (MLE) and Bayesian methods have been used [32,33]. However,
software reliability models have complex structures and numerous parameters, rendering it difficult to
apply the MLE and Bayesian methods; hence, we used the LSE to estimate the parameters in this study.

We applied the sequential probability ratio test (SPRT), a statistical test technique, to efficiently
determine software reliability. The SPRT was designed for military and naval equipment development
by Wald [34]. The main advantage of a sequential test is that it requires a shorter test time compared
with that required by the classical test, which requires a fixed sample size. In addition, the SPRT can
instantly determine software reliability whenever new faults occur. Hence, reliability can be assessed
based on the change-points of data. This procedure is described in Section 2.

Software reliability studies using Wald’s SPRT procedure have been conducted continually.
Stieber applied the SPRT to an NHPP SRGM for the first time [35]. This method has been applied to
various SRGMs in many studies [36–40]. Furthermore, the authors of [38] performed the SPRT using
order statistics.

Herein, we propose a new SRGM that assumes interdependent software failures. In Section 2,
we discuss the efficiency of the SPRT. The proposed model is described in Section 3. In Section 4,
we introduce the criteria and data used in the experiments. Subsequently, we discuss the results in
Section 5. Finally, Section 6 concludes the paper.

2. Wald’s SPRT

Wald described the efficiency of the SPRT [34]. The probability ratio p1/p0 is used as a test statistic
of the SPRT for testing the null hypothesis against an alternative hypothesis. The test is continued
(until the next decision) if the following condition is satisfied:

B <
p1

p0
< A, (1)

where A and B are constants used to decide the acceptance and rejection of the null hypothesis H0,
respectively. If p1/p0 ≥ A, then H0 is rejected. If p1/p0 ≤ B, then H0 is accepted.

Moreover, A and B depend on α and β, as shown in Equations (2)–(5). Here, α and β are type-1
and -2 errors, respectively. In other words, α is the producer’s risk, whereas β is the consumer’s risk.

1−β ≥ Aα (2)

A ≤
1−β
α

(3)

β ≤ (1−α)B (4)

B ≥
β

1−α
(5)

The SPRT can be expressed visually. Figure 1 shows the method to assess software reliability
using the SPRT.
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In Figure 1, NL(t) and NU(t) denote the lower and upper limits of the area in which the software
is reliable, respectively. Here, N(t) is the expected number of failures at time t for the NHPP. If N(t) is
in the reliable region, then the software is reliable.

NL(t) = at− b1, NU(t) = at + b2, (6)

where a, b1, and b2 are expressed as:

a =
λ1 − λ0

ln
(
λ1
λ0

) , (7)

b1 =
ln

(
1−α
β

)
ln

(
λ1
λ0

) , b2 =
ln

(
1−β
α

)
ln

(
λ1
λ0

) . (8)

Stieber applied the SPRT to an NHPP SRGM [35] with λ0 =
λ ln(q)

q−1 and λ1 = qλ ln(q)
q−1 ,

where q = λ1/λ0. A general NHPP SRGM is expressed as:

Pr
{
N(t) = n

}
=

[m(t)]n

n!
e−m(t), n = 0, 1, 2, . . . . (9)

where m(t) indicates the expected number of detected failures until time t, which is described as:

m(t) =
∫ t

0
λ(s)ds. (10)

Stieber defined the probability ratio, which is used as a statistic of the SPRT for NHPP SRGMs,
as in Equation (1).

p0 =
e−m0(t)[m0(t)]

N(t)

N(t)!
, p1 =

e−m1(t)[m1(t)]
N(t)

N(t)!
. (11)

Using Equations (3), (5) and (11), we can rewrite Equation (1) as follows:

ln
(

β
1−α

)
+ m1(t) −m0(t)

ln m1(t) − ln m0(t)
< N(t) <

ln
(

1−β
α

)
+ m1(t) −m0(t)

ln m1(t) − ln m0(t)
. (12)

In Equation (12), the left term is constant B, and the right term is constant A. Moreover, N(t) refers
to the probability ratio, p1/p0.
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3. New SRGM

A general SRGM that follows the NHPP, as shown in Equation (9), can be obtained by solving
the differential equation shown in Equation (13). Function b(t) varies according to each assumption
as follows:

dm(t)
dt

= [b(t)][N−m(t)], (13)

where b(t) is the fault detection rate function. The model assumes independent failures.
However, the proposed model is different. For example, if a fault occurs because of a syntax

error and a developer cannot fix it completely, new faults will be affected. Consequently, failures may
depend on one another (Figure 2). Hence, we assume that the failures are dependent. The SRGM
based on these assumptions can be obtained from the differential equation expressed in Equation (14).

dm(t)
dt

= [b(t)][a(t) −m(t)]m(t), (14)

where a(t) and b(t) are the functions of the total failure content rate and failure detection rate,
respectively. In the proposed model, a(t) and b(t) are expressed as:

a(t) = a, b(t) =
b

1 + ce−bt
. (15)
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Therefore, we can calculate the m(t) of the proposed model. The initial value is m(0) = h.

m(t) =
a

1 + a
h

(
b+c

c+bebt

) a
b

(16)

Table 1 summarizes the m(t) for existing NHPP SRGMs.
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Table 1. Mean value functions of software reliability growth models (SRGMs).

No. Model m(t)

1 Goel Okumoto (GO) [1] m(t) = a
(
1− e−bt

)
2 Delayed S-shaped (DS) [3] m(t) = a

(
1− (1 + bt)e−bt

)
3 Inflection S-shaped (IS) [2] m(t) =

a(1−e−bt)
1+βe−bt

4 Yamada Imperfect Debugging (YID) [3] m(t) = a
(
1− e−bt

)(
1− α

b

)
+ αat

5 Pham–Nordmann–Zhang (PNZ) [41] m(t) =
a(1−e−bt)[1−α

b ]+αat

1+βe−bt

6 Pham–Zhang (PZ) [4] m(t) =
((c+a)[1−e−bt]−[ ab

b−α ](e−at
−e−bt))

1+βe−bt

7 Testing Coverage (TC) [9] m(t) = N
[
1−

(
β

β+(at)b

)α]
8 New model

m(t) = a

1+( a
h )

(
b+c

c+bebt

) a
b

4. Experiments

4.1. Criteria

In this section, we elucidate the use of eight criteria to compare the NHPP SRGMs for two
real-world datasets.

(1) The mean squared error (MSE) [42] measures the distance between the estimated and actual
data, considering the number of observations and the number of parameters in the models. The MSE is
defined as follows:

MSE =

∑n
i=1

(
m̂(ti) − yi

)2

n−N
,

where n is the number of total cumulative failures, N the number of model parameters, and yi the
number of cumulative failures at ti, obtained from the dataset.

(2) The predictive ratio risk (PRR) [42] indicates the distance of model estimates from actual data
with respect to the model estimates. It is calculated as:

PRR =
n∑

i=1

(
m̂(ti) − yi

m̂(ti)

)2

.

(3) The predictive power (PP) [43] measures the distance of actual data from the estimate with
regard to the actual data. It is defined as:

PP =
n∑

i=1

(
m̂(ti) − yi

yi

)2

.

(4) R-square (R2) [44] is the correlation index of the regression curve equation. It is used to explain
the fitting power of the SRGMs and is described as follows:

R2 = 1−

∑n
i=1

(
yi − m̂(ti)

)2

∑n
i=1

(
yi − y

)2 .

(5) Akaike’s information criterion (AIC) [45] is used to maximize the likelihood function. It can be
considered as an approximate distance from the true probability model, as follows:

AIC = −2lnL + 2N,
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where N is the degree of freedom. Here, L and lnL are written as follows:

L =
n∏

i=1

(m(ti) −m(ti−1))
yi−yi−1(

yi − yi−1

)
!

e−(m(ti)−m(ti−1)),

lnL =
n∑

i=1

{(
yi − yi−1

)
ln((m(ti) −m(ti−1)) − (m(ti) −m(ti−1)) − ln

((
yi − yi−1

)
!
)}

.

(6) The sum of absolute error (SAE) [11] measures the distance between the predicted number of
failures and the observed data. It is defined as:

SAE =
n∑

i=1

∣∣∣m̂(ti) − yi

∣∣∣.
(7) The variation [46] is the standard deviation of the prediction bias. It is expressed as follows:

Variation =

√∑n
i=1

(
(m̂(ti) − yi

)
− Bias)2

n− 1
,

where bias is expressed as:

Bias =
n∑

i=1

[
m̂(ti) − yi

n

]
.

(8) The root-mean-square prediction error (RMSPE) [46] estimates the closeness of the predicted
values with the actual observations.

RMSPE =

√
Variation2 + Bias2

The closer the value of R2 is to 1, the better the goodness-of-fit of the dataset. For other criteria,
a smaller value indicates a better fit.

4.2. Datasets

Table 2 shows the two datasets used in the experiments. Dataset 1 was collected from a
telecommunication system that manages the radio access of wireless systems on a weekly basis [42,47].
It is a test dataset corresponding to two releases of the software. For dataset 1, the number of
cumulative failures is {1, 1, . . . , 26} at ti = 1, 2, . . . , 21, and the number of total cumulative failures is 26.
Dataset 2 includes one of the three releases of weekly medical record system test data that correspond
to 188 software tools [42,48]. For dataset 2, the number of cumulative failures is {90, 107, . . . , 204} at
ti = 1, 2, . . . , 17.
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Table 2. Datasets.

Dataset 1 Dataset 2

Time Failure Cum. Failure Time Failure Cum. Failure

1 1 1 1 90 90
2 0 1 2 17 107
3 1 2 3 19 126
4 1 3 4 19 145
5 2 5 5 26 171
6 0 5 6 17 188
7 0 5 7 1 189
8 3 8 8 1 190
9 1 9 9 0 190
10 2 11 10 0 190
11 2 13 11 2 192
12 2 15 12 0 192
13 4 19 13 0 192
14 0 19 14 0 192
15 3 22 15 11 203
16 0 22 16 0 203
17 1 23 17 1 204
18 1 24
19 0 24
20 0 24
21 2 26 � � �

5. Results

5.1. Results of Parameter Estimation and Goodness-of-Fit

Before comparing the fit and applying the SPRT, we estimated the parameters of all models listed
in Table 1 using the LSE method. Table 3 summarizes the estimated parameters for datasets.

Table 3. Estimation of parameters for datasets.

Model Dataset 1 Dataset 2

GO â = 254045, b̂ = 0.000005 â = 197.387, b̂ = 0.399

DS â = 39.8212, b̂ = 0.11041 â = 192.528, b̂ = 0.882

IS â = 26.693, b̂ = 0.2919, β̂ = 21.71 â = 197.354, b̂ = 0.399, β̂ = 0.000001

YID â = 0.008, b̂ = 0.462, β̂ = 185.571 â = 182.934, b̂ = 0.464, β̂ = 0.0071

PNZ â = 26.686, b̂ = 0.292, β̂ = 0.00001,
β̂ = 21.726

â = 183.125, b̂ = 0.463, α̂ = 0.007,
β̂ = 0.0001

PZ â = 0.0001, b̂ = 0.298, α̂ = 2000,
β̂ = 22.987, ĉ = 26.536

â = 195.99, b̂ = 0.3987, α̂ = 1000,
β̂ = 0, ĉ = 1.39

TC â = 0.149, b̂ = 2.234, α̂ = 1961.82,
β̂ = 8176.811, N̂ = 26.838

â = 0.053, b̂ = 0.774, α̂ = 181,
β̂ = 38.6, N̂ = 204.14

New â = 25.338, b̂ = 0.032, ĉ = 3.260, ĥ = 1.115 â = 194.766, b̂ = 0.304, ĉ = 304.566,
ĥ = 135.464

Tables 4 and 5 present the results for the abovementioned eight criteria of all SRGMs for each
dataset. Moreover, Figures 3 and 4 show the m(t).
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Table 4. Comparison of all criteria for dataset 1.

Model MSE PRR PP R2 SAE AIC Variation RMSPE

GO 3.8516 1.3319 4.8508 0.9546 33.9339 65.3611 1.8323 1.9091

DS 1.4938 12.0680 0.9676 0.9824 19.9967 63.9399 1.1908 1.1913

IS 0.6744 2.8509 0.6561 0.9925 12.9465 64.1779 0.7727 0.7788

YID 2.3842 5.7663 0.8579 0.9734 23.4627 67.1715 1.4649 1.4649

PNZ 0.7141 2.8584 0.9698 0.9925 12.9502 66.1785 0.7728 0.7788

PZ 0.7621 3.2272 0.7029 0.9924 13.1848 68.276 0.7722 0.78

TC 1.0939 102.1599 1.7468 0.9891 16.0532 70.5594 0.9198 0.9348

New 0.5503 0.4518 0.8020 0.9942 11.7685 66.8464 0.6839 0.6839

Table 5. Comparison of all criteria for dataset 2.

Model MSE PRR PP R2 SAE AIC Variation RMSPE

GO 80.6779 0.1705 0.1013 0.9388 104.4025 184.3314 0.6839 0.6839

DS 232.6282 1.2915 0.3330 0.8234 142.5442 331.8567 8.6734 8.6955

IS 86.4395 0.1706 0.1013 0.9388 104.3703 186.3337 14.6423 14.7605

YID 78.8367 0.1276 0.0866 0.9442 100.6173 157.8252 8.6711 8.6953

PNZ 84.9077 0.1281 0.0867 0.9442 100.6045 159.8744 8.2915 8.3047

PZ 100.9894 0.1719 0.1017 0.9387 104.3539 190.3321 8.2915 8.3049

TC 72.2812 0.0521 0.0479 0.9561 103.1593 158.9319 8.6767 8.7014

New 26.8104 0.0096 0.0092 0.9824 63.9541 Nan 4.6673 4.6673
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Figure 4. Mean value functions, m(t), of all models for dataset 2.

As shown in Table 4, the proposed model achieved the best results for all criteria except for the PP
and AIC. However, the PP and AIC of the proposed model were the third smallest and fifth smallest
values, respectively. In general, the proposed model outperformed other models.

As shown in Table 5, the proposed model indicated the best results for most criteria (except for
the AIC, variation, and RMSPE). Similarly, the variation and RMSPE of the proposed model were the
second smallest values. In general, the proposed model exhibited better fitting than that shown by
other models for dataset 2. However, because m(t) converged for ti = {14, 15, 16, 17}, the AIC was
calculated as not-a-number (NaN). If the AIC of the proposed model was calculated for the time before
convergence, ti = {1, 2, . . . , 13}, then the value would be 83.51093 (which would be the smallest).

Tables 6 and 7 and Figures 5 and 6 show the predicted values at ti for each dataset. The predicted
values mean the expected cumulative number of failures by the proposed model. In Table 6, the predicted
values for future points are {25.1102, 25.19946, 25.2552, 25.28936} at t = {22, 23, 24, 25}. In Table 7,
the predicted values for future points are {194.766, 194.766, 194.766} at t = {18, 19, 20}.

Table 6. Predicted values by proposed model for dataset 1.

Time m̂(t) Time m̂(t) Time m̂(t) Time m̂(t)

1 1.35543 8 7.423002 15 21.09665 22 25.1102

2 1.727669 9 9.219 16 22.33409 23 25.19946

3 2.209491 10 11.24305 17 23.27083 24 25.2552

4 2.831189 11 13.411 18 23.95131 25 25.28936

5 3.628004 12 15.60229 19 24.42872

6 4.637697 13 17.68339 20 24.75394

7 5.895141 14 19.53903 21 24.96993

Table 7. Predicted values by proposed model for dataset 2.

Time m̂(t) Time m̂(t) Time m̂(t) Time m̂(t)

1 90.76292 6 185.0622 11 194.766 16 194.766

2 105.7008 7 192.2739 12 194.766 17 194.766

3 125.2 8 194.3851 13 194.766 18 194.766

4 147.9813 9 194.7363 14 194.766 19 194.766

5 169.7534 10 194.765 15 194.766 20 194.766
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5.2. Confidence Interval

The two-sided limit confidence interval [42] of NHPP SRGMs is defined as:

m̂(t) ± zα/2

√
m̂(t), (17)

where zα/2 is the 100(1–α) percentile of the standard normal distribution.
Table 8, Figures 7 and 8 show the lower-limit confidence interval (LC) and the upper-limit

confidence interval (UC) of the proposed model for datasets 1 and 2 at ti.

Table 8. Confidence intervals for datasets 1 and 2.

Dataset 1 Dataset 2

Time LC UC Time LC UC

1 0.0 3.637278 1 72.09043 109.4354

2 0.0 4.303861 2 85.55025 125.8514

3 0.0 5.122851 3 103.2694 147.1306

4 0.0 6.129052 4 124.1388 171.8238

5 0.0 7.361210 5 144.2171 195.2896

6 0.416853 8.858541 6 158.3993 211.7251

7 1.136366 10.65392 7 165.0965 219.4513

8 2.083043 12.76296 8 167.0589 221.7113

9 3.267999 15.17000 9 167.3854 222.0871

10 4.671164 17.81494 10 167.4121 222.1180
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Table 8. Cont.

Dataset 1 Dataset 2

Time LC UC Time LC UC

1 6.233412 20.58859 11 167.4130 222.1190

2 7.860481 23.34409 12 167.4130 222.1190

3 9.441424 25.92536 13 167.4130 222.1190

14 10.87541 28.20265 14 167.4130 222.1190

15 12.09433 30.09898 15 167.4130 222.1190

16 13.0715 31.59667 16 167.4130 222.1190

17 13.81599 32.72567 17 167.4130 222.1190

18 14.35923 33.54339

19 14.74152 34.11592

20 15.00246 34.50541

21 15.176 34.76385
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5.3. Results of the SPRT for Datasets

We determined the software reliability by applying the SPRT based on the parameters of the
proposed model. In particular, a sensitivity analysis showed that a and b were more sensitive than
other parameters of the proposed model; therefore, we focused on a and b. The related assumptions
are listed in Table 9.
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Table 9. Case for applying the sequential probability ratio test (SPRT).

Case δ α (Type 1 Error) β (Type 2 Error)

Case 1 (for parameter a) 0.9 0.1 0.1

Case 2 (for parameter b) 0.03 0.1 0.1

Subsequently, we set a0 = a − δ, a1 = a + δ for Case 1 and b0 = b − δ, b1 = b + δ for Case 2.
Substituting a0 and a1 for the m(t) of the proposed model instead of a, we obtained m0(t) and m1(t),
respectively. Likewise, m0(t) and m1(t) were obtained by substituting b0 and b1 into m(t), respectively.
Substituting m0(t) and m1(t), obtained in Equation (12), allows us to discuss the SPRT procedure.

Table 10 shows the results of the SPRT for parameter a for both datasets. Judging the reliability
using the proposed model, we conclude that software testing should continue because we cannot
determine the software reliability yet.

Table 10. SPRT results for both datasets (Case 1, parameter a).

Dataset 1 Dataset 2

T N(t) Acceptance
Region

Rejection
Region Result T N(t) Acceptance

Region
Rejection

Region Result

1 1 −105.151 107.8621 continue 1 90 −314.127 495.6517 continue
2 1 −55.3275 58.78291 continue 2 107 −196.369 407.7699 continue
3 2 −36.7052 41.12448 continue 3 126 −116.805 367.2043 continue
4 3 −26.7731 32.43642 continue 4 145 −63.6092 359.5706 continue
5 5 −20.4124 27.67021 continue 5 171 −34.4734 373.9780 continue
6 5 −15.8077 25.08616 continue 6 188 −28.1345 398.2559 continue
7 5 −12.1513 23.94599 continue 7 189 −34.7014 419.2460 continue
8 8 −9.04072 23.89200 continue 8 190 −40.7869 429.5541 continue
9 9 −6.28005 24.72266 continue 9 190 −42.7149 432.1846 continue

10 11 −3.80494 26.29212 continue 10 190 −42.9682 432.4955 continue
11 13 −1.64563 28.46133 continue 11 192 −42.9805 432.5098 continue
12 15 0.107043 31.08023 continue 12 192 −42.9807 432.5099 continue
13 19 1.344969 33.99174 continue 13 192 −42.9807 432.5099 continue
14 19 1.991195 37.04500 continue 14 192 −42.9807 432.5099 continue
15 22 2.038062 40.10500 continue 15 203 −42.9807 432.5099 continue
16 22 1.560907 43.05311 continue 16 203 −42.9807 432.5099 continue
17 23 0.703089 45.78459 continue 17 204 −42.9807 432.5099 continue
18 24 −0.36003 48.21173 continue
19 24 −1.46272 50.27382 continue

20 24 −2.4802 51.94671 continue
21 26 −3.34086 53.24403 continue

Table 11 shows the SPRT results for parameter b for both datasets. When t = 7 in dataset 1,
the test was accepted. Using the proposed model for dataset 2, we conclude that software testing
should continue because we cannot determine the software reliability yet. However, as converged for
ti = {14, 15, 16, 17}, the result was “Inf”.
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Table 11. SPRT results for both datasets (Case 2, parameter b).

Dataset 1 Dataset 2

T N(t) Acceptance
Region

Rejection
Region Result T N(t) Acceptance

Region
Rejection

Region Result

1 1 −3.554070 6.287044 continue 1 90 11.45807 170.0957 continue
2 1 −0.636960 4.216873 continue 2 107 71.55002 139.9607 continue
3 2 0.776205 3.995391 continue 3 126 103.6526 146.8394 continue
4 3 1.977399 4.409981 continue 4 145 129.8891 165.5602 continue
5 5 3.205886 5.201452 continue 5 171 149.0555 188.4585 continue
6 5 4.434785 6.177075 continue 6 188 152.8588 214.1708 continue
7 5 5.509077 7.107788 accept 7 189 120.5342 261.5581 continue

8 190 −56.62470 444.3444 continue
9 190 −1258.160 1647.398 continue

10 190 −14,878.80 15,268.35 continue
11 192 −325,116 325,505.2 continue
12 192 −1.8 × 107 18,130,355 continue
13 192 −3.5 × 109 3.47 × 109 continue
14 192 −3.3 × 1012 3.28 × 1012 continue
15 203 -Inf Inf continue
16 203 -Inf Inf continue
17 204 -Inf Inf continue

6. Conclusions and Remarks

Herein, we proposed a new SRGM. General SRGMs assume independent failures. However,
in the proposed model, software failures depend on one another. We presented experiments
on real-world datasets using eight evaluation criteria. The proposed model achieved the best
goodness-of-fit on both datasets. In addition, we evaluated the software reliability using the SPRT,
which is more efficient than the classical hypothesis test. As shown in Table 10, we demonstrated that
the test based on parameter a should be continued for both datasets because no reliable judgment was
obtained. The test based on parameter b was accepted, as shown in Table 11, when t = 7 for dataset 1.
However, the test should be continued for dataset 2 because the judgment was unreliable.

In the future, experiments based on more recent data should be performed to further validate the
superiority of the proposed model. In addition, after estimating the parameters of software reliability
models using the MLE and Bayesian techniques, we plan to discuss software reliability by applying
the SPRT.
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