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1. Introduction

Consider a twice continuously Fréchet differentiable operator F : Ω ⊆ X → Y defined on
a non-empty open convex domain Ω of a Banach space X with values in a Banach space Y and
Newton’s method,

xn+1 = NF(xn) = xn − [F′(xn)]
−1F(xn), n ≥ 0, with x0 given, (1)

to solve the non-linear equation F(x) = 0. Please note that a solution of the equation F(x) = 0 is a
fixed point of the Newtonian operator NF : Ω ⊆ X → X.

We can analyze the convergence of Newton’s method in three different ways. The first, called
semilocal convergence, consists of giving conditions on the starting point x0 and on the operator F,
obtaining a ball of existence of solution of the equation F(x) = 0, B(x0, R1), called existence ball, and
the convergence of the method taking x0 as the starting point. The second, called local convergence,
assumes that there exists a solution x∗ of the equation F(x) = 0 and, under certain conditions on
the operator F, we obtain a ball B(x∗, R2), called a convergence ball, in which the convergence of the
method is guaranteed by taking any point on the ball as the starting point x0. The third, called global
convergence, consists of giving conditions on the operator F to obtain a domain in which a solution
of the equation F(x) = 0 exists, so that the method converges to the solution taking any point of the
domain obtained as the starting point x0.

Taking the above as a perspective, the most interesting fact is to prove the existence of a solution
of the equation F(x) = 0 and in turn find a domain in which any of its points, taken as the starting
point of the method, provides the convergence of the method. Obviously, this case refers to a study of
the global convergence that, as is known, is obtained for specific operators in certain situations.

In [1], we use a technique based on the use of auxiliary points [2,3] to present a study of the
convergence of Newton’s method in which we obtain global convergence balls of the form B(x̃, R),
where x̃ is an auxiliary point. These balls allow us to locate a solution of the equation F(x) = 0 and
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separate it from other possible solutions. For this, the auxiliary point x̃ verifies that the operator
Γ̃ = [F′(x̃)]−1 exists with ‖Γ̃‖ ≤ β and ‖Γ̃F(x̃)‖ ≤ η, and Mβη ≤ 1/6, where M is the Lipschitz
constant of the operator F′, provided that F′ is Lipschitz continuous in the domain involved.

There are two main aims in this work. First, we obtain results of global convergence restricted to
a subset of the space in which the operator F is defined by using the Newtonian operator NF under the
usual conditions of Kantorovich [4,5]. In addition, our study is based on the following Fixed-Point
Theorem [6]:

If D is a convex and compact set of X and the operator P : D → D is a contraction, then
the operator P has a unique fixed point in D and it can be approximated by the method of
successive approximations, xn+1 = P(xn), n ≥ 0, from any x0 ∈ D.

Also, we remember that the operator P is a contraction if ‖P(x) − P(y)‖ < K‖x − y‖ with
K ∈ [0, 1), for all x, y ∈ D. If the operator P is derivable, it is enough that the condition ‖P′(x)‖ < 1,
for all x ∈ D, is satisfied to see that P is a contraction.

The second aim is to improve the study presented in [1]. For this, we find, from an auxiliary point
x̃ such that Mβη ≤ 1/2, a new point ỹ and obtain global convergence balls of the form B(ỹ, R) that
locate a solution of the equation F(x) = 0 and separate it from other possible solutions, so that the
condition Mβη ≤ 1/6 is relaxed to Mβη ≤ 1/2 and the study given in [1] is then expanded.

Throughout the paper, we denote B(x, r) = {y ∈ X; ‖y− x‖ ≤ r}, B(x, r) = {y ∈ X; ‖y− x‖ < r}
and the set of bounded linear operators from X to Y by L(X, Y), and use the infinity norm in X.

2. The Newtonian Operator

We start by locating a domain that contains a fixed point of the operator NF. For this, we suppose
the following conditions:

(A1) For some x̃ ∈ Ω, there exists Γ̃ = [F′(x̃)]−1 ∈ L(Y, X) with ‖Γ̃‖ ≤ β and ‖Γ̃F(x̃)‖ ≤ η.
(A2) There exists a constant M ≥ 0 such that ‖F′′(x)‖ ≤ M for all x ∈ Ω.
(A3) h = Mβη ≤ 1/2.

Under the conditions (A1)-(A2)-(A3), it is well known that the Newton–Kantorovich theorem
holds with x̃ = x0 ([5,7]).

Theorem 1 (The Newton–Kantorovich theorem). Let F : Ω ⊆ X → Y be a twice continuously Fréchet
differentiable operator defined on a non-empty open convex domain Ω of a Banach space X with values in a Banach
space Y. Suppose that the conditions (A1)-(A2)-(A3) are satisfied and B(x0, ρ∗) ⊂ Ω with ρ∗ = 1−

√
1−2h
h η.

Then, Newton’s sequence defined in (1) and starting at x0 converges to a solution x∗ of the equation F(x) = 0
and the solution x∗ and the iterates xn belong to B(x0, ρ∗), for all n ≥ 0 Moreover, if h < 1

2 , the solution x∗ is

unique in B(x0, ρ∗∗) ∩Ω, where ρ∗∗ = 1+
√

1−2h
h η, and, if h = 1

2 , x∗ is unique in B(x0, ρ∗). Furthermore, we
have the following error estimates:

‖x∗ − xn‖ ≤
1

2n−1 (2h)2n−1η, n = 0, 1, 2, . . .

In addition, in the proof of Theorem 1, the following estimates are also deduced [7], and will be
used later:

hn = Mβnηn ≤
1
2
(2h)2n

, (2)

where ‖Γn‖ ≤ βn and ‖ΓnF(xn)‖ ≤ ηn with Γn = [F′(xn)]−1.
The first step in locating domains that contain possible fixed points is to describe these domains.

In this work, we consider balls of the form B(ỹ, R). Thus, the first two aims are to locate the point
ỹ ∈ Ω and calculate the value of R, so that NF : B(ỹ, R)→ B(ỹ, R). Then we will be able to apply the
Fixed-Point theorem. For this, we establish the following theorem.
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Theorem 2. Let x̃ ∈ Ω and suppose that the conditions (A1)-(A2)-(A3) hold. Then, there exist ỹ ∈ B(x̃, ρ∗),
where ρ∗ = 1−

√
1−2h
h η, and R > 0 such that NF : B(ỹ, R) → B(ỹ, R) with R ∈ [R−, R+], where R− =

1−
√

1−6Mba
3Mb , R+ = 1+

√
1−6Mba
3Mb , ‖[F′(ỹ)]−1‖ ≤ b, and ‖[F′(ỹ)]−1F(ỹ)‖ ≤ a.

Proof. If Mβη ≤ 1/6, then we take ỹ = x̃, so that Mba ≤ 1/6. Otherwise, we observe from (2) that if
we take x0 = x̃ for Newton’s method, then we can consider

N0 = 1 +

 log
(
− log 3

log 2h

)
log 2

 , (3)

where [z] denotes the integer part of any positive real number z, so that the N0-th iterate of the method
is such that hN0 ≤ 1/6. Therefore, if we choose ỹ = xN0 , it is clear that Mba ≤ 1/6. Consequently,
[R−, R+] 6= ∅ and we can then consider R in this interval.

Second, we see that the operator Γ = [F′(x)]−1 exists for all x ∈ B(ỹ, R). Indeed, from

‖I − [F′(ỹ)]−1F′(x)‖ ≤ ‖[F′(ỹ)]−1‖‖[F′(ỹ)− F′(x)‖ ≤ bM‖x− ỹ‖ ≤ MbR < 1, (4)

since R ∈ [R−, R+], it follows, by the Banach lemma on invertible operators that the operator Γ exists
with ‖Γ‖ ≤ β

1−MbR and ‖ΓF′(ỹ)‖ ≤ 1
1−MbR . Consequently, the operator NF is well defined in the

domain indicated.
Third, we see that NF(x) ∈ B(ỹ, R) for all x ∈ B(ỹ, R). Indeed, from

‖NF(x)− ỹ‖ =
∥∥−Γ

(
F(x) + F′(x)(ỹ− x)

)∥∥
=

∥∥∥∥−ΓF(ỹ) + Γ
∫ 1

0

(
F′(x + t(ỹ− x))− F′(x)

)
dt(ỹ− x)

∥∥∥∥
≤ ‖ΓF′(ỹ)‖‖[F′(ỹ)]−1F(ỹ)‖+ M

2
‖Γ‖‖ỹ− x‖2

≤ MbR2 + 2a
2(1−MbR)

≤ R,

it follows that NF(x) ∈ B(ỹ, R), provided that Mba ≤ 1/6 and R ∈ [R−, R+].

To apply the Fixed-Point theorem to the Newtonian operator NF we need to ensure that this
operator is a contraction in the domain considered. One way to check that NF is a contraction is
to directly check the condition ‖NF(x)− NF(y)‖ < K‖x − y‖ with K ∈ [0, 1), for all x, y ∈ B(x̃, R).
Other variant that we can consider to prove that the operator NF is a contraction comes from the fact
that NF is a derivable operator such that ‖N′F(x)‖ < 1. For this, we consider the operator LF, called
degree of logarithmic convexity [5] that is defined as follows

LF(x) : Ω
F′′(x)[F′(x)]−1F(x)−−−−−−−−−−−−−−−→ Y

[F′(x)]−1

−−−−−−−−−−−−−−−→ Ω.

Therefore, LF(x) = [F′(x)]−1F′′(x)
(
[F′(x)]−1F(x)

)
∈ L(X, X), with [F′(x)]−1 ∈ L(Y, X).

This operator satisfies LF(x) = N′F(x), as we can see in [5].

3. Restricted Global Convergence

First, we see that the operator NF is a contraction from the conditions (A1)-(A2)-(A3).

Lemma 1. Let x̃ ∈ Ω and suppose that the conditions (A1)-(A2)-(A3) hold. Then, there exist ỹ ∈ B(x̃, ρ∗),
where ρ∗ = 1−

√
1−2h
h η, and R > 0 such that R ≤ δ− = 4−

√
10+6Mba
3Mb and the operator NF : B(ỹ, R) →

B(ỹ, R) is a contraction.
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Proof. Take ỹ = x0 = x̃. Then Mba ≤ 1/2, δ− = 4−
√

10+6Mba
3Mb > 0 and there exists R such that

0 < R ≤ δ−.
If x ∈ B(ỹ, R), then

[F′(ỹ)]−1F(x) = [F′(ỹ)]−1F(ỹ) + (x− ỹ) + [F′(ỹ)]−1
∫ 1

0

(
F′(ỹ + t(x− ỹ))− F′(ỹ)

)
(x− ỹ) dt,

so that

‖[F′(ỹ)]−1F(x)‖ ≤ ‖[F′(ỹ)]−1F(x̃)‖+ ‖x− ỹ‖+ M
2
‖[F′(ỹ)]−1‖‖x− ỹ‖2 ≤ M

2
bR2 + R + a.

Now, if x, y ∈ B(x̃, R), as MbR < 1, from (4), there exists Γx = [F′(x)]−1 and Γy = [F′(y)]−1, and

NF(x)− NF(y) = x− ΓxF(x)− y + ΓyF(y)

= Γy
(

F′(y)(x− y)− F′(y)ΓxF(x) + F(y)
)

= Γy

(
F(x)−

∫ x

y
(F′(z)− F′(y)) dz− F′(y)ΓxF(x)

)
= Γy

((∫ 1

0
F′′(y + t(x− y)) dt(x− y)

)
ΓxF(x)−

∫ x

y
(F′(z)− F′(y)) dz

)
,

‖NF(x)− NF(y)‖ = ‖Γy‖
(

M‖x− y‖‖ΓxF(x)‖+ M
2
‖x− y‖2

)
= ‖Γy‖M

(
‖ΓxF(x)‖+ 1

2
‖x− y‖

)
‖x− y‖

≤ ‖Γy‖M (‖ΓxF(x)‖+ R) ‖x− y‖
= α‖x− y‖.

Taking now into account that ‖[F′(x)]−1‖ ≤ b
1−MbR , for all x ∈ B(ỹ, R), we have ‖Γy‖ ≤ b

1−MbR .
Moreover,

‖ΓxF(x)‖ ≤ ‖ΓxF′(ỹ)‖‖[F′(ỹ)]−1F(x)‖ ≤
M
2 bR2 + R + a

1−MbR
.

Thus, we can consider α =
Mb(2a + 4R−MbR2)

2(1−MbR)2 . Therefore, α < 1 if 0 < R ≤ δ− and the

operator NF is then a contraction.

Second, we locate the value of R.

Lemma 2. If Mba ≤ −3+
√

13
4 = 0.1513 . . ., there always exists R > 0 such that R ∈ [R−, δ−].

Proof. If Mba ≤ 0.1513 . . ., we observe that R− ≤ δ−, since 4(Mba)2 + 6(Mba) − 1 ≤ 0, so that
[R−, δ−] 6= ∅. Moreover, as R+ > δ−, the proof is complete.

Third, from the Fixed-Point theorem given above, we obtain the existence of a unique fixed point
of NF in B(ỹ, R) and its approximation by Newton’s method.

Theorem 3. Let x̃ ∈ Ω and suppose that the conditions (A1)-(A2)-(A3) hold. Then, there exist ỹ ∈ B(x̃, ρ∗),
where ρ∗ = 1−

√
1−2h
h η, and R > 0 such that R ∈ [R−, δ−]. Moreover, the operator NF : B(ỹ, R)→ B(ỹ, R)

has a unique fixed point x∗ and Newton’s method converges quadratically to x∗ from any starting point
in B(ỹ, R).
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Proof. If Mβη ≤ 0.1513 . . ., then we take ỹ = x̃, so that Mba ≤ 0.1513 . . . Otherwise, we observe
from (2) that if we take x0 = x̃ for Newton’s method, then we can consider

N0 = 1 +

 log
(

log(0.3026...)
log 2h

)
log 2

 ,

so that the N0-th iterate of the method is such that hN0 ≤ 0.1513 . . . Therefore, if we choose ỹ = xN0 , it
is clear that Mba ≤ 0.1513 . . .

Now, from Theorem 2, it follows that NF(x) ∈ B(ỹ, R), for all x ∈ B(ỹ, R), and, from Lemmas 1
and 2, the operator NF : B(ỹ, R) → B(ỹ, R) is a contraction. Then, the proof is concluded from the
application of the Fixed-Point theorem given in Section 1 to the operator NF in B(ỹ, R). The fact that
Newton’s method has quadratic convergence follows easily from the known Newton–Kantorovich
theorem [5].

Since R− is the smallest value that R can take and δ− the largest, we can consider B(ỹ, R−) as ball
of location of the fixed point and B(ỹ, δ−) as ball of uniqueness, and thus achieve a greater separation
of other possible fixed points of the Newtonian operator. Moreover, we observe that we have global
convergence in any ball B(ỹ, R) with R ∈ [R−, δ−].

On the other hand, we prove that operator NF is a contraction from the condition on N′F = LF
and consequently has a unique fixed point.

Theorem 4. Let x̃ ∈ Ω and suppose that the conditions (A1)-(A2)-(A3) hold. Then, there exists ỹ ∈ B(x̃, ρ∗),
where ρ∗ = 1−

√
1−2h
h η, such that, if ‖LF(x)‖ ≤ K < 1, for all x ∈ B(ỹ, R), the operator NF : B(ỹ, R) →

B(ỹ, R) has a unique fixed point x∗ for all R ∈ [R−, R+] and Newton’s method converges quadratically to x∗

from any starting point in B(x̃, R).

Proof. If Mβη ≤ 1/6, then we take ỹ = x̃, so that Mba ≤ 1/6. Otherwise, we consider x0 = x̃ for
Newton’s method and take ỹ = xN0 with N0 given in (3), so that Mba ≤ 1/6.

Under the conditions required, we have seen in theorem 2 that NF(x) ∈ B(ỹ, R) for all x ∈ B(ỹ, R),
where R ∈ [R−, R+]. Moreover, as ‖N′F(x)‖ ≤ ‖LF(x)‖ ≤ K < 1, for all x ∈ B(ỹ, R), the operator NF
is a contraction. Therefore, from the application of the Fixed-Point theorem mentioned above to the
operator NF in B(ỹ, R), the proof is complete.

In this case, we have B(ỹ, R−) as ball of location of the fixed point and B(ỹ, R+) as ball of
uniqueness. We note that the most favorable ball of global convergence in this case is the last.

The existence condition of the operator LF in a certain set seems very strong, since it implies
the existence of the inverse operator [F′(x)]−1 at each point in the set. However, by requiring the
conditions (A1)-(A2)-(A3), it is guaranteed the existence of LF in a domain, as we can see in the
following result.

Theorem 5. Let x̃ ∈ Ω and suppose that the conditions (A1)-(A2)-(A3) hold. Then, there exists LF(x) for all

x ∈ B
(

x̃, 1
Mβ

)
and ‖LF(x)‖ ≤ Mβ ‖Γ̃F(x)‖

(1−Mβ‖x− x̃‖)2 .

Proof. Observe that
Γ̃
∫ x

x̃
F′′(v) dv = Γ̃F′(x)− I

and

‖Γ̃F′(x)− I‖ =
∥∥∥∥Γ̃
∫ x

x̃
F′′(v) dv

∥∥∥∥ ≤ Mβ‖x− x̃‖ < 1.
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Then, from the Banach lemma on invertible operators, there exists [Γ̃F′(x)]−1 for all x ∈
B
(

x̃, 1
Mβ

)
and

‖[Γ̃F′(x)]−1‖ ≤ 1
1−Mβ‖x− x̃‖ .

Now, from
LF(x) = [Γ̃F′(x)]−1Γ̃F′′(x)[Γ̃F′(x)]−1Γ̃F(x), (5)

the proof is complete.

Moreover, we observe that B(x̃, R) ⊂ B
(

x̃, 1
Mβ

)
if R ∈ [R−, R+], since R+ < 1

Mβ . Consequently,
we establish the following result.

Theorem 6. Let x̃ ∈ Ω and suppose that the conditions (A1)-(A2)-(A3) hold. Then, the operator LF(x) exists,
for all x ∈ B(x̃, R), with R ∈ [R−, R+], and

‖LF(x)‖ ≤ (MβR)2 + 2(MβR) + 2Mβη

2 (1−MβR)2 .

Proof. We have seen above that ‖ΓF′(x̃)‖ ≤ 1
1−MβR and ‖Γ̃F(x)‖ ≤ M

2 βR2 + R + η. Now, from (5),
it follows that

‖LF(x)‖ ≤ ‖ΓF′(x̃)‖‖Γ̃‖‖F′′(x)‖‖ΓF′(x̃)‖‖Γ̃F(x)‖ ≤
Mβ

(
M
2 βR2 + R + η

)
2 (1−MβR)2 ,

for all x ∈ B(x̃, R), and the proof is complete.

In addition, as N′F(x) = LF(x), for x ∈ B(x̃, R), with R ∈ [R−, R+], we obtain the next result.

Theorem 7. Let x̃ ∈ Ω and suppose that the conditions (A1)-(A2)-(A3) hold. Then, there exist ỹ ∈ B(x̃, ρ∗),
where ρ∗ = 1−

√
1−2h
h η, and R > 0 such that R ∈ [R−, σ−], where σ− = 3−

√
7+2Mba
Mb , and the operator

NF : B(ỹ, R)→ B(ỹ, R) has a unique fixed point x∗ and Newton’s method converges quadratically to x∗ from
any starting point in B(ỹ, R).

Proof. If Mβη ≤ 0.1642 . . ., then we take ỹ = x̃, so that Mba ≤ 0.1642 . . . In another case, we observe
from (2) that if we take x0 = x̃ for Newton’s method, then we can consider

N0 = 1 +

 log
(

log(0.3284...)
log 2h

)
log 2

 ,

so that the N0-th iterate of the method is such that hN0 ≤ 0.1642 . . . Therefore, if we choose ỹ = xN0 ,
it is clear that Mba ≤ 0.1642 . . .

Then, from Theorem 2, we know that NF(x) ∈ B(ỹ, R), for all x ∈ B(ỹ, R). Thus, from Theorem 6,
we have

‖N′F(x)‖ ≤ (MbR)2 + 2(MbR) + 2Mba

2 (1−MbR)2 ,

since N′F(x) = LF(x). Thus, NF(x) is a contraction if

(MbR)2 + 2(MbR) + 2Mba

2 (1−MbR)2 < 1.

As Mba ≤ 1/6, the last inequality is true if R ≤ σ−.
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After that, we observe that R− ≤ σ− if Mba ≤ 1/6, so that [R−, σ−] 6= ∅. Also, if Mba ≤
−5+4

√
2

4 = 0.1642 . . ., we have 16(Mba)2 + 40(Mba)− 7 ≤ 0 and, as a consequence, R+ > σ−.
Finally, because of the above, the operator NF is a contraction. Therefore, from the application of

the Fixed-Point theorem given in Section 1 to the operator NF in B(ỹ, R), the proof is complete.

Now, the ball of location of the fixed point is B(ỹ, R−) and the ball of uniqueness is B(ỹ, σ−),
which in turn is the most favorable ball of global convergence.

4. Example

We illustrate the above study with the following particular Davis-type integral equation that is
used in [1].

We consider the following integral equation:

x(s) = s +
7
5

∫ 1

0
G(s, t)x(t)2dt, s ∈ [0, 1], (6)

where the kernel G(s, t) is the Green function

G(s, t) =

{
(1− s)t, t ≤ s,

s(1− t), s ≤ t.

As we cannot apply Newton’s method directly, since we do not know the inverse operator that is
involved in the algorithm of the method, we transform the integral equation into a finite-dimensional
problem by a process of discretization, where the Gauss-Legendre quadrature formula

∫ 1

0
φ(t) dt '

8

∑
j=1

wjφ(tj),

with the nodes tj and weights wj known, is used to approximate the integral that appears in the
integral equation.

By denoting the x(ti) by xi, for i = 1, 2, . . . , 8, the integral equation is equivalent to the following
system of non-linear equations:

xj = tj +
7
5

8

∑
k=1

ajk x2
k , k = 1, 2, . . . , 8, (7)

where

ajk =

{
wk (1− tj)tk, k ≤ j,

wk (1− tk)tj, k > j.

Now, we write the last system compactly in matrix form as

F(x) ≡ x− v− 7
5

A y = 0, F : R8 −→ R8, (8)

where

x = (x1, x2, . . . , x8)
t , v = (t1, t2, . . . , t8)

t , A =
(

ajk

)8

j,k=1
, y =

(
x2

1, x2
2, . . . , x2

8

)t
.

In [1], we take x̃ = v as auxiliary point to illustrate the study developed there and obtain the
best ball of location of solution and the biggest ball of convergence. However, if for example, we
choose x̃ as the vector (1, 1, . . . , 1)t, instead of the vector v, then β = 1.4912 . . ., η = 0.9850 . . . and
h = Mβη = 0.3629 . . ., where M = 0.2471 . . ., and choosing the max-norm. As h > 1/6, we cannot
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apply the study developed in [1] and, as a consequence, we cannot locate and separate a solution of
the integral equation. However, we can apply the study presented in this work, since h ≤ 1/2.

For Theorem 3, we have N0 = 2 and hN0 = 0.000192 . . . < 0.1513 . . ., so that ỹ = x2 (the vector
shown in Table 1), R ∈ [0.0006 . . . , 0.9076 . . .], the best ball of location of solution is B(x2, 0.0006 . . .)
and the biggest ball of convergence is B(x2, 0.9076 . . .).

Table 1. The approximation x2 of Newton’s method for (8).

i x2 i x2

1 0.022629. . . 5 0.658303. . .
2 0.115872. . . 6 0.822537. . .
3 0.270122. . . 7 0.932596. . .
4 0.462132. . . 8 0.987941. . .

For Theorem 7, we have N0 = 2 and hN0 = 0.000192 . . . < 0.1642 . . ., so that ỹ = x2, R ∈
[0.0006 . . . , 1.1515 . . .], the best ball of location of solution is B(x2, 0.0006 . . .) and the biggest ball of
convergence is B(x2, 1.1515 . . .), which is bigger than that given by Theorem 3.

From the last result, it is easy to conclude that the ball of location of solution is the same and it
is very precise, and the balls of separation of solutions given by the two theorems are good enough.
Observe that Theorem 7 offers a better result for the ball of convergence. In addition, we can use all
the new results given in this work and the work presented in [1] is clearly improved.

Finally, we can see the convergence of Newton’s method to a solution of the above non-linear
system in [1], along with an approximate solution of the system.

Remark 1. The application of the technique developed to obtain global convergence domains for Newton’s
method presents an initial difficulty: the location of an auxiliary point. In the Davis-type integral equation, it is
known that the choice of the function s as the starting point for the application of iterative methods is a reasonable
choice due to its proximity to a solution of the integral equation [8]. As we prove in this work, the choice of
auxiliary points has a direct relationship with the location of starting points for Newton’s method, so its choice
as auxiliary points is natural. Thus, the applicability of our technique is analogous to that of starting points.
It is well known that this problem is of great importance and numerous studies have been carried out to try to
extend the domains of starting points [2,9–11], which can therefore also be applied to locate auxiliary points.

5. Conclusions

From the theoretical significance of Newton’s method, we prove the existence and uniqueness
of solutions of a non-linear equation and obtain domains of global convergence for the method. We
also obtain results for Newton’s method that allow us to locate a solution of the equation involved
and separate it from other possible solutions, and improve the study previously carried out in our
work presented in [1]. For this, auxiliary points are used and ideas based on the Fixed-Point theorem.
The improvement mentioned above is illustrated with a non-linear integral equation presented in [1].
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