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Abstract: The decision-making trial and evaluation laboratory (DEMATEL) method is one of the most
significant multi-criteria techniques for defining the relationships among criteria and for defining the
weight coefficients of criteria. Since multi-criteria models are very often used in management and
decision-making under conditions of uncertainty, the fuzzy DEMATEL model has been extended
in this paper by D numbers (fuzzy DEMATEL-D). The aim of this research was to develop a
multi-criteria methodology that enables the objective processing of fuzzy linguistic information in
the pairwise comparison of criteria. This aim was achieved through the development of the fuzzy
DEMATEL-D method. Combining D numbers with trapezoidal fuzzy linguistic variables (LVs)
allows for the additional processing of uncertainties and ambiguities that exist in experts’ preferences
when comparing criteria with each other. In addition, the fuzzy DEMATEL-D methodology has a
unique reasoning algorithm that allows for the rational processing of uncertainties when using fuzzy
linguistic expressions for pairwise comparisons of criteria. The fuzzy DEMATEL-D methodology
provides an original uncertainty management framework that is rational and concise. In order to
illustrate the effectiveness of the proposed methodology, a case study with the application of the
proposed multi-criteria methodology is presented.

Keywords: D numbers; fuzzy sets; DEMATEL; multi-criteria decision-making; criteria weights

1. Introduction

A dynamic environment in which almost all scientific and professional fields operate requires
the timely and precise management of processes, which involves decision-making at its each stage.
The decisions are made on the basis of a number of inputs that are an integration of qualitative
and quantitative criteria. If a certain number of experts with their different preferences in group
decision-making are added, the problem is complicated in multiple ways. Therefore, it is necessary
to take into account all possible uncertainties that arise in group decision-making in order to gain
better and more accurate output. Certainly, an extremely important stage in a decision-making process
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is determining the significance of the criteria by which the most acceptable solution or ranking of
solutions is defined in a further process of solving multi-criteria problems. Therefore, the aim of this
paper was to develop a new methodology for determining the significance of criteria that takes aspects
of uncertainty and diversity in decision-makers’ preferences into account. Accordingly, an extension
of the fuzzy decision-making trial and evaluation laboratory (DEMATEL) model is performed by D
numbers (fuzzy DEMATEL-D), which is explained in detail in the following section. The DEMATEL
method was developed by Gabus and Fontel [1], and it has thus far been widely applied in its basic
or extended form, as confirmed in the study [2]. The authors carried out a comprehensive review
of the literature published in a period of a decade in terms of developing various extensions of this
method and its applications in different decision-making areas. Taking into account the evident wide
application of this method and the need to adequately handle uncertain situations and determine the
precise weights of criteria, fuzzy set theory is integrated with D numbers. In that way, an overall
synergistic effect is achieved in decision-making processes.

Dempster–Shafer evidence theory [3,4] is an area of artificial intelligence because it processes
and analyzes uncertainties and inaccuracies in information. It is also a convenient algorithm for
reasoning in a dynamic and uncertain environment, which is recommended for use in expert systems.
Since Dempster–Shafer evidence theory (DST) allows for the processing of nonspecific, ambiguous,
and juxtaposed information, numerous researchers favor DST over traditional approaches, such as
Bayesian probability theory [5,6]. In addition to the benefits that DST possesses for solving various
real-world problems, such as network problems [7], decision-making problems [8–10], and risk
theory [11], there are also limitations to DST that represent a kind of barrier to its wider application
for solving real-world problems. One of the most well-known limitations that restricts the wider
practical application of DST is the exclusivity of elements when parsing elements of a subset [12,13].
This limitation is shown through the following example. Giving a diagnosis in medicine is a typical
area that includes different types of uncertainties [12]. Say there is patient with the symptoms of fever,
polypnea, and cough; taking into account the mentioned cases, they are likely caused by the flu (F),
bacterial (B) infection, or an upper respiratory infection (U). There are two independent diagnostic
reports that were submitted by two doctors. The first doctor made a diagnosis that the patient got
F with a possibility of 0.7 and B or U with a possibility of 0.2. The reminder 0.1 possibility is for
an unknown diagnosis: m1(F) = 0.7; m1(B, U) = 0.2 and m1(F, B, U) = 0.1. The second doctor
made a diagnosis which showed: m2(F) = 0.5; m2(B) = 0.3 and m2(F, B, U) = 0.2. The questions
is: What disease does the patient have? The DST in this scenario would show following results:
m (B) = 0.1304; m (B, U) = 0.058, and m (F, B, U) = 0.0290. It can be seen that there is an invisible
hypothesis that the possibility of the unknown is equal to that of {F, B, U}. Based on the presented
results, it can be concluded that the set of all diseases, which are manifested through the considered
symptoms, can be presented as a set {F, B, U}. However, the set {F, B, U} contains only three types
of diseases that are considered in this example. Obviously, this unseen hypothesis is not reasonable.
Such a problem cannot be addressed by applying DST (Figure 1a) because DST implies the exclusivity
of the elements, in our case being diagnosed diseases. This problem can be successfully eliminated by
D numbers [12,13]. After the application of D numbers, D (F) = 0.6147 and D (B) = 0.1054 are obtained.
The result shows that the patient having the flu is the highest probability. In comparison to DST, in the
D numbers theory, the unknown is inherited during the reasoning.

D numbers, as a reliable and effective expression of uncertain information (and according
to Xiao [14]), are good at handling these types of uncertainties. Deng and Jiang [15] developed
a decision-making model to solve the adversarial problem under uncertainty with D numbers.
Their model integrated fuzzy set theory, game theory, and D number theory (DNT). The same
authors in [16] showed the advantages of using D numbers in green supply chain management in a
fuzzy environment.

Overcoming the problem was recognized by Zhou et al. [17], who performed an integration of crisp
DEMATEL and D numbers to identify the critical success factors (CSFs) in emergency management.
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The same method was applied in [18] for the risk identification and analysis of an energy power
system. The advantages of the D-DEMATEL method are reflected when simultaneously considering
ambiguities and subjectivity, which is impossible with classical approaches, as stated by Zhou et al. [17].
By developing an extension of the DEMATEL method with trapezoidal fuzzy numbers (TrFN) and D
numbers in this paper, uncertainties are considered at a higher level with input parameters manifested
through output functions.
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In addition to the needs and aims presented in the introduction, the paper is has several other
sections. Section 2 presents the preliminaries that outline the basics of D numbers and fuzzy theory.
Section 3 is an extension of TrFN DEMATEL with D numbers, while Section 4 shows the application of
the developed methodology with a specific example. Section 5 summarizes the contributions of the
paper, with an overview of further research related to this paper.

2. Background

2.1. D Numbers

D numbers represent an extension of DST with the aim to present more effectively uncertainties in
the information being processed. As shown in Figure 1b, D numbers do not require the exclusivity of
the elements of a set, which significantly broadens the domain of the practical application of D numbers.

Definition 1 ([12]). Let Υ be a finite nonempty set, and a D number is a mapping that D : Υ→ [0, 1] , with:∑
A⊆Υ

D(A) ≤ 1 and D(∅) = 0 (1)

where ∅ is an empty set and A is any subset of Υ. As stated in the previous section of the paper, the theory
of D numbers does not require the elements of a set Υ to be mutually exclusive. The information presented
by D numbers is called complete information if the condition of

∑
A⊆Υ

D(A) = 1 is filled. If
∑

A⊆Υ
D(A) < 1,

the information is incomplete.
If Υ is a discrete set of elements Υ =

{
b1, b2, . . . , bi, b j, . . . , bn

}
, where bi ∈ R and bi , b j (when i , j),

then we can express D numbers by:

D(b1) = v1, D(b2) = v2, . . . D(bi) = vi, D(b j) = v j, . . . D(bn) = vn. (2)

in addition to expressing D numbers using Equation (2), there is another simplified way to express D numbers:
D =

{
(b1, v1), (b2, v2) . . . (bi, vi), (b j, v j) . . . (bn, vn)

}
. This presentation also satisfies the condition that

vi > 0 and
∑n

i=1 vi ≤ 1.
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Definition 2 ([12]). Let two D numbers D1 =
{
(b1, v1), . . . , (bi, vi), . . . , (bn, vn)

}
and D2 ={

(bn, vn), . . . , (bi, vi), . . . , (b1, v1)
}
(bi, vi), (b j, v j) . . . (bn, vn)

}
be given. Then, we can define the rule for

the combination of D numbers D = D1 �D2 as follows: D(∅) = 0
D(B) = 1

1−KD

∑
B1∩B2=B

D1(B1)D2(B2), B , ∅

with
KD = 1

Q1Q2

∑
B1∩B2=∅

D1(B1)D2(B2)

Q1 =
∑

B1⊆Θ
D1(B1)

Q2 =
∑

B2⊆Θ
D2(B2)

(3)

Rule (3) is a generalization of Dempster’s rule [8]. If D1 and D2 are defined in the frame of discernment
and if Q1 = 1 and Q2 = 1, then the rule of combining D numbers (Rule (3)) is transformed into Dempster’s
rule. Rule (3) of numbers is an algorithm for the combination and fusion of uncertain information presented in
D numbers.

For a discrete D number D =
{
(b1, v1), (b2, v2) . . . (bi, vi), (b j, v j) . . . (bn, vn)

}
, we can define the

integration operator as follows:

I(D) =
n∑

i=1

divi (4)

where di ∈ R+, vi > 0 i
∑n

i=1 vi ≤ 1.

2.2. Fuzzy Set Theory

Fuzzy set theory is widely used to model uncertainties [19–23]. In some decision-making models,
qualitative assessments are given in natural language. These linguistic variables (LVs) can be presented
by linguistic expressions [24–26].

Definition 3. Let X crisp be a universe of generic elements containing a fuzzy set Ã as a subset. For each
element, let x ∈ X be a number µÃ(x) ∈ [0, 1]; then, we can call the number the grade of membership of x in

Ã [27].

Definition 4. A fuzzy set Ã of the universe of discourse X is convex if and only if for every element, x1, x2 ∈ X,
thus implying that:

µÃ(λx1 + (1− λ)x2) ≥ min
(
µÃ(x1),µÃ(x2)

)
(5)

where λ ∈ [0, 1].

Definition 5. The trapezoidal fuzzy number Ã can be defined as Ã = (a1, a2, a3, a4), as shown in Figure 2.

µÃ(x) =


x−a1
a2−a1

a1 ≤ x ≤ a2

1 a2 ≤ x ≤ a3
a4−x
a3−a4

a3 ≤ x ≤ a4

0 otherwise

(6)
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The concept of an LV is very appropriate in activities where the processing of complex or poorly
defined information that cannot be well described by traditional quantitative formulations is needed.
The LVs are expressed by words, sentences, or artificial languages. Each linguistic value can be
presented by a fuzzy set [28]. Linguistic modelling permits experts to express themselves by labels
belonging to a specific linguistic label set [29]. In this paper, experts’ preferences, according to different
criteria, were considered as linguistic variables. LVs can be expressed by positive TrFN, shown in
Table 1, as was the case in our study.

Table 1. Linguistic variables.

Linguistic Variables Trapezoidal Fuzzy Number

Extremely low (EL) (0, 1, 2, 3)
Very low (VL) (1, 2, 3, 4)

Low (L) (2, 3, 4, 5)
Medium low (ML) (3, 4, 5, 6)

Medium (M) (4, 5, 6, 7)
Medium high (MH) (5, 6, 7, 8)

High (H) (6, 7, 8, 9)
Very high (VH) (7, 8, 9, 10)

Extremely high (EH) (8, 9, 10, 10)

Basic arithmetic operations with TrFN Ã1 = (a1, a2, a3, a4) and Ã2 = (b1, b2, b3, b4) are presented
in the next section [30,31]:

(1) Addition:

Ã1 ⊕ Ã2 = (a1, a2, a3, a41) + (b1, b2, b3, b4) = (a1 + b1, a2 + b2, a3 + b3, a4 + b4) (7)

(2) Multiplication:

Ã1 ⊗ Ã2 = (a1, a2, a3, a41) ⊗ (b1, b2, b3, b4) = (a1 × b1, a2 × b2, a3 × b3, a4 × b4) (8)

(3) Subtraction:

Ã1 − Ã2 = (a1, a2, a3, a41) − (b1, b2, b3, b4) = (a1 − b4, a2 − b3, a3 − b2, a4 − b1) (9)

(4) Division:

Ã1 ÷ Ã2 = (a1, a2, a3, a41) ÷ (b1, b2, b3, b4) = (a1 ÷ b4, a2 ÷ b3, a3 ÷ b2, a4 ÷ b1) (10)
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(5) Reciprocal values:

Ã−1
1 = (a1, a2, a3, a4)

−1 = (
1
a4

,
1
a3

,
1
a2

,
1
a1
) (11)

3. TrFN DEMATEL-D Methodology

Due to the imprecision and subjectivity evident in group decision-making, an extension of the
fuzzy DEMATEL methodology was made using D numbers. The use of D numbers makes it possible
to: (1) take the uncertainties that exist in experts’ comparisons of criteria into account and (2) define
the intervals of fuzzy linguistic expressions on the basis of uncertainties and inaccuracies that exist
in experts’ judgment. Numerous multi-criteria models imply the introduction of fuzzy numbers to
express the uncertainties that exist in group decision-making [32–37]. The introduction of D numbers
makes it possible to take additional uncertainties that arise when selecting fuzzy linguistic variables
from a predefined set into account. In addition to fuzzy linguistic variables, D numbers introduce the
probability of choosing a fuzzy linguistic variable, thus increasing the objectivity and quality of existing
data in group decision-making. Since it is a new extension of the fuzzy DEMATEL methodology by D
numbers, the following section details the algorithm which includes six steps:

Step 1: Experts’ analysis of factors: Suppose that there are m experts divided into two homogeneous
expert groups EG1 and EG2, and there are n criteria considered in a comparison matrix. Let the
fuzzy linguistic variables used to compare the criteria be expressed by trapezoidal fuzzy numbers
l = {lb, b = 1, 2, . . . , t}, where t represents the total number of fuzzy linguistic variables.

Each expert group defines the degree of influence of the criterion i on the criterion j.
The comparative analysis of the pair of ith and jth criterion by the expert group is denoted by
the D number

D1
i j =

{
(l1i j(1), v1

i j(1)), . . . , (l
1
i j(i), v1

i j(i)), . . . , (l
1
i j(t), v1

i j(t))
}

and D2
i j =

{
(l2i j(1), v2

i j(1)), . . . , (l
2
i j(i), v2

i j(i)), . . . , (l
2
i j(t), v2

i j(t))
}
, (12)

where D1
i j and D2

i j represent the D numbers used to express the preferences of EG1 and EG2, respectively,
and t represents the number of fuzzy linguistic variables used to compare the criteria. As a result of
the comparison, two nonnegative matrices of rank n×n are obtained, and each element of the matrix

X1 =
[
D1

i j

]
n×n

and X2 =
[
D2

i j

]
n×n

represents a D number. The diagonal elements of the matrices X1

and X2 have a value of zero because the same factors have no effect. Thus, we can get one matrix

X1 =
[
D1

i j

]
n×n

and X2 =
[
D2

i j

]
n×n

for each expert group.

Step 2: Forming a single fuzzy direct-relation matrix X̃: The transformation of D matrices into a
single matrix of fuzzy linguistic values is carried out through three phases.

Phase 1: In the first phase, the uncertainties presented in the initial experts’ preferences are fused.
Accordingly, applying the rules for the combination of D numbers Di j = D1

i j �D2
i j, (Equation (3)),

the analysis and synthesis of the data provided by D numbers in expert matrices X1 =
[
D1

i j

]
n×n

and

X2 =
[
D2

i j

]
n×n

are performed.

Phase 2: After implementing the rules for the combination of D numbers, the uncertainties
presented at the intersection of fuzzy linguistic variables (FLVs) (Figure 3) are transformed into unique
fuzzy linguistic variables.

We can define FLVs as the term-set L =
{
lb|b = (0, . . . , B)

}
, where lb is an FLV presented in D1

i j and

D2
i j. Each term lb is presented as trapezoidal fuzzy number z̃, i.e., z̃ =

(
z(l), z(m1), z(m2), z(u)

)
, where z(m1)

and z(m2) represent the middle points of the trapezoidal fuzzy number (TrFN), and z(l) and z(u) are the
lower and upper limits, respectively, of the fuzzy interval.
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FLV transformation is performed on the basis of the ratio of the surfaces located at the intersection
Si,i+1 and the corresponding area of the FLVs.

DFLVT(Hi) = D(Hi) + D(Hi, Hi+1)

Si,i+1
Si

Si,i+1
Si

+
Si,i+1
Si+1

(13)

DFLVT(Hi+1) = D(Hi+1) + D(Hi, Hi+1)

Si,i+1
Si+1

Si,i+1
Si

+
Si,i+1
Si+1

(14)

where Si,i+1 represents the intersection between the linguistic variable li and the linguistic variable li+1,
while Si and Si+1 represent the area of the linguistic variable li and li+1, respectively.

After the FLV transformation, we can obtain a single D matrix X =
[
Di j

]
n×n

.
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Phase 3: The elements of the D matrix X =
[
Di j

]
n×n

are transformed into a single fuzzy

direct-relation matrix X̃ =
[
x̃i j

]
n×n

, where x̃i j =
(
xi j1, xi j2, xi j3, xi j4

)
represents the elements of the matrix

X̃ expressed by trapezoidal fuzzy numbers. The elements of the matrix X̃ =
[
x̃i j

]
n×n

are obtained by

applying the operator of integration of D numbers (Equation (4)), i.e., x̃i j =
e∑

i=1
livi, where e represents

the number of FLVs contained in the D number.
Step 3: Computing the elements of a normalized fuzzy direct-relation matrix: After forming a

single fuzzy direct-relation matrix X̃ =
[
x̃i j

]
n×n

by applying Equations (16) and (17), we can obtain the
elements of the normalized fuzzy direct-relation matrix (Equation (15)).

N =


0 d̃12 · · · d̃1n

d̃21 0 · · · d̃2n
...

...
. . .

...
d̃n1 d̃n2 · · · 0

 (15)

where d̃i j =
(
dL

ij, dM
ij , dU

ij

)
represents the normalized values of the matrix X̃ =

[
x̃i j

]
n×n

, which are

obtained by applying Equations (16) and (17):

d̃i j =
x̃i j

s̃
=

(xi j1

s4
,

xi j2

s3
,

xi j3

s2
,

xi j4

s1

)
(16)

s̃ = max
(∑n

j=1 x̃i j
)

= max
(∑n

j=1 xi j1,
∑n

j=1 xi j2,
∑n

j=1 xi j3,
∑n

j=1 xi j4
)

=
(
max

(∑n
j=1 xi j1

)
, max

(∑n
j=1 xi j2

)
, max

(∑n
j=1 xi j3

)
, max

(∑n
j=1 xi j4

)) (17)

Step 4: Determining the fuzzy number-based total relation matrices: By applying
Equations (18)–(20), we can obtain a total influence matrix T =

[̃
ti j

]
n×n

, where I is an n×n identity matrix.
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Since the matrix N =
[
d̃i j

]
n×n

is presented by trapezoidal fuzzy numbers, we can form four submatrices

N = (N1, N2, N3, N4), where N1 =
[
di j1

]
n×n

, N2 =
[
di j2

]
n×n

, N3 =
[
di j3

]
n×n

, and N4 =
[
di j4

]
n×n

.
In addition, lim

m→∞
(N1)

m = O, lim
m→∞

(N2)
m = O, lim

m→∞
(N3)

m = O, and lim
m→∞

(N4)
m = O, where O

represents the zero matrix.

lim
m→∞

(
I + N1 + N2

1 + . . .+ Nm
1

)
= (I −N1)

−1

lim
m→∞

(
I + N2 + N2

2 + . . .+ Nm
2

)
= (I −N2)

−1

lim
m→∞

(
I + N3 + N2

3 + . . .+ Nm
3

)
= (I −N3)

−1

and
lim

m→∞

(
I + N4 + N2

4 + . . .+ Nm
4

)
= (I −N4)

−1


(18)

The total relation fuzzy matrix T is obtained by computing each of the sub-elements:

T1 = lim
m→∞

(
I + N1 + N2

1 + . . .+ Nm
1

)
= (I −N1)

−1 =
[
ti j1

]
n×n

T2 = lim
m→∞

(
I + N2 + N2

2 + . . .+ Nm
2

)
= (I −N2)

−1 =
[
ti j2

]
n×n

T3 = lim
m→∞

(
I + N3 + N2

3 + . . .+ Nm
3

)
= (I −N3)

−1 =
[
ti j3

]
n×n

and
T4 = lim

m→∞

(
I + N4 + N2

4 + . . .+ Nm
4

)
= (I −N4)

−1 =
[
ti j4

]
n×n


(19)

where N1 =
[
di j1

]
n×n

, N2 =
[
di j2

]
n×n

, N3 =
[
di j3

]
n×n

, and N4 =
[
di j4

]
n×n

. Submatrices T1, T2, T3, and T4

form the single fuzzy total relation matrix T = (T1, T2, T3, T4), which is presented as follows:

T =


t̃11 t̃12 · · · t̃1n

t̃21 t̃22 · · · t̃2n
...

...
. . .

...
t̃n1 t̃n2 · · · t̃nn


n×n

(20)

where t̃i j =
(̃
ti j1, t̃i j2, t̃i j3, t̃i j4

)
is the total assessment of experts’ effect for each criterion i and criterion j,

thus expressing their mutual influence and dependence.
Step 5: Computing the sum of rows and columns of the total relation matrix: Presented by vectors

R and C of rank n × 1, Equations (21) and (22) are:

R =

 n∑
j=1

t̃i j


n×1

=
[(∑n

j=1
ti j1,

∑n

j=1
ti j2,

∑n

j=1
ti j3,

∑n

j=1
ti j4

)]
n×1

(21)

C =

 n∑
i=1

t̃i j


1×n

=
[(∑n

i=1
ti j1,

∑n

i=1
ti j2,

∑n

i=1
ti j3,

∑n

i=1
ti j4

)]
1×n

(22)

The value Ri represents the sum of the ith raw of the matrix T. The determined value presents the
total direct and indirect effects that the criterion i provides for the other criteria. Meanwhile, the value
of Ci represents the sum of the jth column of the matrix T and shows the effects that the criterion j
receives from the other criteria [37].

Step 6. Determining the weight coefficients of the criterion (w j): This is achieved via Equation (23):

W̃ j =

√(
R̃i + C̃i

)2
+

(
R̃i − C̃i

)2
(23)
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where the values R̃i + C̃i and R̃i − C̃i are obtained using Equations (24) and (25):

R̃i + C̃i =

 ∑n
j=1 ti j1 +

∑n
i=1 ti j1,

∑n
j=1 ti j2 +

∑n
i=1 ti j2,∑n

j=1 ti j3 +
∑n

i=1 ti j3,
∑n

j=1 ti j4 +
∑n

i=1 ti j4

 (24)

R̃i − C̃i =

 ∑n
j=1 ti j1 −

∑n
i=1 ti j1,

∑n
j=1 ti j2 −

∑n
i=1 ti j2,∑n

j=1 ti j3 −
∑n

i=1 ti j3,
∑n

j=1 ti j4 −
∑n

i=1 ti j4

 (25)

The normalization of the weight coefficients is carried out by Equation (26):

w j =
W̃ j∑n

j=1 W̃ j
(26)

where n is the number of criteria and w̃ j is the fuzzy values of the criteria weight. The values of
the criteria weight are in the interval w̃ j =

(
w j1, w j2, w j3, w j4

)
, where the condition 0 ≤ w j1 ≤ w j2 ≤

w j3 ≤ w j4 ≤ 1 is fulfilled for each evaluation criterion. However, the requirement that the sum of the
weight coefficients of the criteria be generally equal to one must be fulfilled. Since these are fuzzy
coefficients of criteria, using Equation (26) allows for the obtainment of the weight coefficients for
which 0 ≤

∑n
j=1 w j1 ≤

∑n
j=1 w j2 ≤

∑n
j=1 w j3 ≤ 1 and

∑n
j=1 w j4 ≥ 1. This fulfills the condition that the

criteria weight are in the interval w j ∈ [0, 1], ( j = 1, 2, . . . , n).

4. Application of TrFN D-DEMATEL Method

This section describes the application of the TrFN D-DEMATEL method for determining the
quality of logistics services in order to obtain an adequate insight into the management processes
of the service provider. The research by Prentkovskis et al. [38] was used to test the methodology
presented. The dimensions that affect the measurement of logistics service quality were taken from
the study [38], and they were evaluated using the TrFN D-DEMATEL methodology. There were five
defined dimensions: reliability (C1), assurance (C2), tangibles (C3), empathy (C4), and responsiveness
(C5). The study involved six experts who evaluated the dimensions. A detailed description of applying
the TrFN D-DEMATEL methodology is presented in the following section.

Step 1: Experts’ analysis of factors.
Six experts participated in the study, and they were divided into two homogenous expert groups:

EG1 and EG2. Expert groups expressed their preferences when comparing dimensions using a
nine-degree fuzzy linguistic scale; see Table 1. Each expert group defined the mutual degree of
influence of the criteria by D numbers; see Table 2.

Table 2 shows the experts’ comparisons of dimensions using D numbers, where the D number D1

represents the experts’ preferences of the EG1 expert group and D2 represents the experts’ preferences
of the EG2 expert group.

Step 2: Forming a single fuzzy direct-relation matrix.
Phase I: In order to obtain aggregated experts’ preferences, a fusion of the uncertainties expressed

in the group experts’ preferences D1 and D2 is performed. For the uncertainty fusion, the rule for the
combination of D numbers Di j = D1

i j �D2
i j (Equation (3)) is used. Thus, an aggregated D matrix of

experts’ preferences is obtained; see Table 3.
In order to clarify the application of the rules for combining D numbers, the following section

shows the application of the rules for the combination of D numbers for position C2−C1 in the experts’
analysis of dimensions (Table 2).

Based on the data in Table 2, for position C2–C1, we can distinguish two D numbers that
represent the experts’ preferences of homogeneous expert groups: D1 = {(VH,0.2), (VH;EH,0.35),
(EH,0.4)} (where VH is ‘very high’ and EH is ‘extremely high’) and D2 = {(VH,0.25), (VH;EH,0.45),
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(EH,0.1)}. Table 4 provides an analysis of the data on D numbers whose combination was considered,
D = D1

C2−C1 �D2
C2−C1.

Table 2. Experts’ analysis of dimensions.

Dim. C1 C2

C1
D1 = {(0,0.00)}; D1 = {(H,0.3),(H;VH,0.25),(H,0.4)};
D2 = {(0,0.00)} D2 = {(VH,0.3),(VH;EH,0.4),(EH,0.3)}

C2
D1 = {(VH,0.2),(VH;EH,0.35),(EH,0.4)}; D1 = {(0,0.00)};
D2 = {(VH,0.25),(VH;EH,0.45),(EH,0.1)} D2 = {(0,0.00)}

C3
D1 = {(L,0.2),(ML,0.6),(M,0.15)}; D1 = {(ML,0.2),(ML;M,0.2),(M,0.55)};
D2 = {(ML,0.35),(ML;M,0.45)} D2 = {(ML;M,0.3),(M,0.3),(M;MH,0.4)}

C4
D1 = {(EL,0.4),(EL;VL,0.3),(VL,0.3)}; D1 = {(EL,0.4),(EL;VL,0.4),(VL,0.1)};

D2 = {(EL;VL,0.25),(VL,0.35),(VL;L,0.35)} D2 = {(EL;VL,0.5),(VL,0.25),(L,0.2)}

C5
D1 = {(EL,0.25),(VL,0.55),(VL;L,0.15)}; D1= {(L,0.4),(ML,0.25),(ML;M,0.35)};
D2 = {(EL,0.2),(EL;VL,0.5),(VL,0.25)} D2 = {(ML,0.3),(ML;M,0.35),(M,0.3)}

C3 C4

C1
D1 = {(H,0.4),(VH,0.3),(VH;EH,0.3)} D1 = {(MH;H,0.3),(H,0.6),(VH,0.1)}

D2 = {(VH,0.3),(VH;EH,0.3),(EH,0.4)} D2 = {(M,0.3),(MH,0.45),(H,0.25)}

C2
D1 = {(MH,0.3),(MH;H,0.35),(H,0.3)} D1 = {(VH,0.3),(VH;EH,0.4),(EH,0.25)}

D2 = {(MH,0.45),(H,0.45)} D2 = {(VH,0.3),(EH,0.4),(H,0.15)}

C3
D1 = {(0,0.00)}; D1 = {(MH,0.6),(MH;H,0.2),(H,0.2)}
D2 = {(0,0.00)} D2 = {(M,0.25),(MH,0.35),(H,0.4)}

C4
D1 = {(L,0.1),(ML,0.55),(M,0.3)}; D1 = {(0,0.00)};

D2 = {(VL,0.35),(L,0.45),(ML,0.2)} D2 = {(0,0.00)}

C5
D1 = {(MH,0.3),(H,0.25),(H;VH,0.45)}; D1 = {(ML,0.2),(ML;M,0.35),(M,0.4)};
D2 = {(H,0.3),(H;VH,0.25),(VH,0.45)} D2 = {(ML,0.25),(ML;M,0.3),(M,0.4)}

C5

C1
D1 = {(VH,0.5),(VH;EH,0.1),(EH,0.35)};
D2 = {(VH,0.35),(VH;EH,0.2),(EH,0.45)}

C2
D1 = {(MH,0.1),(MH;H,0.3),(H,0.4),(VH,0.15)};

D2 = {(MH;H,0.35),(H,0.25),(VH,0.3)}

C3
D1 = {(MH,0.15),(MH;H,0.2),(H,0.55)};
D2 = {(MH,0.25),(MH;H,0.35),(H,0.35)}

C4
D1 = {(EL,0.4),(EL;VL,0.4),(VL,0.2)};

D2 = {(EL,0.25),(EL;VL,0.35),(VL,0.3)}

C5
D1 = {(0,0.00)};
D2 = {(0,0.00)}

By applying Equation (4), we can calculate the relationships defined by the rule for the combination
of D numbers.

KD =
1

Q1Q2

(
D1

C2−C1(VH) ·D2
C2−C1(EH) + D1

C2−C1(EH) ·D2
C2−C1(VH)

)
= 0.158

Q1 = D1
C2−C1(VH) + D1

C2−C1(VH; EH) + D1
C2−C1(EH) = 0.2 + 0.35 + 0.4 = 0.95

Q2 = D2
C2−C1(VH) + D2

C2−C1(VH; EH) + D2
C2−C1(VH) = 0.25 + 0.45 + 0.1 = 0.80

Thus, we can obtain:

DC2−C1(VH) =
1

1−KD

(
D1

C2−C1(VH)D2
C2−C1(VH) + D1

C2−C1(VH)D2
C2−C1(VH; EH)+

D1
C2−C1(VH; EH)D2

C2−C1(VH)

)
= 0.270

DC2−C1(VH; EH) =
1

1−KD

(
D1

C2−C1(VH; EH)D2
C2−C1(VH; EH)

)
= 0.187

DC2−C1(EH) =
1

1−KD

(
D1

C2−C1(VH; EH)D2
C2−C1(EH) + D1

C2−C1(EH)D2
C2−C1(VH; EH)+

D1
C2−C1(EH)D2

C2−C1(EH)

)
= 0.303
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Table 3. Aggregated D matrix of experts’ preferences.

Dim. C1 C2

C1 D = {(0,0.00)} D = {(VH,0.95)}
C2 D = {(VH,0.27),(VH;EH,0.19),(EH,0.3)} D = {(0,0.00)}
C3 D = {(ML,0.67),(M,0.09)} D = {(ML,0.07),(ML;M5,0.07),(M,0.72)}
C4 D = {(EL,0.14),(EL;L,0.11),(2,0.7)} D = {(EL,0.3),(EL;L,0.3),(L,0.26)}
C5 D = {(EL,0.23),(VL,0.68)} D = {(ML,0.51),(ML;M,0.24),(M,0.2)}

C3 C4

C1 D = {(VH,0.56),(VH;EH,0.19),(EH,0.25)} D = {(MH,0.38),(H,0.63)}
C2 D = {(MH,0.43),(H,0.43)} D = {(VH,0.36),(EH,0.45)}
C3 D = {(0,0.00)} D = {(MH,0.64),(H,0.36)}
C4 D = {(L,0.28),(ML,0.67)} D = {(0,0.00)}
C5 D = {(H,0.46),(H;VH,0.19),(VH,0.34)} D = {(ML,0.25),(ML;M,0.13),(M,0.52)}

C5

C1 D = {(VH,0.49),(VH;EH,0.03),(EH,0.43)}
C2 D = {(MH,0.06),(MH;H,0.18),(H,0.54),(VH,0.08)}
C3 D = {(MH,0.18),(MH;H,0.09),(H,0.59)}
C4 D = {(EL,0.42),(EL;VL,0.17),(VL,0.31)}
C5 D = {(0,0.00)}

Table 4. Intersection table to combine D1
C2−C1 and D2

C2−C1.

D = D1
C2−C1�D2

C2−C1 DC2−C1
2(VH) = 0.25 DC2−C1

2(VH;EH) = 0.45 DC2−C1
2(EH) = 0.1

DC2−C1
1(VH) = 0.2 {VH} (0.05) {VH} (0.09) Ø (0.02)

DC2−C1
1(VH;EH) = 0.35 {VH} (0.0875) {VH;EH} (0.1575) {EH} (0.035)

DC2−C1
1(EH) = 0.4 Ø (0.1) {EH} (0.18) {EH} (0.04)

Phase II: After applying the rule for the combination of D numbers, we can obtain a D number
located between the fuzzy linguistic variables VH and EH, and so it is necessary to transform the
uncertainty found between the fuzzy variables VH and EH into unique FLVs. The transformation
of uncertainty is performed by applying Equations (13) and (14). The following section presents the
procedure for the transformation of uncertainty between the fuzzy variables VH and EH. A graphical
display of the fuzzy linguistic variables VH and EH is given in Figure 4.
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The transformation of FLVs is performed on the basis of the ratio of the surfaces located at the
intersection SVH,EH and the area that covers the fuzzy variables VH and EH, i.e., SVH,EH = 0.5× 2× 1 =



Mathematics 2020, 8, 812 12 of 16

1.00 and SEH = 0.5 × 3 × 1 = 1.50. Using Equations (13) and (14), we can obtain finite values of D
numbers for the fuzzy variables VH and EH:

DC2−C1(VH) = 0.270 + 0.187 1/2
1/2+1.5/2 = 0.350

DC2−C1(EH) = 0.303 + 0.187 1/1.5
1/2+1.5/2 = 0.410

DB1(MH) = 0.461 + 0.154
1.125/2

1.125/2 + 1.125/2
= 0.538

Thus, we can obtain D number DC2−C1 = {(VH,0.350), (EH,0.410)} which is in the first position
C2−C1. The remaining values of the aggregated D matrix of experts’ preferences are obtained in a
similar way (Table 3).

Phase III: Using Equation (4), the values of the aggregated D matrix of experts’ preferences are
integrated into the corresponding fuzzy values; see Table 5. By this procedure, the uncertainties
expressed by D numbers are transformed into unique trapezoidal fuzzy numbers.

Table 5. Single fuzzy direct-relation matrix.

Dim. C1 C2 C3

C1 (0.00, 0.00, 0.00, 0.00) (6.65, 7.6, 8.55, 9.5) (7.36, 8.36, 9.36, 10)
C2 (5.73, 6.49, 7.25, 7.6) (0.00, 0.00, 0.00, 0.00) (4.7, 5.56, 6.41, 7.27)
C3 (2.37, 3.13, 3.89, 4.65) (3.32, 4.18, 5.03, 5.89) (0.00, 0.00, 0.00, 0.00)
C4 (0.76, 1.71, 2.66, 3.61) (0.41, 1.26, 2.12, 2.97) (2.57, 3.52, 4.47, 5.42)
C5 (0.68, 1.58, 2.48, 3.38) (3.17, 4.12, 5.07, 6.02) (6.44, 7.44, 8.44, 9.44)

C4 C5

C1 (5.63, 6.63, 7.63, 8.63) (7.36, 8.31, 9.26, 9.5)
C2 (6.1, 6.91, 7.71, 8.08) (5.06, 5.91, 6.77, 7.62)
C3 (5.36, 6.36, 7.36, 8.36) (4.91, 5.76, 6.62, 7.47)
C4 (0.00, 0.00, 0.00, 0.00) (0.39, 1.29, 2.19, 3.09)
C5 (3.3, 4.2, 5.1, 6.01) (0.00, 0.00, 0.00, 0.00)

Using Equations (4), (7), and (8), the element C2−C1 of the single fuzzy direct-relation matrix
(Table 5) is obtained as follows:

x̃21 = 0.350 · (7, 8, 9, 10) + 0.410 · (8, 9, 10, 10) = (5.73, 6.49, 7.25, 7.60)

Similarly, we can obtain the remaining elements of the single fuzzy direct-relation matrix (Table 5).
Steps 3 and 4: Computing the elements of the normalized fuzzy direct-relation matrix and total

fuzzy influence matrix.
By applying Equations (16) and (17), we can obtain the elements of the normalized fuzzy

direct-relation matrix; see Table 6.
In the next step, by using Equations (18)–(20), we can obtain the total influence matrix T =

[̃
ti j

]
5×5

;
see Table 7.

Steps 5 and 6: Computing the sum of rows and columns of the fuzzy total relation matrix and
determining the optimal values of the weight coefficients of dimensions.

The optimal values of the weight coefficients of dimensions are defined on the basis of the total
direct/indirect effects that the criterion i provides for other criteria (Ri) and the total direct/indirect
effects that the criterion j receives from other criteria (Ci). The values of Ri and Ci are obtained by using
Equations (21) and (22). After calculating the values of Ri and Ci (Table 8), we can obtain the optimal
values of the dimensions by using Equations (23)–(26).
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Table 6. Normalized fuzzy direct-relation matrix.

Dim. C1 C2 C3

C1 (0.00, 0.00, 0.00, 0.00) (0.25, 0.25, 0.25, 0.25) (0.27, 0.27, 0.27, 0.27)
C2 (0.21, 0.21, 0.21, 0.20) (0.00, 0.00, 0.00, 0.00) (0.17, 0.18, 0.18, 0.19)
C3 (0.09, 0.10, 0.11, 0.12) (0.12, 0.14, 0.14, 0.16) (0.00, 0.00, 0.00, 0.00)
C4 (0.03, 0.06, 0.08, 0.10) (0.02, 0.04, 0.06, 0.08) (0.10, 0.11, 0.13, 0.14)
C5 (0.03, 0.05, 0.07, 0.09) (0.12, 0.13, 0.15, 0.16) (0.24, 0.24, 0.24, 0.25)

C4 C5

C1 (0.21, 0.21, 0.22, 0.23) (0.27, 0.27, 0.27, 0.25)
C2 (0.23, 0.22, 0.22, 0.21) (0.19, 0.19, 0.19, 0.20)
C3 (0.20, 0.21, 0.21, 0.22) (0.18, 0.19, 0.19, 0.20)
C4 (0.00, 0.00, 0.00, 0.00) (0.01, 0.04, 0.06, 0.08)
C5 (0.12, 0.14, 0.15, 0.16) (0.00, 0.00, 0.00, 0.00)

Table 7. Total fuzzy influence matrix.

Dim. C1 C2 C3

C1 (0.16, 0.22, 0.28, 0.35) (0.42, 0.48, 0.54, 0.62) (0.56, 0.62, 0.67, 0.75)
C2 (0.30, 0.35, 0.40, 0.46) (0.18, 0.23, 0.28, 0.35) (0.42, 0.48, 0.53, 0.61)
C3 (0.17, 0.23, 0.28, 0.36) (0.23, 0.29, 0.35, 0.43) (0.20, 0.25, 0.30, 0.38)
C4 (0.06, 0.11, 0.17, 0.24) (0.05, 0.12, 0.19, 0.26) (0.14, 0.21, 0.28, 0.37)
C5 (0.11, 0.18, 0.24, 0.32) (0.21, 0.27, 0.34, 0.42) (0.37, 0.43, 0.48, 0.57)

C4 C5

C1 (0.51, 0.57, 0.63, 0.72) (0.51, 0.56, 0.61, 0.67)
C2 (0.46, 0.51, 0.56, 0.62) (0.39, 0.44, 0.49, 0.56)
C3 (0.36, 0.42, 0.48, 0.56) (0.31, 0.37, 0.42, 0.50)
C4 (0.06, 0.12, 0.17, 0.24) (0.07, 0.14, 0.21, 0.29)
C5 (0.28, 0.35, 0.41, 0.50) (0.14, 0.19, 0.25, 0.32)

Table 8. Ranking the weight coefficients of the dimensions.

Dim. Ri Ci Ri + Ci Ri − Ci

C1 (2.16, 2.45, 2.73, 3.11) (0.80, 1.09, 1.37, 1.73) (4.84, 0.43, −3.01, −2.17) (−1.23, 3.84, −2.15, 4.40)
C2 (1.75, 2.01, 2.26, 2.61) (1.10, 1.40, 1.69, 2.09) (4.70, −0.33, −2.55, −1.72) (−0.76, 3.70, −1.82, 4.12)
C3 (1.28, 1.56, 1.84, 2.23) (1.69, 1.99, 2.28, 2.69) (4.92, −1.41, −2.13, −1.27) (−0.28, 3.85, −1.53, 4.14)
C4 (0.38, 0.71, 1.02, 1.40) (1.68, 1.97, 2.25, 2.64) (4.05, −2.27, −1.30, −0.42) (0.59, 2.99, −0.86, 3.11)
C5 (1.11, 1.42, 1.73, 2.14) (1.41, 1.70, 1.98, 2.35) (4.49, −1.23, −2.01, −1.14) (−0.18, 3.44, −1.40, 3.71)

Wj wj Rank

C1 4.404 0.226 1
C2 4.122 0.211 3
C3 4.144 0.213 2
C4 3.110 0.160 5
C5 3.712 0.190 4

The final values of the weight coefficients of the dimensions are: reliability (w1 = 0.226), assurance
(w2 = 0.211), tangibles (w3 = 0.213), empathy (w4 = 0.160), and responsiveness (w5 = 0.190). Based on
presented results, we can define the final ranking as C1 > C3 > C2 > C5 > C4.

Compared to crisp DEMATEL, the proposed method has two main advantages. The first advantage
of proposed model is the elimination of disadvantage in the DST where the elements in the frame of
discernment are required to be independent. While both evidence DEMATEL [39] and DEMATEL-D
can decrease the subjectivity of expert preferences, the DST is not very applicable for the presentation
of linguistic estimates in conditions where it is required that the elements within the distinction
must be mutually exclusive. As shown In Figure 1a, the variables must have boundaries in DST.
However, it was found that this demand is difficult to be satisfied for LVs such as “F”, “B”, and “U”.
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As shown in Figure 1b, the D numbers theory overcomes this poorness and permit overlap between
LVs, which makes it more applicable for linguistic assessments. Furthermore, in DST, the sum of basic
probability assignment must present the complete information, i.e., the sum of probability must be
1. However, in the D numbers theory, the information can be incomplete, which is more practical
and realistic.

The second advantage of proposed DEMATEL-D model is related to reducing experts subjectivity.
Even though both fuzzy DEMATEL [40] and the TrFN DEMATEL consider fuzziness, the developed
method is more objective than fuzzy DEMATEL because it can reduce the impact of expert subjectivity
by fusing group opinions.

The precedence of the D numbers theory is the ability to integrate group information. Therefore,
in order to perform the verification and validity of the developed method, this study computed the
result in each expert group and compared the opinions of these two expert groups with the final
result, as shown in Table 8. In these three cases (the first group, the second group, and the aggregated
values), C1 was the most significant element but the ranking of the other elements was quite various,
thus showing that the final rank was sensitive to the knowledge of experts. Consequently, the need for
the integration of expert information in various fields using the D numbers theory has been shown.

The D numbers theory is used to fuse the expert preferences in decision-making processes.
Therefore, it is reasonable to expect the aggregate values to be close to the values represented by the
expert preferences. The final values of the criteria obtained using the DEMATEL-D model in this study
were between the results that have been proposed through expert evaluations. This shows us that the
proposed model respects the uncertainties that exist in group decision-making and that the model
gives results that are valid and reasonable.

5. Conclusions

In this paper, the fuzzy DEMATEL methodology was expanded by D numbers to overcome
uncertainties and subjectivities that are inevitable in group decision-making processes, especially
with numerous decision-makers. The integration of fuzzy DEMATEL with D numbers allows for
the consideration of uncertainties that exist in experts’ comparisons of criteria, and that the intervals
of fuzzy linguistic expressions are defined based on the uncertainties and imprecision that exist in
experts’ judgment. The introduction of D numbers makes it possible to take the additional uncertainties
that arise when selecting fuzzy linguistic variables from a predefined set into account. D numbers,
in addition to fuzzy linguistic variables, introduce the probability of choosing a fuzzy linguistic variable,
thus increasing the objectivity and quality of existing data in group decision-making. This can be
proven, for example, by determining the quality of logistics services in order to obtain an adequate
insight into the management processes. Considering that this is a new extension of the fuzzy DEMATEL
method by D numbers, which was demonstrated on a real study, it can be concluded that there is a
justification for the development of the presented methodology. Future research may be based on
the greater application of MCDM methods and D numbers. In addition, it is possible to integrate
rough numbers with D numbers, which could provide a more comprehensive concept for managing
decision-making processes.
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making based on interval rough numbers: Hybrid DEMATEL-ANP-MAIRCA model. Expert Syst. Appl.
2017, 88, 58–80. [CrossRef]

33. Chatterjee, K.; Pamucar, D.; Zavadskas, E.K. Evaluating the performance of suppliers based on using the
R’AMATEL-MAIRCA method for green supply chain implementation in electronics industry. J. Clean. Prod.
2018, 184, 101–129. [CrossRef]

34. Roy, J.; Adhikary, K.; Kar, S.; Pamucar, D. A rough strength relational DEMATEL model for analysing the key
success factors of hospital service quality. Decis. Mak. Appl. Manag. Eng. 2018, 1, 121–142. [CrossRef]

35. Liu, F.; Aiwu, G.; Lukovac, V.; Vukic, M. A multicriteria model for the selection of the transport service
provider: A single valued neutrosophic DEMATEL multicriteria model. Decis. Mak. Appl. Manag. Eng. 2018,
1, 121–130. [CrossRef]

36. Chatterjee, P.; Stević, Ž. A two-phase fuzzy AHP-fuzzy TOPSIS model for supplier evaluation in
manufacturing environment. Oper. Res. Eng. Sci. Theory Appl. 2019, 2, 72–90. [CrossRef]
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