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Abstract: In this paper we carry out a reliability study of the consecutive-k1 and k2-out-of-n systems
with independent and identically distributed components ordered in a line. More precisely, we obtain
the generating function of the structure’s reliability, while recurrence relations for determining its
signature vector and reliability function are also provided. For illustration purposes, some numerical
results and figures are presented and several concluding remarks are deduced.
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1. Introduction

In the field of Reliability Engineering, considerable research activity has been steered towards
the investigation of operating features of consecutive-type structures, due to their applications in the
optimization of telecommunication networks, complex infrared detecting systems, oil pipeline systems,
vacuum systems in accelerators, and spacecraft relay stations.

Generally speaking, a consecutive-out-of-n: F system consisting of n linearly ordered units (or
components), fails if and only if at least k consecutive ones fail (see, e.g., [1] or [2]). Several reliability
studies related to these structures have been recently accomplished, and some generalizations and
extensions have been also proposed for delivering more moldable features. As a paradigm, we mention
the r-within-consecutive k-out-of-n: F system (1 < r ≤ k ≤ n), which was established in [3]. The
particular structure fails if and only if there exist k consecutive components that include among them
at least r failed components (see also [4] or [5]).

Furthermore, a variety of additional extensions of the traditional consecutive-k-out-of-n: F system
has appeared in the literature during the last three decades and studied in detail. These extended
versions of the well-known consecutive-k-out-of-n: F structure activate more complicated failure
criteria in order to cover a larger range of applications and exhibit better performance. Among others,
the interested reader is referred to the m-consecutive-k-out-of-n: F system (n ≥ mk) (see, e.g., [6] or [7]),
the sparsely connected consecutive-k systems ([8] or [9]), the m-consecutive-k-out-of-n:F-r-S-interrupted
systems ([10]), and the m-consecutive-k, l-out-of-n systems ([11]).

In addition, the reliability structures, which involve two common failure criteria, have attracted
significant research interest in the literature. For instance, the (n, f , k) system established in [12], was
also studied in [13] via a Markov chain approach, while some interesting reliability attributes and
applications of it were investigated in [14,15]. Further extensions of (n, f , k) structures have been
proposed; a reliability system which looks after two different failure criteria was also provided in [16].
More precisely, the abovementioned structure combines the well-known f -out-of-n: G and the classical
consecutive- k-out-of-n: G structure. Moreover, an innovative scheme based on a m-consecutive
k-out-of-n: F and a consecutive-kc-out-of-n: F system was proposed in [17], the so-called constrained (k,
d)-out-of-n: F system was established in [18] (see, also [19]), while the ((n1, n2, . . . , nN), f , k) structure
involving N modules with the i-th module consisting of ni units in parallel was introduced in [20]
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(see, also [21]). Moreover, the so-called
〈
n, f , k

〉
structure, which operates under two common failure

criteria, was studied in [22]. The particular system contains n components and fails if and only if there
exist at least f failed components and at least k consecutive failed components (see also [23]).

For a detailed and up-to-date survey on the consecutive-k-out-of-n: F systems and their
generalizations, we suggest the detailed review papers [24,25] or [26] and the well-written
monographs [27,28]. A survey of reliability approaches in various fields of engineering and physical
sciences is provided in [29].

In this manuscript, we conduct a reliability study of the consecutive-k1 and k2-out-of-n structures
introduced in [30] which operate under two common failure criteria. The consecutive-k1 and k2-out-of-n
structure contains n components in a line and fails if and only if there exist at least non-overlapping
consecutive k1 failed components and consecutive k2 failed components. The main motivation of
the present paper is to deliver the generating function of the reliability for the linear consecutive k1

and k2-out-of-n system. The aforementioned result has not appeared in the literature to date and is
now offered by Proposition 1 of the present manuscript. It is clear that the results provided in [30]
do not overlap with the theoretical results proved in the present manuscript. To be more articulate,
the outcomes given in [30] are complementary (rather than competitive) to those established in the
present manuscript.

Delivering the generating function of a structure’s reliability calls for several algebraic
manipulations and consequently seems to be of some theoretical/mathematical interest. However,
having at hand the generating function of the consecutive k1 and k2-out-of-n reliability system gives us
the opportunity to develop recursive schemes for computing some important reliability characteristics
of the underlying structure. Indeed, Propositions 2 and 3 of the present manuscript offer innovative
recurrences for determining the reliability polynomial and the signature vector of the linear consecutive
k1 and k2-out-of-n reliability system.

In Section 2, we derive the generating function of the consecutive-k1 and k2-out-of-n system with
independent and identically distributed components ordered in a line, while recurrence relations for
determining its reliability function and its signature vector are introduced and proved in Section 3.
For illustration purposes, some numerical results and figures are constructed and several concluding
remarks are stated.

2. The Generating Function of the Consecutive-k1 and k2-out-of-n Systems

In this section, we study the linear consecutive-k1 and k2-out-of-n structure, where k1 < k2.
More specifically, we employ a generating function approach in order to investigate some reliability
characteristics of the linear consecutive-k1 and k2-out-of-n structure. To achieve that, the Markov chain
methodology established in [31] is implemented (see, also [32] or [33]) and an explicit expression
for determining the generating function of the reliability function of the linear consecutive-k1 and
k2-out-of-n structure with independent and identically distributed (i.i.d. hereafter) components
is derived.

Let us first point out the necessary methodological background, which will be proved useful
for the study of the consecutive-k1 and k2-out-of-n structure. We first assume that Rn, n = 0, 1, . . .
corresponds to the reliability function of an imbeddable in a Markov chain structure consisting of
n components. It is evident that the general form for evaluating the reliability function Rn of the
abovementioned system is given as

Rn = π
′

0Λnu = 1−π
′

0ΛneN (1)

where Λ is the transition probability matrix related to the system and

π0 = (1, 0, 0, . . . , 0)′, u = (1, 1, . . . , 1, 0)′, eN= (0, 0, . . . , 0, 1)′.
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In addition, if R(z; p) =
∞∑

n=0
Rnzn corresponds to the generating function of the sequence

{Rn, n = 0, 1, . . .}, then R(z; p) could be expressed as

R(z; p) = π
′

0(I − zΛ)−1u=
1

1− z
−

1
det(I − zΛ)

e1,N (2)

where ei, j denotes the (i, j) element of the adjoint of matrix I − zΛ. Consequently, should one be able to
evaluate the last entry of the first row of the matrix (I − zΛ)−1, the generating function of the reliability
function of the corresponding system can be deduced after some algebraic maneuvering.

Let us next denote by T the lifetime of a reliability system with n components and T1, T2, . . . , Tn

its components’ lifetimes. If we assume that T1, T2, . . . , Tn are independent and identically distributed,
the signature of the system is defined as the probability vector (s1(n), s2(n), . . . , sn(n)) with

si(n) = P(T = Ti:n), i = 1, 2, . . . , n,

where T1:n ≤ T2:n ≤ . . . ≤ Tn:n denote the respective order statistics of the random sample T1, T2, . . . , Tn.
Since the system fails upon the failure of one of its components, it is clear enough that the lifetime T
coincides to the corresponding ordered lifetime of this particular fatal component. Consequently, the
coordinate si(n) depicts the probability that the system fails when its i-th ordered component fails.

Generally speaking, the signature vector of a reliability structure has evolved as a crucial
performance metric for appraising the behavior of coherent structures. Furthermore, the signature
vector seems to be able to bolster the evaluation of reliability polynomial and several stochastic
comparisons among systems’ lifetimes (see, e.g., [34] or [35]). For some recent advances on the
evaluation of the signature vector of a reliability structure, one may refer to [36], [37] or [38].

Applying Equation (1) and taking into account the Markov chain representation of the linear
consecutive-k1 and k2-out-of-n system proposed in [30], we may determine the reliability function Rn,
n = k, k + 1, . . . of the consecutive-k1 and k2-out-of-n structure, where k = k1 + k2. It is evident that the
outcomes given in [30] are complementary (rather than competitive) to the ones established in the
present manuscript. For example, Proposition 1 provides an explicit expression for determining the

generating function R(z; p) =
∞∑

n=k
Rnzn of the sequence {Rn, n = k, k + 1, . . .}, while the authors in [30]

offered only the necessary blocked form of the transition probability matrix of the underlying structure.
It is worth mentioning that the below-mentioned result, which calls for several complex algebraic

operations, seems to be the main theoretical outcome of the present manuscript, since it supports
the proof of the remaining propositions and consequently all numerical or figurative illustrations
displayed later.

Proposition 1. The generating function of the reliability function of the linear consecutive-k1 and k2-out-of-n
(k1 < k2) structure with i.i.d. components can be determined as

R(z; p) =
b2(k1)b(k2) − (qz)k1+k2

(
b(k2) + pb(k1)

k2−k1−1∑
i=0

(qz)i
)

(1− z)b2(k1)b(k2)
(3)

where p, q = 1− p correspond to the common reliability and unreliability of the components while

b(g) = 1− pz
g−1∑
i=0

(qz)i, g > 1
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Proof. Taking advantage of the blocked form of the transition probability matrix Λ of the linear
consecutive-k1 and k2-out-of-n structure proposed in [30], we may write

Λ =


Ak2×k2

Dk2×k2
Ek2×(k1+1)

0k2×k2 Bk2×k2
Fk2×(k1+1)

0(k1+1)×k2
0(k1+1)×k2

C
(k1+1)×(k1+1)

 =



k2︷       ︸︸       ︷
p q 0 0 . . . 0

k2︷    ︸︸    ︷
0 0 0 . . . 0

k1+1︷    ︸︸    ︷
0 0 0 . . . 0

p 0 q 0 . . . 0 0 0 0 . . . 0 0 0 0 . . . 0
...

. . .
...

...
. . .

...
p 0 0 0 . . . 0 0 0 0 . . . 0 0 0 0 . . . 0
0 0 0 0 . . . 0 p 0 0 . . . 0 0 0 0 . . . 0

...
. . .

...
...

. . .
...

0 0 0 0 . . . q p 0 0 . . . 0 0 0 0 . . . 0
0 0 0 0 . . . 0 p 0 0 . . . 0 q 0 0 . . . 0
0 0 0 0 . . . 0 p q 0 . . . 0 0 0 0 . . . 0
0 0 0 0 . . . 0 p 0 q . . . 0 0 0 0 . . . 0

...
. . .

...
...

...
...

...
0 0 0 0 . . . 0 p 0 0 . . . q 0 0 0 . . . 0
0 0 0 0 . . . 0 p 0 0 . . . 0 0 0 0 . . . q
0 0 0 0 . . . 0 0 0 0 . . . 0 p q 0 . . . 0
0 0 0 0 . . . 0 0 0 0 . . . 0 p 0 q . . . 0

...
...

...
. . .

0 0 0 0 . . . 0 0 0 0 . . . 0 p 0 0 . . . q
0 0 0 0 . . . 0 0 0 0 . . . 0 0 0 0 . . . 1


N×N

(4)

where N = 2k2 + k1 + 1 denotes the order of matrix Λ. The (1, N) element of the adjoint of the matrix
I − zΛ is given by

e1,N = (−1)N+1MN,1 (5)

where MN,1 corresponds to the minor determinant which is deduced by deleting the last row and the
first column of the square matrix I − zΛ. More precisely, the determinant MN,1 takes on the following
form:
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MN,1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k2−1︷         ︸︸         ︷
−qz 0 0 . . . 0

k2︷     ︸︸     ︷
0 0 0 . . . 0

k1+1︷      ︸︸      ︷
0 0 0 . . . 0

1 −qz 0 . . . 0 0 0 0 . . . 0 0 0 0 . . . 0
...

. . .
...

...
. . .

...
0 0 0 . . . 0 0 0 0 . . . 0 0 0 0 . . . 0

0 0 0 . . . 0 −pz 0 0 . . . 0 0 0 0 . . . 0
...

...
...

...
0 0 0 . . .−qz −pz 0 0 . . . 0 0 0 0 . . . 0

0 0 0 . . . 1 −pz 0 0 . . . 0 −qz 0 0 . . . 0
0 0 0 . . . 0 1− pz −qz 0 . . . 0 0 0 0 . . . 0
0 0 0 . . . 0 −pz 1 −qz . . . 0 0 0 0 . . . 0

...
...
...

...
...

...
...

0 0 0 . . . 0 −pz 0 0 . . .−qz 0 0 0 . . . 0
0 0 0 . . . 0 −pz 0 0 . . . 1 0 0 0 . . .−qz

0 0 0 . . . 0 0 0 0 . . . 0 1− pz −qz 0 . . . 0
0 0 0 . . . 0 0 0 0 . . . 0 −pz 1 −qz . . . 0

...
...
...

. . .
...

0 0 0 . . . 0 0 0 0 . . . 0 −pz 0 0 . . .−qz

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
N×N

We next expand the above determinant according to the elements of its first row and we repeat
the same expansion k1 times successively. We then conclude that MN,1 may we rewritten as

MN,1 = (−qz)k1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k2−k1−1︷     ︸︸     ︷
β 0 0 . . . 0

k2︷     ︸︸     ︷
ζ 0 0 . . . 0

k1+1︷     ︸︸     ︷
0 0 0 . . . 0

1 β 0 . . . 0 ζ 0 0 . . . 0 0 0 0 . . . 0
0 1 β . . . 0 ζ 0 0 . . . 0 0 0 0 . . . 0

...
. . .

...
...

. . .
...

0 0 0 . . . β ζ 0 0 . . . 0 0 0 0 . . . 0
0 0 0 . . . 1 ζ 0 0 . . . 0 β 0 0 . . . 0
0 0 0 . . . 0 ω β 0 . . . 0 0 0 0 . . . 0
0 0 0 . . . 0 ζ 1 β . . . 0 0 0 0 . . . 0

...
...

...
...
...

...
...

0 0 0 . . . 0 ζ 0 0 . . . β 0 0 0 . . . 0
0 0 0 . . . 0 ζ 0 0 . . . 1 0 0 0 . . . β
0 0 0 . . . 0 0 0 0 . . . 0 ω β 0 . . . 0
0 0 0 . . . 0 0 0 0 . . . 0 ζ 1 β . . . 0

...
...

...
. . .

...
0 0 0 . . . 0 0 0 0 . . . 0 ζ 0 0 . . . β

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2k2×2k2

where
β = −qz, ζ = −pz,ω = 1− pz.

By expanding the above determinant through the items of its (2k2 − k1) − th column, we get

MN,1 = (−qz)k1
[
(−1)3k2−2k1 (−qz)D1 + (−1)4k2−2k1+1(1− pz)D2 −pz

(
D3 −D4 + D5 − . . .+ (−1)k1 Dξ

)]
(6)
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where

D1 = (−qz)k2−1
(
1− pz

k2−1∑
i=0

(qz)i
)
,

D2 = (−1)(4k2−2k1+1)(k1−1)+k2−k1(−qz)k2p
k2−k1−1∑

i=0
(qz)i,

D3 = (−1)(4k2−2k1+1)(k1−1)+k2−k1 (−qz)k2+1p
k2−k1−1∑

i=0
(qz)i, D4 = (−1)(4k2−2k1+1)(k1−1)+k2−k1 (−qz)k2+2p

k2−k1−1∑
i=0

(qz)i

D5 = (−1)(4k2−2k1+1)(k1−1)+k2−k1 (−qz)k2+3p
k2−k1−1∑

i=0
(qz)i, . . . , Dξ = (−1)(4k2−2k1+1)(k1−1)+k2−k1 (−qz)k2+k1−1p

k2−k1−1∑
i=0

(qz)i.

We then substitute the above expressions for the sub-determinants D1, D2, D3, D4, D5, . . . , Dξ in
Equation (6) and the following ensues:

MN,1 = (−qz)k1+k2

(−1)2k2−k1

1− pz
k2−1∑
i=0

(qz)i

+ (−1)k1(4k2−2k1+1)p
k2−k1−1∑

i=0

(qz)i

1− pz
k1−1∑
i=0

(qz)i




or equivalently:

MN,1 = (−qz)k1+k2(−1)k1


1− pz

k2−1∑
i=0

(qz)i

+ p
k2−k1−1∑

i=0

(qz)i

1− pz
k1−1∑
i=0

(qz)i


 (7)

Combining Equations (2), (5), and (7), the desired expression required for determining the
generating function of the reliability function of the linear consecutive-k1 and k2-out-of-n (k1 < k2)
system is readily deduced. �

It is true that delivering the generating function of a structure’s reliability calls for several algebraic
manipulations and consequently seems to be of some theoretical or mathematical interest. However,
having at hand the generating function of the consecutive-k1 and k2-out-of-n reliability system gives us
the opportunity to develop recursive schemes for computing some important reliability characteristics
of the underlying structure. Indeed, Propositions 2 and 3, which appear in the next section, offer
innovative recurrences for determining the reliability polynomial and the signature vector of the
linear consecutive-k1 and k2-out-of-n reliability system. Based on these recursive schemes, several
numerical results for specific values of the design parameters k1, k2, n could be produced for providing
an illuminating impression about how the theoretical results of the manuscript could be proved useful
in practice.

3. Recurrence Relations for the Reliability Function and the Signature Vector of the
Consecutive-k1 and k2-out-of-n Systems

We next focus on two important performance characteristics of the linear consecutive-k1 and
k2-out-of-n (k1 < k2) structure consisting of i.i.d. components. More precisely, we exploit the general
result proved in Section 2 in order to establish recurrence relations not only for evaluating the
reliability function of the underlying system but also for determining the coordinates of the respective
signature vector.

The following proposition provides a recursive scheme in terms of the design parameter n for
determining the reliability function of the linear consecutive-k1 and k2-out-of-n (k1 < k2) structure.
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Proposition 2. The reliability function Rn of the linear consecutive-k1 and k2-out-of-n structure (k1 < k2)
consisting of i.i.d. components serves the next recurrence

Rn −Rn−1 − 2p
k1−1∑
i=0

qi(Rn−i−1 −Rn−i−2) − p
k2−1∑
i=0

qi(Rn−i−1 −Rn−i−2) + p2
k1−1∑
i=0

i+k1−1∑
j=i

q j(Rn− j−2 −Rn− j−3)

+2p2
k1−1∑
i=0

i+k2−1∑
j=i

q j(Rn− j−2 −Rn− j−3) − p3
k1−1∑
i=0

i+k2−1∑
j=i

k1−1∑
h=0

q j+h(Rn− j−h−3 −Rn− j−h−4) = 0,

n ≥ 2k2 + k1 + 1.

(8)

Proof. Recalling formula (3) we may write

(1− z)
(
1− pz

k1−1∑
i=0

(qz)i
)2 (

1− pz
k2−1∑
i=0

(qz)i
)
∞∑

n=0
Rnzn

=

(
1− pz

k1−1∑
i=0

(qz)i
)2(

1− pz
k2−1∑
i=0

(qz)i
)

−(qz)k1+k2

[(
1− pz

k2−1∑
i=0

(qz)i
)
+ p

k2−k1−1∑
i=0

(qz)i
(
1− pz

k1−1∑
i=0

(qz)i
)]

.

We next observe that the maximum power exponent on the right-hand side of the above relation
equals 2k2 + k1. Consequently, taking into account that the coefficients of zn on the left-hand side
should not appear for n ≥ 2k2 + k1 + 1, the above equality can be rewritten as

∞∑
n=0

Rnzn
−

2pz
k1−1∑
i=0

(qz)i
−

(
pz

k1−1∑
i=0

(qz)i
)2

+ pz
k2−1∑
i=0

(qz)i
− 2p2z2

k1−1∑
i=0

(qz)i
k2−1∑
i=0

(qz)i

+p3z3
(

k1−1∑
i=0

(qz)i
)2(k2−1∑

i=0
(qz)i

)
+ z− 2pz2

k1−1∑
i=0

(qz)i + p2z3
(

k1−1∑
i=0

(qz)i
)2 ∞∑n=0

Rnzn

+

pz2
(

k2−1∑
i=0

(qz)i
)
− 2p2z3

(
k1−1∑
i=0

(qz)i
)(

k2−1∑
i=0

(qz)i
)
+ p3z4

(
k1−1∑
i=0

(qz)i
)2(k2−1∑

i=0
(qz)i

) ∞∑n=0
Rnzn = 0 .

We next collect together the reliability terms having the same low index and the outcome we are
looking for is readily deduced by applying some simple algebraic operations. �

In order to apply the recurrence for determining the reliability function of the linear consecutive-k1

and k2-out-of-n structure (k1 < k2) provided in Equation (8), a suitable set of initial conditions is needed.
Please note that the initial conditions that follow are algebraically necessary for implying the proposed
recursive scheme. However, these initial cases correspond to reliability structures without any practical
interest in real applications. For example, if the total number of components is no greater than the
parameter k1 or k2, then we readily deduce that the resulting structure never fails. In other words, it is
evident that if n < k1 or n < k2, then at least one of the failure criteria of the linear consecutive-k1 and
k2-out-of-n structure cannot be fulfilled. This means that, given that n < k1 or n < k2, the reliability
function of the linear consecutive-k1 and k2-out-of-n system is equal to 1. Finally, if the parameter n
equals k2, then the underlying structure behaves actually as the traditional parallel system. One may
easily deduce that the latter cases mentioned above could not be discussed as existing structures, and
that we need their reliability in order to run the proposed recurrence. The sufficient group for setting
forth the recursive relation in (8) is given as

Rn =


1, if 0 < n < k2,
1, if 0 < n < k1,
1− (1− p)k2 , if n = k2.
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Apart from the abovementioned conditions, if additional calculations are needed for running the
recurrence, then these computations could be covered by the aid of the traditional definition of the
signature vector of a coherent system with independent and identically distributed components (see,
e.g., [34]).

We next apply Proposition 2 in order to determine the reliability polynomial of the linear
consecutive-k1 and k2-out-of-n system for specific designs. Table 1 displays the corresponding results
of the linear consecutive-k1 and k2-out-of-n structures for different values of their design parameters.

Table 1. Reliability polynomial of consecutive-k1 and k2-out-of-n systems for different values of n, k1, k2.

n (k1,k2) Reliability Polynomial

4 (1,2) 6p2
− 8p3 + 3p4

4 (1,3) 4p− 6p2 + 4p3
− p4

5 (1,2) 0.5p2 + 8.5p3
− 13.5p4 + 5.5p5

5 (1,3) p + 6p2
− 14p3 + 11p4

− 3p5

5 (1,4) 5p− 10p2 + 10p3
− 5p4 + p5

6 (1,2) 0.66p3 + 13.02p4
− 22.02p5 + 9.34p6

6 (1,3) 3p2 + 8p3
− 27p4 + 24p5

− 7p6

6 (1,4) 1.98p + 5.1p2
− 20.2p3 + 25.2p4

− 14.1p5 + 3.02p6

6 (1,5) 6p− 15p2 + 20p3
− 15p4 + 6p5

− p6

6 (2,3) 1.98p + 5.1p2
− 20.2p3 + 25.2p4

− 14.1p5 + 3.02p6

6 (2,4) 6p− 15p2 + 20p3
− 15p4 + 6p5

− p6

7 (2,3) 6.006p2 + 4.97p3
− 44.94p4 + 65.94p5

− 39.97p6 + 8.994p7

7 (2,4) 3.003p + 2.982p2
− 24.955p3 + 44.94p4

− 38.955p5 + 16.982p6
− 2.997p7

7 (2,5) 7p− 21p2 + 35p3
− 35p4 + 21p5

− 7p6 + p7

7 (3,4) 7p− 21p2 + 35p3
− 35p4 + 21p5

− 7p6 + p7

8 (2,3) 1.344p2
− 1.4p3 + 56.84p4

− 184.24p5 + 233.52p6
− 134.744p7 + 29.68p8

8 (2,4) 9.492p2
− 0.952p3

− 67.62p4 + 146.16p5
− 137.62p6 + 63.048p7

− 11.508p8

8 (2,5) 4p− 28p3 + 70p4
− 84p5 + 56p6

− 20p7 + 3p8

8 (2,6) 8p− 28p2 + 56p3
− 70p4 + 56p5

− 28p6 + 8p7
− p8

8 (3,4) 4p− 28p3 + 70p4
− 84p5 + 56p6

− 20p7 + 3p8

8 (3,5) 8p− 28p2 + 56p3
− 70p4 + 56p5

− 28p6 + 8p7
− p8

9 (2,5) 0.99p + 15.12p2
− 49.56p3 + 50.4p4 + 18.9p5

− 89.04p6 + 83.88p7
− 35.64p8 + 5.95p9

9 (2,6) 4.95p− 3.6p2
− 29.4p3 + 100.8p4

− 157.5p5 + 142.8p6
− 77.4p7 + 23.4p8

− 3.05p9

9 (2,7) 9p− 36p2 + 84p3
− 126p4 + 126p5

− 84p6 + 36p7
− 9p8 + p9

9 (3,4) 1.98p + 3.96p2 + 0.84p3
− 73.08p4 + 201.6p5

− 257.88p6 + 179.64p7
− 66.24p8 + 10.18p9

9 (3,5) 4.95p− 3.6p2
− 29.4p3 + 100.8p4

− 157.5p5 + 142.8p6
− 77.4p7 + 23.4p8

− 3.05p9

9 (3,6) 9p− 36p2 + 84p3
− 126p4 + 126p5

− 84p6 + 36p7
− 9p8 + p9

10 (3,5) 2p + 9.9p2
− 31.2p3

− 16.8p4 + 201.6p5
− 399p6 + 405.6p7

− 235.8p8 + 74.8p9
− 10.1p10

10 (3,6) 6p− 9p2
− 24p3 + 126p4

− 252p5 + 294p6
− 216p7 + 99p8

− 26p9 + 3p10

10 (3,7) 10p− 45p2 + 120p3
− 210p4 + 252p5

− 210p6 + 120p7
− 45p8 + 10p9

− p10

By casting a glance at the abovementioned results, one may deduce some interesting conclusions
about the reliability function of the underlying structure. Based on Table 1, we next construct several
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figures, in order to reveal the impact of the design parameters n, k1, k2 on the reliability behavior of the
linear consecutive-k1 and k2-out-of-n system.

Figure 1 displays the reliability polynomial of the linear consecutive k1 and k2-out-of-n systems
consisting of i.i.d. components under specified values of design parameters n, k1 versus the common
reliability of its components. Generally speaking, as the reliability polynomial of a structure increases,
its credence strengthens. Consequently, when we compare the performance of two or more systems, we
look at their corresponding reliability polynomials and conclude that the frontrunner is the structure
which exhibits the larger reliability values.Mathematics 2020, 8, 630 10 of 17 
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Figure 1. The reliability polynomial of the linear consecutive-2 and k2-out-of-8 systems (k2 = 3,4,5).

The above figure reveals the impact of the design parameter k2 on the reliability of the resulting
linear structure. More precisely, three different designs are depicted in Figure 1, namely the structures
under the design parameter k2 = 3, 4, and 5 (k2 = 3: Green, k2 = 4: Blue, k2 = 5: Red). It is quite
clear that the reliability polynomial under the design parameter k2 = 5 (Red color line) exceeds the
remaining polynomials displayed in Figure 1. More specifically, it seems that the polynomials under
the design parameters k2 = 4 (Blue color line) and k2 = 3 (Green color line) lag behind. Therefore, based
on the above figure, it is readily observed that the reliability of the linear consecutive-k1 and k2-out-of-n
system increases as the design parameter k2 increases (given that the remaining design parameters do
not change).

In addition, it is of some interest to investigate the impact of parameter k1 on the reliability of the
consecutive-k1 and k2-out-of-n structure. For this reason, we next depict the reliability polynomial of
the aforementioned system under three different designs.

More precisely, the parameters k2 and n are chosen to be common, namely k2 = 3 and n = 6, while
the design parameter k1 ranges from 1 to 3 (k1 = 1: Green, k1 = 2: Blue, k1 = 3: Red). As already
mentioned, larger values of the reliability polynomial indicate a more reliable structure. Having that
in mind, we observe that the reliability polynomial under the design parameter k1 = 3 (Red color
line) exceeds the remaining polynomials displayed in Figure 2. More specifically, it seems that the
polynomials under the design parameters k1 = 2 (Blue color line) and k1 = 1 (Green color line) fall
short. Consequently, based on Figure 2, we conclude that the reliability of the linear consecutive-k1

and k2-out-of-n system increases as the design parameter k1 increases (given that the remaining design
parameters do not change).
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Figure 2. The reliability polynomial of the linear consecutive- k1 and 3-out-of-6 systems (k1 = 1,2,3).

Furthermore, in order to shed light on the influence of parameter n over the reliability of the
resulting system, we compare the polynomials, which correspond to structures of different order with
common parameters k1 and k2.

In other words, after determining the latter parameters as k1 = 2 and k2 = 4, we then display the
reliability function of the resulting systems of order n = 6 (Red line), 7 (Blue line) and 8 (Green line)
respectively. We then notice that the reliability polynomial of order n = 6 (Red color line) outcompetes
the remaining polynomials displayed in Figure 3. More precisely, it seems that the polynomials of
order n = 7 (Blue color line) and n = 8 (Green color line) give smaller reliability values in comparison
with the corresponding ones of the structure with parameter n = 6 (Red color line). Therefore, based on
Figure 3, one may readily observe that as the parameter n increases, the reliability function decreases.
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Figure 3. The reliability polynomial of the linear consecutive-2 and 4-out-of-n systems (n = 6,7,8).

In addition, Figure 4 depicts the reliability polynomial of several well-known consecutive-type
structures. In order to accomplish some figure-based comparisons, we consider different reliability
systems of order n = 6 consisting of i.i.d. components. More precisely, the reliability structures
appearing in Figure 4 are given as:

• the linear < 6, 3, 2 > system (Black color line)
• the linear (6, 3, 2) system (Purple color line)
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• the 4-out-of-6: F system (Yellow color line)
• the consecutive 3-out-of-6: F system (Brown color line)
• the 2-within-consecutive-3-out-of-6: F system (Green color line)
• the 2-consecutive 2-out-of-6: F system (Blue color line)
• the consecutive-1 and 3-out-of-6 system (Red color line)
• the consecutive-2 and 3-out-of-6 system (Pink color line)
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In order to draw conclusions referring to the abovementioned competitive structures, we recall
once again that as the reliability polynomial of a system increases, its performance is appraised more
favorable. Consequently, in order to examine the performance of the systems appearing in Figure 4,
we study their corresponding reliability polynomials and, based on the above figure, the following
useful remarks can be stated:

• the consecutive-2 and 3-out-of-6 system outperforms all competitive structures of order 6 for all
cases examined;

• the 2-within-consecutive-3-out-of-6: F system seems to exhibits the weakest performance in
comparison with the other structures of order 6 appearing in the same figure;

• the consecutive-2 and 3-out-of-6 system outperforms the linear <6,3,2> system, the linear (6,3,2)
system, and the 2-within-consecutive-3-out-of-6: F structure, while it seems to be competitive with
the 4-out-of-6: F system and the consecutive 3-out-of-6: F structure. However, the consecutive-2
and 3-out-of-6 system exhibits a clearly weaker performance versus the 2-consecutive 2-out-of-6:
F structure and the consecutive-1 and 3-out-of-6 system.

The following proposition provides a recurrence relation in terms of the design parameter n for
determining the coordinates of the signature vector of the linear consecutive-k1 and k2-out-of-n structure.
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Proposition 3. The coordinates si(n, k1, k2) of the signature vector of the linear consecutive k1 and k2-out-of-n
(k1 < k2) structure consisting of n i.i.d. components serves the next recursive scheme

ai(n) + ai−1(n) − 5(ai−2(n− 1) + ai(n− 1) − ai−5(n− 4) − ai(n− 4) − ai−m−2(n−m− 5)) − 40(ai−3(n− 3) + ai−1(n− 3))

−10(ai−1(n− 1) − ai−3(n− 2) − ai(n− 2) + ai−4(n− 3) + ai(n− 3)) + 42ai−k−m−2(n−m− k− 4) − ai−2m−4(n− 2m− 5)

+30(ai−2(n− 2) + ai−1(n− 2) + ai−m−2(n−m− 3) − ai−m−2(n−m− 4) + ai−k−2(n− k− 5) + ai−k−3(n− k− 5))

−60ai−2(n− 3) + 25(ai−4(n− 4) + ai−1(n− 4)) + 30(ai−k−m−1(n−m− k− 4) − ai−k−m−1(n−m− k− 3))

+18(ai−k(n− k− 3) + ai−k−3(n− k− 3)) + 54(ai−k−1(n− k− 3) + ai−k−2(n− k− 3) − ai−2k−1(n− 2k− 3))

+18(−ai−2k−2(n− 2k− 5) − ai−k−m−2(n−m− k− 3)ai−k−m−3(n−m− k− 4) − ai−k−m−2(n−m− k− 2))

+18(−ai−k−m−3(n−m− k− 5) − ai−m−2k−1(n−m− 2k− 4)) + 50(ai−3(n− 4) + ai−2(n− 4)) − ai−6(n− 5)

−6(ai−5(n− 5) + ai−1(n− 5) + ai−m(n−m− 2) − ai−m(n−m− 3) + ai−2m−2(n− 2m− 3) + ai−2m−2(n− 2m− 5))

+6(ai−k−m(n−m− k− 2) + ai−k−m−1(n−m− k− 2) + ai−k−m(n−m− k− 4) − ai−k−m−1(n−m− k− 5))

−6(ai−k−2m−2(n− 2m− k− 4) − ai−2k−m−3(n−m− 2k− 5) + ai−2k(n− 2k− 4))

−15(ai−4(n− 5) + ai−2(n− 5) − ai−k−1(n− k− 5) − ai−k−4(n− k− 5)) − 20ai−3(n− 5) − ai(n− 5)

+ai−3k(n− 3k− 3) + ai−3k−1(n− 3k− 3) − 14(ai−m−1(n−m− 2) + ai−m−1(n−m− 4)) − ai−2m(n− 2m− 5)

+2(ai−m(n−m− 1) + ai−m−1(n−m) − ai−m(n−m− 4) + ai−m−5(n−m− 5) − ai−3k(n− 3k− 4) − ai−3k−2(n− 3k− 4))

−8(ai−m−2(n−m− 2) + ai−m−4(n−m− 4)) + ai−m−1(n−m− 5) + ai−2m(n− 2m− 2) + ai−2m−1(n− 2m− 2)

+24(ai−m−1(n−m− 3) + ai−k−1(n− k− 2)) + 27(ai−2k−1(n− 2k− 4) + ai−2k−2(n− 2k− 4)) − 26ai−m−3(n−m− 4)

−48(ai−k−1(n− k− 4) + ai−k−3(n− k− 4)) − 72ai−k−2(n− k− 4)

+9(ai−m−3(n−m− 5) − ai−2m−1(n− 2m− 3) + ai−2m−1(n− 2m− 4) + ai−2m−2(n− 2m− 4) − ai−2k(n− 2k− 3))

+9(−ai−2k−2(n− 2k− 3)ai−2k−3(n− 2k− 4) + ai−k−2m−1(n− 2m− k− 5) + ai−k−2m−2(n− 2m− k− 5))

+7ai−m−4(n−m− 5) + ai−3k(n− 3k− 5) + ai−3k−3(n− 3k− 5) + ai−3k−2m(n− 2m− 3k− 5) + ai−3k−2m−1(n− 2m− 3k− 5)

−3(ai−2m(n− 2m− 3) − ai−2m(n− 2m− 4) − ai−2m−3(n− 2m− 4) − ai−k(n− k) − ai−k−1(n− k− 1) − ai−3k−2(n− 3k− 5))

+3(ai−2k(n− 2k− 2) + ai−2k−1(n− 2k− 2) − 3ai−2k(n− 2k− 5) − ai−2k−4(n− 2k− 5) + ai−3k−1(n− 3k− 5))

+3(ai−k−2m(n− 2m− k− 3) + ai−k−2m−1(n− 2m− k− 3) + ai−k−2m(n− 2m− k− 5) + ai−k−2m−3(n− 2m− k− 5))

−4(ai−2m−1(n− 2m− 5) + ai−2m−3(n− 2m− 5) + ai−3k−1(n− 3k− 4)) − 3(ai−k(n− k− 5) + ai−k−5(n− k− 5))

−12(ai−k(n− k− 2) − ai−m−3(n−m− 3) + ai−k−2(n− k− 2) + ai−k(n− k− 4) + ai−k−4(n− k− 4) + ai−2k−1(n− 2k− 5))

−12(ai−k−m(n−m− k− 3) + ai−k−2m−1(n− 2m− k− 4) + ai−m−2k−2(n−m− 2k− 4) − ai−m−2k−2(n−m− 2k− 5))

−12(ai−2k−3(n− 2k− 5) + ai−2k−m−2(n−m− 2k− 5)) + 6ai−2k−m−1(n−m− 2k− 5)

+3(ai−2k−2m(n− 2m− 2k− 4) + ai−2k−2m−1(n− 2m− 2k− 4) − ai−2k−2m(n− 2m− 2k− 5) − ai−2k−2m−2(n− 2m− 2k− 5))

−6(ai−2k−2m−1(n− 2m− 2k− 5) − ai−m−2k(n−m− 2k− 3) − ai−m−2k(n−m− 2k− 4) + ai−k−2m(n− 2m− k− 4))

+2(ai−3k−m(n−m− 3k− 4) + ai−3k−m−1(n−m− 3k− 4) − ai−3k−m−1(n−m− 3k− 5) − ai−3k−m−2(n−m− 3k− 5)) = 0.

(9)

where

k = k1, m = k2, ai(n) = i
(

n
i

)
si(n, k1, k2), i = 1, 2, . . . , n

Proof. It is evident that the double generating function of the coordinates of the signature vector

multiplied by some binomial coefficients, namely of the quantities i
(

n
i

)
si(n), 1 ≤ i ≤ n is related to

R(z; p) via the following equality [39]:

∞∑
n=1

n∑
i=1

i
(

n
i

)
si(n) tixn = tx

∂R(x(1 + t); 1
1+t )

∂x
− t(t + 1)

∂R(x(1 + t); 1
1+t )

∂t
(10)

Substituting the generating function R(z; p) given by formula (3) in Equation (10) we may write

∞∑
n=1

n∑
i=1

i
(

n
i

)
si(n, k1, k2) tixn =

Q

(1 + t)(1− x(1 + t− (tx)k1))
3
(1− x(1 + t− (tx)k2))

2 (11)
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where si(n, k1, k2) corresponds to the i-th coordinate of the signature vector of the linear consecutive-k1

and k2-out-of-n (k1 < k2) structure consisting of n i.i.d. components, while

Q = tk2xk2−1
(
2(t− k1)(1− tx)2(1− x− tx)(1 + t)(1− x(1 + t− (tx)k2))

2
)

×

(
(1− tx)(2k1 − k2 − (3− 3k1 + k2)t− 4t2 + tx(t + 1)(4t + 2− 3k1 + k2)

)
×

(
(1− x(1 + t− (tx)k1))(1− x(1 + t− (tx)k2))

2
)

×

(
t(k2 − k1 + 1 + tx(2t + k2 − k1))(1− x(1 + t− (tx)k1))

2
(1− x(1 + t− (tx)k2))

2
)

×

(
(k2 − k2tx− tx(1− (tx)k2)

2
(1− x(1 + t− (tx)k1))

3
)
.

We next denote

ai(n) = i
(

n
i

)
si(n, k1, k2), i = 1, 2, . . . , n

and Equation (11) takes on the following form:

(1 + t)(1− x(1 + t− (tx)k1))
3
(1− x(1 + t− (tx)k2))

2
∞∑

n=1

n∑
i=1

ai(n)tixn = Q

or equivalently:

(1 + t)

 3∑
j=0

(
3
j

)
c j

k1


 2∑

l=0

(
2
l

)
cl

k2

 ∞∑
n=1

n∑
i=1

ai(n)tixn = Q (12)

where
ch = −x(1 + t− (tx)h), h = k1, k2.

Looking carefully at the above form of Q, we can readily observe that the coefficients of xn on the
left hand side of Equation (12) should vanish for n > 8k2 + 6k1 + 18. Consequently, we may verify that(

1− (3t + 3)x + (3t2 + 6t + 3)x2
− (t3 + 3t2 + 3t + 1)x3 + 3tk1xk1+1

− (6tk1+1 + 6tk1)xk1+2

+(3tk1+2 + 6tk1+1 + 3tk1)xk1+3 + 3t2k1x2k1+2
− (3t2k1+1 + 3t2k1)x2k1+3 + t3k1x3k1+3

)
×

(
1− (2t + 2)x + (t2 + 2t + 1)x2 + 2tk2xk2+1

− 2tk2+1xk2+2 + t2k2x2k2+2
)
(1 + t)

∞∑
n=1

n∑
i=1

ai(n)tixn = 0

The recursive scheme we are looking for is readily deduced after several algebraic manipulations.
�

Please note that in order to apply the recurrence for determining the signature vector of the linear
consecutive k1 and k2-out-of-n (k1 < k2) structure provided by the recurrence appeared in (9), a suitable
set of initial conditions is needed. These values can be obtained by exploiting the same scheme and
setting si(n, k1, k2) = 0 if i ≤ 0, n ≤ 0, i < k2, n < k1 or n < k2, or in the event of deriving a negative
value of si(n, k1, k2). It is evident that the latter cases mentioned above (e.g., n < k2) correspond to
reliability structures without any practical interest, but we need their signature vectors in order to run
the proposed recurrence.

Table 2 displays the signature vectors of linear consecutive-k1 and k2-out-of-n structures for
different values of their design parameters. More specifically, we next compute the signatures of the
consecutive-k1 and k2-out-of-n systems of order n = 4,5, . . . ,10 and several specified values of the
remaining parameters k1 and k2.
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Table 2. Signature vector of consecutive-k1 and k2-out-of-n systems for different designs.

n (k1,k2) Signature Vector n (k1,k2) Signature Vector

4 (1,2) (0, 0, 1, 0) 8 (2,3) (0, 0, 0, 0, 0.881, 0.071, 0.048, 0)

4 (1,3) (0, 0, 0, 1) 8 (2,4) (0, 0, 0, 0, 0, 0.661, 0.339, 0)

5 (1,2) (0, 0, 0.95, 0.05, 0) 8 (2,5) (0, 0, 0, 0, 0, 0, 0.5, 0.5)

5 (1,3) (0, 0, 0, 0.8, 0.2) 8 (2,6) (0, 0, 0, 0, 0, 0, 0, 1)

5 (1,4) (0, 0, 0, 0, 1) 8 (3,4) (0, 0, 0, 0, 0, 0, 0.5, 0.5)

6 (1,2) (0, 0, 0.967, 0.033, 0, 0) 8 (3,5) (0, 0, 0, 0, 0, 0, 0, 1)

6 (1,3) (0, 0, 0, 0.8, 0.2, 0) 9 (2,5) (0, 0, 0, 0, 0, 0, 0.36, 0.53, 0.11)

6 (1,4) (0, 0, 0, 0, 0.67, 0.33) 9 (2,6) (0, 0, 0, 0, 0, 0, 0, 0.45, 0.55)

6 (1,5) (0, 0, 0, 0, 0, 1) 9 (2,7) (0, 0, 0, 0, 0, 0, 0, 0, 1)

6 (2,3) (0, 0, 0, 0, 0.67, 0.33) 9 (3,4) (0, 0, 0, 0, 0, 0, 0.45, 0.33, 0.22)

6 (2,4) (0, 0, 0, 0, 0, 1) 9 (3,5) (0, 0, 0, 0, 0, 0, 0, 0.45, 0.55)

7 (2,3) (0, 0, 0, 0, 0.714, 0.286, 0) 9 (3,6) (0, 0, 0, 0, 0, 0, 0, 0, 1)

7 (2,4) (0, 0, 0, 0, 0, 0.571, 0.429) 10 (3,5) (0, 0, 0, 0, 0, 0, 0, 0.38, 0.42, 0.2)

7 (2,5) (0, 0, 0, 0, 0, 0, 1) 10 (3,6) (0, 0, 0, 0, 0, 0, 0, 0, 0.4, 0.6)

7 (3,4) (0, 0, 0, 0, 0, 0, 1) 10 (3,7) (0, 0, 0, 0, 0, 0, 0, 0, 0, 1)

By casting a glance at the abovementioned numerical results, one may deduce some interesting
conclusions about the behavior of the underlying reliability structure. For example, let us focus on
the special case n = 10, k1 = 3, k2 = 5; namely let us assume that the underlying structure consists of
n = 10 independent and identically distributed components and the system fails if and only if there
exist at least k1 = 3 and k2 = 5 consecutive non-overlapping failed ones. As readily concluded, the
aforementioned structure fails at the 8th ordered failure of its components with probability 38%, while
it fails at the 9th ordered component’s failure with probability equal to 42%. Finally, the consecutive-3
and 5-out-of-10 structure manages to operate even if nine components have failed, with probability
20%. Similar conclusions could be drawn by the aid of the remaining numerical outcomes of the
above table.

4. Discussion

In the present manuscript, the consecutive k1 and k2-out-of-n(k1 < k2) structure with independent
and identically distributed components ordered in a line is investigated. The main motivation of the
present paper is to deliver the generating function of the reliability for the linear consecutive-k1 and
k2-out-of-n system. The aforementioned result has not appeared in the literature so far and is now
offered by Proposition 1 of the present manuscript.

Based on the theoretical results proved in previous sections, recursive schemes for calculating the
reliability function and the signature of the linear consecutive-k1 and k2-out-of-n (k1 < k2) structure
are provided. The figure-based and numerical results which are illustrated reveal the impact of the
design parameters on the reliability polynomial and the signature vector of the underlying structure.
More precisely, the linear consecutive k1 and k2-out-of-n system exhibits better performance for
larger values of the design parameters k1 and k2, while it seems that its competency weakens as the
parameter n increases. Furthermore, the linear consecutive-k1 and k2-out-of-n structure seems to be
competitive versus several consecutive-type reliability systems. Indeed, the linear consecutive-k1 and
k2-out-of-n structure has been proved to be more reliable, for all cases considered, in comparison
with the traditional k-out-of-n: F structure, the consecutive-k-out-of-n: F system or even against more
complicated structures, such as the r-within-consecutive-k-out-of-n: F or the m-consecutive-k-out-of-n:
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F system. The reliability study of the circular consecutive-k1 and k2-out-of-n (k1 < k2) could be an
interesting topic for future research.
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