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Abstract: This work is concerned with the oscillatory behavior of solutions of even-order neutral
differential equations. By using the technique of Riccati transformation and comparison principles
with the second-order differential equations, we obtain a new Philos-type criterion. Our results
extend and improve some known results in the literature. An example is given to illustrate our
main results.
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1. Introduction

In this article, we investigate the asymptotic behavior of solutions of even-order neutral differential
equation of the form (

b (t)
(

z(n−1) (t)
)γ)′

+
k

∑
i=1

qi (t) uγ (δi (t)) = 0, (1)

where t ≥ t0, n ≥ 4 is an even natural number, k ≥ 1 is an integer and z (t) := u (t) + p (t) u (σ (t)).
Throughout this paper, we assume the following conditions to hold:

(P1) γ is a quotient of odd positive integers;
(P2) b ∈ C[t0, ∞), b (t) > 0, b′ (t) ≥ 0;
(P3) σ ∈ C1[t0, ∞), δi ∈ C[t0, ∞), σ′ (t) > 0, δ (t) ≤ δi (t) , σ (t) ≤ t and limt→∞ σ (t) =

limt→∞ δi (t) = ∞, i = 1, 2, ..., k;
(P4) p, qi ∈ C[t0, ∞), qi (t) > 0, 0 ≤ p (t) < p0 < ∞ and∫ ∞

t0

b−1/γ (s)ds = ∞ (2)

Definition 1. The function u ∈ C3[tu, ∞), tu ≥ t0, is called a solution of (1), if b (t)
(

z(n−1) (t)
)γ
∈

C1[tu, ∞), and u (t) satisfies (1) on [tu, ∞). Moreover, a solution of (1) is called oscillatory if it has arbitrarily
large zeros on [tu, ∞), and otherwise is called to be nonoscillatory.
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Definition 2. Let

D = {(t, s) ∈ R2 : t ≥ s ≥ t0} and D0 = {(t, s) ∈ R2 : t > s ≥ t0}.

A kernel function Hi ∈ p (D,R) is said to belong to the function class =, written by H ∈ =, if, for
i = 1, 2,

(i) Hi (t, s) = 0 for t ≥ t0, Hi (t, s) > 0, (t, s) ∈ D0;
(ii) Hi (t, s) has a continuous and nonpositive partial derivative ∂Hi/∂s on D0 and there exist functions

σ, ϑ ∈ C1 ([t0, ∞) , (0, ∞)) and hi ∈ C (D0,R) such that

∂

∂s
H1 (t, s) +

θ′ (s)
θ (s)

H1 (t, s) = h1 (t, s) Hγ/(γ+1)
1 (t, s) (3)

and
∂

∂s
H2 (t, s) +

υ′ (s)
υ (s)

H2 (t, s) = h2 (t, s)
√

H2 (t, s). (4)

The oscillation theory of differential equations with deviating arguments was initiated in a
pioneering paper [1] of Fite, which appeared in the first quarter of the twentieth century.
Delay equations play an important role in applications of real life. One area of active research in
recent times is to study the sufficient criteria for oscillation of differential equations, see [1–11], and
oscillation of neutral differential equations has become an important area of research, see [12–30].
Having in mind such applications, for instance, in electrical engineering, we cite models that describe
electrical power systems, see [18]. Neutral differential equations also have wide applications in applied
mathematics [31,32], physics [33], ecology [34] and engineering [35].

In the following, we show some previous results in the literature related to this paper:
Moaaz et al. [23] proved that if there exist positive functions η, ζ ∈ C1 ([t0, ∞) ,R) such that the
differential equations

ψ′(t) +

(
µ
(
δ−1 (η (t))

)n−1

(n− 1)!r1/α (δ−1 (η (t)))

)α

q (t) Pα
n (σ (t))ψ

(
δ−1 (η (t))

)
= 0

and
φ′ (t) + δ−1 (ζ (t)) Rn−3 (t) φ

(
δ−1 (ζ (t))

)
= 0

are oscillatory, then (1) is oscillatory.
Zafer [29] proved that the even-order differential equation

z(n) (t) + q (t) x (σ (t)) = 0 (5)

is oscillatory if

lim inf
t→∞

∫ t

σ(t)
Q (s)ds >

(n− 1) 2(n−1)(n−2)

e
, (6)

or

lim sup
t→∞

∫ t

σ(t)
Q (s)ds > (n− 1) 2(n−1)(n−2), σ′ (t) ≥ 0.

where Q (t) := σn−1 (t) (1− p (σ (t))) q (t).
Zhang and Yan [30] proved that (5) is oscillatory if either

lim inf
t→∞

∫ t

σ(t)
Q (s)ds >

(n− 1)!
e

, (7)
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or

lim sup
t→∞

∫ t

σ(t)
Q (s)ds > (n− 1)!, σ (t) ≥ 0.

It’s easy to note that (n− 1)! < (n− 1) 2(n−1)(n−2) for n > 3, and hence results in [30] improved
results of Zafer in [29].

Xing et al. [28] proved that (1) is oscillatory if(
δ−1 (t)

)′
≥ δ0 > 0, σ′ (t) ≥ σ0 > 0, σ−1 (δ (t)) < t

and

lim inf
t→∞

∫ t

σ−1(δ(t))

q̂ (s)
b (s)

(
sn−1

)γ
ds >

(
1
δ0

+
pγ

0
δ0σ0

)
((n− 1)!)γ

e
, (8)

where q̂ (t) := min
{

q
(
δ−1 (t)

)
, q
(
δ−1 (σ (t))

)}
.

Hence, [28] improved the results in [29,30].
In our paper, by carefully observing and employing some inequalities of different type, we

provide a new criterion for oscillation of differential Equation (1). Here, we provide different criteria
for oscillation, which can cover a larger area of different models of fourth order differential equations.
We introduce a Riccati substitution and comparison principles with the second-order differential
equations to obtain a new Philos-type criteria. Finally, we apply the main results to one example.

2. Some Auxiliary Lemmas

We shall employ the following lemmas:

Lemma 1 ([5]). Let β be a ratio of two odd numbers, V > 0 and U are constants. Then

Uu−Vu(β+1)/β ≤ ββ

(β + 1)β+1
Uβ+1

Vβ
.

Lemma 2 ([6]). If the function u satisfies u(i) (t) > 0, i = 0, 1, ..., n, and u(n+1) (t) < 0, then

u (t)
tn/n!

≥ u′ (t)
tn−1/ (n− 1)!

.

Lemma 3 ([4]). The equation (
b (t)

(
u′ (t)γ))′ + q (t) uγ (t) = 0, (9)

where b ∈ C[t0, ∞), b (t) > 0 and q (t) > 0, is non-oscillatory if and only if there exist a t ≥ t0 and a function
υ ∈ C1[`, ∞) such that

υ′ (t) +
γ

b1/γ (t)
υ1+1/γ (t) + q (t) ≤ 0,

for t ≥ t0.

Lemma 4 ([2], Lemma 2.2.3). Let u ∈ Cn ([t0, ∞) , (0, ∞)) . Assume that u(n) (t) is of fixed sign and not
identically zero on [t0, ∞) and that there exists a t1 ≥ t0 such that u(n−1) (t) u(n) (t) ≤ 0 for all t ≥ t1. If
limt→∞ u (t) 6= 0, then for every µ ∈ (0, 1) there exists tµ ≥ t1 such that

u (t) ≥ µ

(n− 1)!
tn−1

∣∣∣u(n−1) (t)
∣∣∣ for t ≥ tµ.
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3. Main Results

In this section, we give the main results of the article. Here, we define the next notation:

Pk (t) =
1

p (σ−1 (t))

(
1−

(
σ−1 (σ−1 (t)

))k−1

(σ−1 (t))k−1 p (σ−1 (σ−1 (t)))

)
, for k = 2, n,

R0 (t) =

(
1

b (t)

∫ ∞

t

k

∑
i=1

qi (s) Pγ
2 (δi (s))ds

)1/γ

,

Θ (t) = γ
µ1

(n− 2)!

(
b (t)

b (σ−1 (δi (t)))

)1/γ
(
σ−1 (δi (t))

)′
(δi (t))

′ (σ−1 (δi (t))
)n−2

(bθ)1/γ (t)
,

Θ̃ (t) =
hγ+1

1 (t, s) Hγ
1 (t, s)

(γ + 1)γ+1
((n− 2)!)γ b

(
σ−1 (δi (t))

)
θ (t)(

µ1 (σ−1 (δi (t)))
′
(δi (t))

′ (σ−1 (δi (t)))
n−2
)γ

and
Rm (t) =

∫ ∞

t
Rm−1 (s)ds, m = 1, 2, ..., n− 3.

Lemma 5 ([8], Lemma 1.2). Assume that u is an eventually positive solution of (1). Then, there exist two
possible cases:

(S1) z (t) > 0, z′ (t) > 0, z′′ (t) > 0, z(n−1) (t) > 0, z(n) (t) < 0,
(S2) z (t) > 0, z(j)(t) > 0, z(j+1)(t) < 0 for all odd integer

j ∈ {1, 3, ..., n− 3}, z(n−1)(t) > 0, z(n)(t) < 0,

for t ≥ t1, where t1 ≥ t0 is sufficiently large.

Lemma 6. Let u be an eventually positive solution of (1) and(
σ−1

(
σ−1 (t)

))n−1
<
(

σ−1 (t)
)n−1

p
(

σ−1
(

σ−1 (t)
))

. (10)

Then

u (t) ≥
z
(
σ−1 (t)

)
p (σ−1 (t))

− 1
p (σ−1 (t))

z
(
σ−1 (σ−1 (t)

))
p (σ−1 (σ−1 (t)))

. (11)

Proof. Let u be an eventually positive solution of (1) on [t0, ∞). From the definition of z (t), we see that

p (t) u (σ (t)) = z (t)− u (t)

and so
p
(

σ−1 (t)
)

u (t) = z
(

σ−1 (t)
)
− z

(
σ−1 (t)

)
.

Repeating the same process, we obtain

u (t) =
1

p (σ−1 (t))

(
z
(

σ−1 (t)
)
−
(

z
(
σ−1 (σ−1 (t)

))
p (σ−1 (σ−1 (t)))

−
u
(
σ−1 (σ−1 (t)

))
p (σ−1 (σ−1 (t)))

))
,

which yields

u (t) ≥
z
(
σ−1 (t)

)
p (σ−1 (t))

− 1
p (σ−1 (t))

z
(
σ−1 (σ−1 (t)

))
p (σ−1 (σ−1 (t)))

.

Thus, (11) holds. This completes the proof.
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Lemma 7. Assume that u is an eventually positive solution of (1) and

(
b (t)

(
z(n−1) (t)

)γ)′
≤ −zγ

(
σ−1 (δ (t))

) k

∑
i=1

qi (t) Pγ
n (δi (t)) , if z satisfies (S1) (12)

and
z′′ (t) + Rn−3 (t) z

(
σ−1 (δ (t))

)
≤ 0, if z satisfies (S2) . (13)

Proof. Let u be an eventually positive solution of (1) on [t0, ∞). It follows from Lemma 5 that there
exist two possible cases (S1) and (S2).

Suppose that Case (S1) holds. From Lemma 2, we obtain z (t) ≥ 1
(n−1) tz′ (t) and hence the

function t1−nz (t) is nonincreasing, which with the fact that σ (t) ≤ t gives(
σ−1 (t)

)n−1
z
(

σ−1
(

σ−1 (t)
))
≤
(

σ−1
(

σ−1 (t)
))n−1

z
(

σ−1 (t)
)

. (14)

Combining (11) and (14), we conclude that

u (t) ≥ 1
p (σ−1 (t))

(
1−

(
σ−1 (σ−1 (t)

))n−1

(σ−1 (t))n−1 p (σ−1 (σ−1 (t)))

)
z
(

σ−1 (t)
)

= Pn (t) z
(

σ−1 (t)
)

. (15)

From (1) and (15), we obtain

(
b (t)

(
z(n−1) (t)

)γ)′
≤ −

k

∑
i=1

qi (t) Pγ
n (δi (t)) zγ

(
σ−1 (δi (t))

)
≤ −zγ

(
σ−1 (δ (t))

) k

∑
i=1

qi (t) Pγ
n (δi (t)) .

Thus, (12) holds.
Suppose that Case (S2) holds. From Lemma 2, we find

z (t) ≥ tz′ (t) (16)

and thus the function t−1z (t) is nonincreasing, eventually. Since σ−1 (t) ≤ σ−1 (σ−1 (t)
)
, we obtain

σ−1 (t) z
(

σ−1
(

σ−1 (t)
))
≤ σ−1

(
σ−1 (t)

)
z
(

σ−1 (t)
)

. (17)

Combining (11) and (17), we find

u (t) ≥ 1
p (σ−1 (t))

(
1−

(
σ−1 (σ−1 (t)

))
(σ−1 (t)) p (σ−1 (σ−1 (t)))

)
z
(

σ−1 (t)
)

= P2 (t) z
(

σ−1 (t)
)

,

which with (1) yields

(
b (t)

(
z(n−1) (t)

)γ)′
+

k

∑
i=1

qi (t) Pγ
2 (δi (t)) zγ

(
σ−1 (δi (t))

)
≤ 0. (18)
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Integrating the (18) from t to ∞, we obtain

z(n−1) (t) ≥ b0 (t) z
(

σ−1 (δ (t))
)

.

Integrating this inequality from t to ∞ a total of n− 3 times, we obtain

z′′ (t) + Rn−3 (t) z
(

σ−1 (δ (t))
)
≤ 0.

Thus, (13) holds. This completes the proof.

Theorem 1. Let (2) and (10) hold. If there exist positive functions θ, υ ∈ C1 ([t0, ∞) ,R) such that

lim sup
t→∞

1
H1 (t, t1)

∫ t

t1

(
H1 (t, s)ψ (s)− Θ̃ (s)

)
ds = ∞ (19)

and

lim sup
t→∞

1
H2 (t, t1)

∫ t

t1

(
H2 (t, s)ψ∗ (s)−

υ (s) h2
2 (t, s)

4

)
ds = ∞, (20)

where

ψ (s) = θ (t)
k

∑
i=1

qi (t) Pγ
n (δi (t)) , ψ∗ (s) = υ (t) bn−3 (t)

(
σ−1 (δ (t))

t

)
and

Θ̃ (s) =
hγ+1

1 (t, s) Hγ
1 (t, s)

(γ + 1)γ+1
((n− 2)!)γ b

(
σ−1 (δ (t))

)
θ (t)(

µ1 (σ−1 (δ (t)))′ (δ (t))′ (σ−1 (δ (t)))n−2
)γ ,

then (1) is oscillatory.

Proof. Let u be a non-oscillatory solution of (1) on [t0, ∞). Without loss of generality, we can assume
that u is eventually positive. It follows from Lemma 5 that there exist two possible cases (S1) and (S2).

Let (S1) hold. From Lemma 7, we arrive at (12). Next, we define a function ξ by

ξ (t) := θ (t)
b (t)

(
z(n−1) (t)

)γ

zγ (σ−1 (δ (t)))
> 0.

Differentiating and using (12), we obtain

ξ ′ (t) ≤ θ′ (t)
θ (t)

ξ (t)− θ (t)
k

∑
i=1

qi (t) Pγ
n (δi (t))

−γθ (t)
b (t)

(
z(n−1) (t)

)γ (
σ−1 (δ (t))

)′
(δ (t))′ z′u

(
σ−1 (δ (t))

)
zγ+1

u (σ−1 (δ (t)))
. (21)

Recalling that b (t)
(

z(n−1) (t)
)γ

is decreasing, we get

b
(

σ−1 (δ (t))
) (

z(n−1)
(

σ−1 (δ (t))
))γ
≥ b (t)

(
z(n−1) (t)

)γ
.

This yields (
z(n−1)

(
σ−1 (δ (t))

))γ
≥ b (t)

b (σ−1 (δ (t)))

(
z(n−1) (t)

)γ
. (22)
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It follows from Lemma 4 that

z′
(

σ−1 (δ (t))
)
≥ µ1

(n− 2)!

(
σ−1 (δ (t))

)n−2
z(n−1)

(
σ−1 (δ (t))

)
, (23)

for all µ1 ∈ (0, 1) and every sufficiently large t. Thus, by (21), (22) and (23), we get

ξ ′ (t) ≤ θ′ (t)
θ (t)

ξ (t)− θ (t)
k

∑
i=1

qi (t) Pγ
n (δi (t))

−γθ (t)
µ1

(n− 2)!

(
b (t)

b
(
σ−1 (δ (t))

))1/γ b (t)
(

z(n−1) (t)
)γ+1 (

σ−1 (δ (t))
)′
(δ (t))′

(
σ−1 (δ (t))

)n−2

zγ+1
(
σ−1 (δ (t))

) .

Hence,

ξ ′ (t) ≤ θ′ (t)
θ (t)

ξ (t)− θ (t)
k

∑
i=1

qi (t) Pγ
n (δi (t)) (24)

−Θ (t) ξ
γ+1

γ (t) .

Multiplying (24) by H1 (t, s) and integrating the resulting inequality from t1 to t; we find that

∫ t

t1

H1 (t, s)ψ (s)ds ≤ ξ (t1) H1 (t, t1) +
∫ t

t1

(
∂

∂s
H1 (t, s) +

θ′ (s)
θ (s)

H1 (t, s)
)

ξ (s)ds

−
∫ t

t1

Θ (s) H1 (t, s) ξ
γ+1

γ (s)ds.

From (3), we get

∫ t

t1

H1 (t, s)ψ (s)ds ≤ ξ (t1) H1 (t, t1) +
∫ t

t1

h1 (t, s) Hγ/(γ+1)
1 (t, s) ξ (s)ds

−
∫ t

t1

Θ (s) H1 (t, s) ξ
γ+1

γ (s)ds. (25)

Using Lemma 1 with V = Θ (s) H1 (t, s) , U = h1 (t, s) Hγ/(γ+1)
1 (t, s) and u = ξ (s), we get

h1 (t, s) Hγ/(γ+1)
1 (t, s) ξ (s)−Θ (s) H1 (t, s) ξ

γ+1
γ (s)

≤
hγ+1

1 (t, s) Hγ
1 (t, s)

(γ + 1)γ+1
((n− 2)!)γ b

(
σ−1 (δ (t))

)
θ (t)(

µ1 (σ−1 (δ (t)))′ (δ (t))′ (σ−1 (δ (t)))n−2
)γ ,

which with (25) gives
1

H1 (t, t1)

∫ t

t1

(
H1 (t, s)ψ (s)− Θ̃ (s)

)
ds ≤ ξ (t1) ,

which contradicts (19).
On the other hand, let (S2) hold. Using Lemma 7, we get that (13) holds. Now, we define

ϕ (t) = υ (t)
z′ (t)
z (t)

. (26)
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Then ϕ (t) > 0 for t ≥ t1. By differentiating ϕ and using (13), we find

ϕ′ (t) =
υ′ (t)
υ (t)

ϕ (t) + υ (t)
z′′ (t)
z (t)

− υ (t)
(

z′ (t)
z (t)

)2

≤ υ′ (t)
υ (t)

ϕ (t)− υ (t) bn−3 (t)
z
(
σ−1 (δ (t))

)
z (t)

− 1
υ (t)

ϕ2 (t) . (27)

By using Lemma 2, we find that
z (t) ≥ tz′ (t) . (28)

From (28), we get that

z
(

σ−1 (δ (t))
)
≥ σ−1 (δ (t))

t
z (t) . (29)

Thus, from (27) and (29), we obtain

ϕ′ (t) ≤ υ′ (t)
υ (t)

ϕ (t)− υ (t) Rn−3 (t)
(

σ−1 (δ (t))
t

)
− 1

υ (t)
ϕ2 (t) . (30)

Multiplying (30) by H2 (t, s) and integrating the resulting from t1 to t, we obtain

∫ t

t1

H2 (t, s)ψ∗ (s)ds ≤ ϕ (t1) H2 (t, t1)

+
∫ t

t1

(
∂

∂s
H2 (t, s) +

υ′ (s)
υ (s)

H2 (t, s)
)

ϕ (s)ds

−
∫ t

t1

1
υ (s)

H2 (t, s) ϕ2 (s)ds.

Thus, ∫ t

t1

H2 (t, s)ψ∗ (s)ds ≤ ϕ (t1) H2 (t, t1) +
∫ t

t1

h2 (t, s)
√

H2 (t, s)ϕ (s)ds

−
∫ t

t1

1
υ (s)

H2 (t, s) ϕ2 (s)ds

≤ ϕ (t1) H2 (t, t1) +
∫ t

t1

υ (s) h2
2 (t, s)

4
ds

and so
1

H2 (t, t1)

∫ t

t1

(
H2 (t, s)ψ∗ (s)−

υ (s) h2
2 (t, s)

4

)
ds ≤ ϕ (t1) ,

which contradicts (20). This completes the proof.

In the next theorem, we establish new oscillation results for (1) by using the theory of comparison
with a second order differential equation.

Theorem 2. Assume that the equation

y′′ (t) + y (t)
k

∑
i=1

qi (t) Pγ
n (δi (t)) = 0 (31)

and [
b (t)

(
y′ (t)

)γ
]′
+ Rn−3 (t)

(
σ−1 (δ (t))

t

)
yγ (t) = 0, (32)

are oscillatory, then every solution of (1) is oscillatory.
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Proof. Suppose to the contrary that (1) has a eventually positive solution u and by virtue of Lemma 3.
From Theorem 1, we set θ (t) = 1 in (24), then we get

ξ ′ (`) + Θ (t) ξ
γ+1

γ +
k

∑
i=1

qi (t) Pγ
n (δi (t)) ≤ 0.

Thus, we can see that Equation (31) is nonoscillatory, which is a contradiction. If we now set
υ (t) = 1 in (30), then we obtain

ϕ′ (t) + Rn−3 (t)
(

σ−1 (δ (t))
t

)
+ ϕ2 (t) ≤ 0.

Hence, Equation (32) is nonoscillatory, which is a contradiction.
Theorem 2 is proved.

Corollary 1. If conditions (19) and (20) in Theorem 1 are replaced by the following conditions:

lim sup
t→∞

1
H1 (t, t1)

∫ t

t1

H1 (t, s)ψ (s)ds = ∞

and

lim sup
t→∞

1
H1 (t, t1)

∫ t

t1

Θ̃ (s)ds < ∞.

Moreover,

lim sup
t→∞

1
H2 (t, t1)

∫ t

t1

H2 (t, s)ψ∗ (s)ds = ∞

and

lim sup
t→∞

1
H2 (t, t1)

∫ t

t1

υ (s) h2
2 (t, s)ds < ∞,

then (1) is oscillatory.

Corollary 2. Let (10) holds. If there exist positive functions υ, θ ∈1 ([t0, ∞) ,R) such that

∫ ∞

t0

(
θ (s)

k

∑
i=1

qi (s) Pγ
n (δi (s))−v (s)

)
ds = ∞ (33)

and ∫ ∞

t0

P1υ (s)
∫ ∞

t

(
1

r ($)

∫ ∞

$

k

∑
i=1

qi (s)
(

τ−1 (σ (s))
s

)α

ds

)1/α

d$− π (s)

ds = ∞, (34)

where

v (t) :=
(n− 2)!α

(α + 1)α+1
r
(
τ−1 (σ (t))

)
(θ′ (t))α+1(

µ1θ (t) (τ−1 (σ (t)))′ (τ−1 (σ (t)))n−2
)α

and

π (t) :=
(υ′ (s))2

4υ (s)
,

then (1) is oscillatory.

Example 1. Consider the equation(
x (t) + 16x

(
1
2

t
))(4)

+
q0

t4 x
(

1
3

t
)
= 0, t ≥ 1, (35)
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where q0 > 0. We note that r (t) = 1, p (t) = 16, τ (t) = t/2, σ (t) = t/3 and q (t) = q0/t4.
Thus, we have

P1 (t) =
1
32

, P2 (t) =
7

128
.

Now, we obtain

∫ ∞

t0

(
θ (s)

k

∑
i=1

qi (s) Pγ
n (δi (s))−v (s)

)
ds = ∞

and

∫ ∞

t0

P1υ (s)
∫ ∞

t

(
1

r ($)

∫ ∞

$

k

∑
i=1

qi (s)
(

τ−1 (σ (s))
s

)α

ds

)1/α

d$− π (t)

ds

=
∫ ∞

t0

(
7q0

1152
− 1

4

)
ds,

= ∞, if q0 > 41.14.

Thus, by using Corollary 2, Equation (35) is oscillatory if q0 > 41.14.

4. Conclusions

The aim of this article was to provide a study of asymptotic nature for a class of even-order neutral
delay differential equations. We used a generalized Riccati substitution and the integral averaging
technique to ensure that every solution of the studied equation is oscillatory. The results presented
here complement some of the known results reported in the literature.

A further extension of this article is to use our results to study a class of systems of higher order
neutral differential equations as well as of fractional order. For all these there is already some research
in progress.
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